[go: up one dir, main page]

JPH0339648A - Glucose biosensor - Google Patents

Glucose biosensor

Info

Publication number
JPH0339648A
JPH0339648A JP1174941A JP17494189A JPH0339648A JP H0339648 A JPH0339648 A JP H0339648A JP 1174941 A JP1174941 A JP 1174941A JP 17494189 A JP17494189 A JP 17494189A JP H0339648 A JPH0339648 A JP H0339648A
Authority
JP
Japan
Prior art keywords
membrane
glucose
calibration range
working electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1174941A
Other languages
Japanese (ja)
Inventor
Masao Goto
正男 後藤
Ichiro Takatsu
高津 一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP1174941A priority Critical patent/JPH0339648A/en
Publication of JPH0339648A publication Critical patent/JPH0339648A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To expand the calibration range of the sensor by forming a dry and wet type membrane consisting of a high-polymer material or a substrate permeable membrane consisting of the heat-treated membrane thereof on a glucose oxidase (GOD) immobilized membrane on a working electrode surface. CONSTITUTION:A counter electrode (platinum) or the counter electrode and a reference electrode (silver/silver chloride electrode) in addition to the working electrode (gold) are all used as the electrodes of wire-shaped bodies in the sensor. The formation of the GOD immobilized membrane on the working electrode surface is executed by using a water soluble photocrosslinkable resin (polyvinyl alcohol system having a stilbazolium group). The formation of the substrate permeable membrane on the GOD immobilized membrane is executed by immersing the film into a doping liquid consisting of a soln. of a water soluble org. solvent (e.g., dimethylformamide), pulling the membrane and immersing the same into a gelatinizing bath thereof, for example, water, to gelatinize the soln. before the membrane dries sufficiently. The doping liquid is used after the concn. thereof is adjusted to about 5 to 20wt.%. The calibration range widens as the concn. of the doping liquid increases.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、グルコースバイオセンサに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to glucose biosensors.

更に詳しくは、検量範囲を拡大せしめたグルコースバイ
オセンサに関する。
More specifically, the present invention relates to a glucose biosensor with an expanded calibration range.

〔従来の技術〕[Conventional technology]

従来のグルコースオキシダーゼ(COD)を用いたグル
コースバイオセンサにおいては、次の反応式に示される
ように、0□もしくは!(,0□を検知することにより
、間接的にグルコース量を測定することが行われており
、理論的に限界がみられる。
In the conventional glucose biosensor using glucose oxidase (COD), as shown in the following reaction formula, 0□ or ! (,0□ is used to indirectly measure the amount of glucose, and there is a theoretical limit.

COD グルコース+02  → グルコノラクトン+H,0□
つまり、溶存酸素量は37℃において約0.2μM/r
sQであり、これをグルコース量に換算すると約40m
g/aとなる。上記式は等モル反応であるから。
COD Glucose +02 → Gluconolactone +H,0□
In other words, the amount of dissolved oxygen is approximately 0.2 μM/r at 37°C.
sQ, which is approximately 40 m when converted to glucose amount.
g/a. The above formula is an equimolar reaction.

これが検量上限値となる。This becomes the upper limit of calibration.

このように、02もしくはH20□を測定する方法には
欠点があり、こうした欠点のない方法として、近年反応
が溶存酸素に依存しないメデイエータ型グルコースバイ
オセンサが開発されており、その例としてフェロセンタ
イブのものが挙げられる。
As described above, there are drawbacks to the methods of measuring 02 or H20□, but as a method that does not have these drawbacks, mediator-type glucose biosensors whose reactions do not depend on dissolved oxygen have been developed in recent years. Things can be mentioned.

これの電極反応は、以下に示される如くであり、0□の
代わりにメデイエータ(この場合にはフェロセン)を電
子受容体としたものであり、溶存酸素には律速されない
This electrode reaction is as shown below, and uses a mediator (ferrocene in this case) as an electron acceptor instead of 0□, and is not rate-limited by dissolved oxygen.

しかしながら、このタイプの場合には、グルコースオキ
シダーゼは電子受容体としてメデイエータ、0□と共に
用いられ、このときこれら両者が共存すると、0□の割
合によって出力が変化するので、その都度出力の補正(
0□の補正)を必要とするようになる。
However, in this type of case, glucose oxidase is used together with the mediator, 0□, as an electron acceptor, and if these two coexist, the output changes depending on the ratio of 0□, so the output is corrected each time.
0□ correction) is now required.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、このような欠点がみられず。 The object of the present invention is to avoid such drawbacks.

検量範囲を拡大せしめたグルコースバイオセンサを提供
することにある。
An object of the present invention is to provide a glucose biosensor with an expanded calibration range.

〔課題を解決するための手段〕。[Means for solving problems].

かかる本発明の目的は、作用極面上のグルコースオキシ
ダーゼ固定化膜上に、高分子物質の乾湿式膜またはそれ
の加熱処理膜よりなる基質透過膜を形成せしめたグルコ
ースバイオセンサによって遠戚される。
The object of the present invention is distantly related to a glucose biosensor in which a substrate-permeable membrane made of a dry-wet membrane of a polymeric material or a heat-treated membrane thereof is formed on a glucose oxidase-immobilized membrane on a working electrode surface. .

このグルコースバイオセンサでは1作用極以外に、対極
あるいは対極と参照極とがいずれも線状体などの電極と
して用いられる0作用極材料としては金、チタン、カー
ボンなどが用いられ、対極材料としては白金、金などが
用いられ、また参照極としては、銀/塩化銀電極などが
用いられる。
In this glucose biosensor, in addition to the working electrode, the counter electrode or both the counter electrode and the reference electrode are used as electrodes such as linear bodies. Gold, titanium, carbon, etc. are used as the working electrode material, and the counter electrode material is Platinum, gold, or the like is used, and a silver/silver chloride electrode or the like is used as the reference electrode.

作用極面上へのグルコースオキシダーゼ固定化膜の形成
は、線状体電極の端部に、任意の方法で行うことができ
るが、好ましくは水溶性光架橋性樹脂を用いて行われる
。即ち、逆浸透水0.4mNに約10〜50mg、好ま
しくは約30mg程度のグルコースオキシダーゼおよび
約0.1〜Ig、好ましくは約0.5g程度の水溶性光
架橋性樹脂、例えば感光性基としてスチルバゾリウム基
を有するポリビニルアルコール系、ポリエチレングリコ
ール系、ポリプロピレングリコール系のものなどを添加
した溶液中に、線状体電極端部を浸漬し、室温下で乾燥
させた後光照射して架橋させることにより行われる。
The glucose oxidase-immobilized membrane can be formed on the working electrode surface at the end of the linear electrode by any method, but preferably by using a water-soluble photocrosslinkable resin. That is, about 10 to 50 mg, preferably about 30 mg, of glucose oxidase and about 0.1 to Ig, preferably about 0.5 g of a water-soluble photocrosslinkable resin, for example, as a photosensitive group, are added to 0.4 mN of reverse osmosis water. By immersing the end of the linear body electrode in a solution containing polyvinyl alcohol, polyethylene glycol, or polypropylene glycol having a stilbazolium group, drying it at room temperature, and then irradiating it with light to crosslink it. It will be done.

この他、グルタルアルデヒド/アルブミン/酵素系、ポ
リアクリルアミド/酵素系など、一般に用いられている
方法でも酵素固定化膜の形成が行われる。
In addition, commonly used methods such as glutaraldehyde/albumin/enzyme system and polyacrylamide/enzyme system can also be used to form the enzyme-immobilized membrane.

このようにして形成されたグルコースオキシダーゼ固定
化膜上への基質透過膜の形成は、ポリビニルブチラール
、酢酸セルロース、ポリスルホンなどの膜形成性高分子
物質の有機溶媒溶液、好ましくはジメチルホルムアミド
、ジメチルアセトアミドなどの水溶性有機溶媒の溶液よ
りなるドープ液中に浸漬し、それを引き上げて十分に乾
燥しない前にそれのゲル化浴、例えば水中に浸漬してゲ
ル化させることにより行われる。
Formation of a substrate-permeable membrane on the thus formed glucose oxidase-immobilized membrane is carried out using an organic solvent solution of a membrane-forming polymeric substance such as polyvinyl butyral, cellulose acetate, or polysulfone, preferably dimethylformamide, dimethylacetamide, etc. This is done by immersing the dope in a dope solution consisting of a solution of a water-soluble organic solvent, and before pulling it out and drying it sufficiently, immersing it in a gelling bath, for example water, to gel it.

この際のドープ液の濃度は、グルコースバイオセンサの
検量範囲を大きく左右するので重要であり、一般に約1
〜30重量2、好ましくは約5〜20重量2の濃度で調
製され、用いられる。このドープ液濃度が高くなるに従
って、その検量範囲は拡大するが、約30重量2以上で
は定常出力値が極端に低下するようになり、一方これ以
下の濃度で用いられると、検量範囲の制御が不可能とな
る。
The concentration of the dope solution at this time is important because it greatly influences the calibration range of the glucose biosensor, and is generally about 1
A concentration of ~30 wt 2 is prepared and used, preferably about 5-20 wt 2 . As the concentration of this dope solution increases, its calibration range expands; however, when it exceeds about 30 wt. It becomes impossible.

検量範囲の拡大はまた、−旦形成させた乾湿式膜を加熱
処理することによっても行われる。加熱処理は、水浴中
あるいは空気中などで約40〜70℃に加熱することに
よって行われる。この熱処理温度が高い程、検量範囲は
拡大するが、加熱処理温度を高めすぎると酵素の失活を
招く可能性があるので、ドープ液濃度を調節する方法を
とる方が安全ではある。
The calibration range can also be expanded by heat-treating the wet-dry membrane once formed. The heat treatment is performed by heating to about 40 to 70°C in a water bath or in the air. The higher the heat treatment temperature is, the wider the calibration range will be, but if the heat treatment temperature is too high, the enzyme may be deactivated, so it is safer to adjust the concentration of the dope solution.

〔作用〕および〔発明の効果〕 前述の如く、溶液中の溶存酸素濃度には限界があるので
、検知グルコース量をこれと同濃度レベル迄低下させれ
ばよいことになる。この場合の溶液−基質透過膜−酵素
固定化膜中の酸素およびグルコース濃度レベルは、基質
透過膜によるグルコース濃度レベルを溶存酸素と等モル
付近に迄下げることにより、検量範囲上限を拡大できる
ことになる。この検量範囲上限の制御は、基質透過膜の
グルコース拡散能力制御による。
[Function] and [Effects of the Invention] As mentioned above, since there is a limit to the dissolved oxygen concentration in the solution, it is sufficient to reduce the detected glucose amount to the same concentration level. In this case, the upper limit of the calibration range can be expanded by lowering the oxygen and glucose concentration levels in the solution-substrate-permeable membrane-enzyme immobilization membrane to around equimolar levels of dissolved oxygen in the glucose concentration level in the substrate-permeable membrane. . The upper limit of the calibration range is controlled by controlling the glucose diffusion ability of the substrate permeable membrane.

酵素固定化膜の表面および内部に達したグルコースは、
グルコースオキシダーゼによって直ちにグルコノラクト
ンとH20□とに変換され、反応は定常状態となり、溶
液−基質透過膜−酵素固定化膜中の濃度レベルも定常と
なる。
Glucose that reaches the surface and inside of the enzyme-immobilized membrane is
It is immediately converted into gluconolactone and H20□ by glucose oxidase, and the reaction becomes steady state, and the concentration level in the solution-substrate-permeable membrane-enzyme immobilization membrane also becomes steady.

このように、検量範囲上限を制御するには、基質透過膜
の特性を制御すればよく、このために本発明においては
、ドープ液濃度によって特性の制御可能な高分子物質の
乾湿式膜が基質透過膜として選択され、更に必要に応じ
てそれの加熱処理による膜特性の制御が行われている。
In this way, in order to control the upper limit of the calibration range, it is sufficient to control the characteristics of the substrate-permeable membrane, and for this purpose, in the present invention, a wet-dry membrane of a polymer material whose characteristics can be controlled by the concentration of the dope solution is used as the substrate. It is selected as a permeable membrane, and its membrane properties are further controlled by heat treatment as necessary.

検量範囲を拡大させた本発明のグルコースバイオセンサ
は、人工膵臓用血糖値センサ、家庭用自己管理血糖値セ
ンサ、発酵槽用グルコースセンサなどとして有効に使用
することができる。
The glucose biosensor of the present invention with an expanded calibration range can be effectively used as a blood sugar sensor for artificial pancreas, a self-management blood sugar sensor for home use, a glucose sensor for fermenters, and the like.

〔実施例〕〔Example〕

次に、実施例について本発明を説明する。 Next, the present invention will be explained with reference to examples.

比較例1 直径0.2■、長さ4c閣の金線(フルウチ化学製品、
純度99.99%)の両端部をそれぞれ0.5o+aず
つ残し。
Comparative Example 1 Gold wire with a diameter of 0.2 cm and a length of 4 cm (Furuuchi Chemical Products,
(purity 99.99%) with 0.5o+a left on each end.

エポキシ樹脂で絶縁した。この一端側を、グルコースオ
キシダーゼ(シグマ社製品、EC1,1,3,4、タイ
プ■、15.3000/g、 Aspergillus
 niger由来)30II1g、水溶性光架橋性樹脂
(スチルバゾリウム基含有ポリビニルアルコール)0.
5gおよび逆浸透水0.4mQよりなる溶液中に浸漬し
、引き上げた後25℃に60分間放置して乾燥させた。
Insulated with epoxy resin. Glucose oxidase (Sigma product, EC1, 1, 3, 4, type ■, 15.3000/g, Aspergillus
niger origin) 30II1 g, water-soluble photocrosslinkable resin (stilbazolium group-containing polyvinyl alcohol) 0.
It was immersed in a solution consisting of 5 g and 0.4 mQ of reverse osmosis water, pulled up, and left at 25° C. for 60 minutes to dry.

次いで、マスクアライナ(ミカサ製MA−10)を用い
、紫外線(波長4000A)による露光を、5秒間。
Next, exposure to ultraviolet light (wavelength 4000A) was performed for 5 seconds using a mask aligner (Mikasa MA-10).

10秒間、30秒間または60秒間行い、金線の一端に
グルコースオキシダーゼ固定化膜を形成させた。
This was carried out for 10 seconds, 30 seconds, or 60 seconds to form a glucose oxidase-immobilized membrane at one end of the gold wire.

この金線を、外径1.0間、内径0.8m麿、長さ3c
mの白金チューブ(フルウチ化学製、純度99.99%
)中に入れ、金線を作用極、白金チューブを対極とする
2極の針状グルコースバイオセンサを作製し、電流検出
計(BAS社製LC−4B)を用いて、グルコースの測
定を行った。即ち、参照極は対極とショートさせ、作用
極と対極との間の電位は、H,O,の酸化電位を0.8
Vとし、PH7,0,5IIMトリスーマレイン酸緩衝
液を測定溶液として用い、37℃の測定温度で測定した
This gold wire has an outer diameter of 1.0 mm, an inner diameter of 0.8 m, and a length of 3 cm.
m platinum tube (manufactured by Furuuchi Chemical, purity 99.99%)
), a bipolar needle-shaped glucose biosensor was prepared with a gold wire as a working electrode and a platinum tube as a counter electrode, and glucose was measured using a current detector (LC-4B manufactured by BAS). . That is, the reference electrode is short-circuited with the counter electrode, and the potential between the working electrode and the counter electrode is set to the oxidation potential of H, O, by 0.8
The measurement was carried out at a measurement temperature of 37° C. using a pH 7,0,5 IIM tris-maleic acid buffer as a measurement solution.

グルコース(関東化学製品、特級)は、逆浸透水を所定
量加えることにより、測定溶液(全容40mn)中で最
終濃度がそれぞれ1.5.10.20.30.40゜5
0、100.200.300.400または500mg
/altとなるように添加されて、m定試料が調製され
た。
Glucose (Kanto Kagaku Products, special grade) was adjusted to a final concentration of 1.5, 10, 20, 30, and 40°5 respectively in the measurement solution (total volume 40 mm) by adding a predetermined amount of reverse osmosis water.
0, 100.200.300.400 or 500mg
/alt, and a constant sample was prepared.

測定は、センサ応答の定常出力で行い、検量範囲は直線
領域とした6露光時間に応じた検量範囲は、次の如くで
ある。
The measurement was performed using the steady output of the sensor response, and the calibration range was set as a linear region.The calibration range corresponding to the six exposure times is as follows.

艷光膨延麹吐  遺1蔦I力l【1 5      1〜50 0 0 0 この結果から分かるように、この範囲内の露光時間は検
量範囲には影響せず、上限値も50mg/dQとほぼ理
論値に近かった。即ち、酵素固定化膜のみでは、検量範
囲の上限には限界のあることが示された。
As can be seen from this result, the exposure time within this range does not affect the calibration range, and the upper limit is 50 mg/dQ. It was almost close to the theoretical value. That is, it was shown that there is a limit to the upper limit of the calibration range using only the enzyme-immobilized membrane.

実施例1 比較例1で作製された露光時間30秒の針状グルコース
センサを3本準備し、酵素固定化膜上に以下の方法で酢
酸セルロース膜を形成させ、複合膜化させた。
Example 1 Three needle-shaped glucose sensors prepared in Comparative Example 1 with an exposure time of 30 seconds were prepared, and a cellulose acetate membrane was formed on the enzyme-immobilized membrane by the following method to form a composite membrane.

即ち、酢酸セルロース(イーストマンコダック社製品E
−398)を、ジメチルホルムアミド中に濃度が5.1
0または15重量算になるように溶解させたドープ液を
調製し、このドープ液中に酵素固定化膜部分を浸漬し、
引き上げて30秒後、25℃の水中に1時間浸漬してゲ
ル化させ、基質透過膜を酵素固定化膜上に形成させた。
That is, cellulose acetate (Eastman Kodak Company Product E)
-398) in dimethylformamide at a concentration of 5.1
Prepare a dope solution dissolved to a weight of 0 or 15, immerse the enzyme-immobilized membrane part in this dope solution,
After 30 seconds of lifting, it was immersed in water at 25° C. for 1 hour to gel, and a substrate-permeable membrane was formed on the enzyme-immobilized membrane.

この複合膜形成針状グルコースセンサについて。About this composite membrane-forming needle-shaped glucose sensor.

比較例1と同一条件でグルコースの測定を行い、定常出
力値を求めた。測定結果は、ドープ液濃度毎に第1図の
グラフに示される。なお、このグラフには、比較例1に
おける露光時間30秒の測定結果も併記されている。
Glucose was measured under the same conditions as in Comparative Example 1, and a steady output value was determined. The measurement results are shown in the graph of FIG. 1 for each dope concentration. Note that this graph also shows the measurement results for Comparative Example 1 with an exposure time of 30 seconds.

この結果から、ドープ液濃度に応じた検量範囲は次の如
くであり、ドープ液濃度に応じて検量範囲上限が拡大す
ることが分かる。
From this result, it can be seen that the calibration range depending on the dope concentration is as follows, and the upper limit of the calibration range expands depending on the dope concentration.

ドープ °  重量%  曵1(1山阻805    
         1〜20010         
      1〜40015            
 1〜500比較例2 比較例1で作製された露光時間30秒の針状グルコース
センサを3本準備し、酵素固定化膜部分を55°、60
°または65℃の温水中で10分間それぞれ熱処理した
後、比較例1と同一条件でグルコース量範囲が1〜50
mg/dQで、酵素固定化膜の熱処理は検量範囲には影
響を及ぼさないことが分った。
Dope ° Weight % 1 (1 mountain 805
1~20010
1~40015
1 to 500 Comparative Example 2 Three needle-shaped glucose sensors prepared in Comparative Example 1 with an exposure time of 30 seconds were prepared, and the enzyme-immobilized membrane portion was tilted at 55° and 60°.
After heat treatment for 10 minutes in warm water at 65 °C or 65 °C, the glucose amount range was 1 to 50
It was found that heat treatment of the enzyme-immobilized membrane did not affect the calibration range in mg/dQ.

実施例2 実施例1で作製されたドープ液濃度5%の複合膜形成針
状グルコースセンサを3本準備し、複合膜部分を55°
、60°または65℃の温浴中で10分間それぞれ熱処
理した後、比較例1と同一条件でグルコースの測定を行
い、定常出力値からその検量範囲を求めた。
Example 2 Three composite membrane-forming acicular glucose sensors prepared in Example 1 with a dope concentration of 5% were prepared, and the composite membrane portion was tilted at 55°.
, 60° or 65° C. for 10 minutes, glucose was measured under the same conditions as in Comparative Example 1, and the calibration range was determined from the steady output value.

その結果1次に示されるように、複合膜全体を熱処理す
ることにより、検量範囲上限が拡大し。
As a result, as shown in Figure 1, the upper limit of the calibration range was expanded by heat-treating the entire composite membrane.

その程度は熱処理温度に依存することが分かった。It was found that the degree depends on the heat treatment temperature.

糺ゑ星象え0u  樵1(1カミ個吐 (なし)       1〜200 55      1〜300 60       1〜400 65      1〜500Tadasu star image 0u woodcutter 1 (1 woodcutter) (None) 1-200 55 1~300 60 1~400 65 1~500

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、 グルコース濃度と定常出力値との関 係を示すグラフである。 Figure 1 shows Relationship between glucose concentration and steady output value FIG.

Claims (1)

【特許請求の範囲】 1、作用極面上のグルコースオキシダーゼ固定化膜上に
、高分子物質の乾湿式膜よりなる基質透過膜を形成せし
めてなるグルコースバイオセンサ。 2、作用極面上のグルコースオキシダーゼ固定化膜上に
、高分子物質の乾湿式膜の加熱処理膜よりなる基質透過
膜を形成せしめてなるグルコースバイオセンサ。
[Scope of Claims] 1. A glucose biosensor comprising a substrate-permeable membrane made of a dry-wet membrane of a polymer substance formed on a glucose oxidase-immobilized membrane on a working electrode surface. 2. A glucose biosensor in which a substrate-permeable membrane made of a heat-treated dry-wet membrane of a polymeric substance is formed on a glucose oxidase-immobilized membrane on a working electrode surface.
JP1174941A 1989-07-06 1989-07-06 Glucose biosensor Pending JPH0339648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1174941A JPH0339648A (en) 1989-07-06 1989-07-06 Glucose biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1174941A JPH0339648A (en) 1989-07-06 1989-07-06 Glucose biosensor

Publications (1)

Publication Number Publication Date
JPH0339648A true JPH0339648A (en) 1991-02-20

Family

ID=15987409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1174941A Pending JPH0339648A (en) 1989-07-06 1989-07-06 Glucose biosensor

Country Status (1)

Country Link
JP (1) JPH0339648A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5205496A (en) * 1991-06-05 1993-04-27 O.D.E. Investments Corporation Universal grinder with reciprocal feeder
JP2011013072A (en) * 2009-07-01 2011-01-20 Nikkiso Co Ltd Electrode structure for enzyme sensor, enzyme sensor, and artificial pancreas device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267442A (en) * 1985-09-16 1987-03-27 ザ・ヴィクトリア・ユニバーシティ・オブ・マンチェスター Enzyme electrode type sensor
JPH0459055A (en) * 1990-06-20 1992-02-25 Nissan Motor Co Ltd Manufacture of monolithick catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267442A (en) * 1985-09-16 1987-03-27 ザ・ヴィクトリア・ユニバーシティ・オブ・マンチェスター Enzyme electrode type sensor
JPH0459055A (en) * 1990-06-20 1992-02-25 Nissan Motor Co Ltd Manufacture of monolithick catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5205496A (en) * 1991-06-05 1993-04-27 O.D.E. Investments Corporation Universal grinder with reciprocal feeder
JP2011013072A (en) * 2009-07-01 2011-01-20 Nikkiso Co Ltd Electrode structure for enzyme sensor, enzyme sensor, and artificial pancreas device

Similar Documents

Publication Publication Date Title
Bindra et al. Design and in vitro studies of a needle-type glucose sensor for subcutaneous monitoring
Geise et al. Electropolymerized 1, 3-diaminobenzene for the construction of a 1, 1′-dimethylferrocene mediated glucose biosensor
US6413396B1 (en) Enzyme electrode sensor and manufacturing method thereof
CA2045616C (en) Enzyme electrochemical sensor electrode and method of making it
Park et al. Sol-gel based amperometric biosensor incorporating an osmium redox polymer as mediator for detection of L-lactate
Dempsey et al. Electropolymerised o-phenylenediamine film as means of immobilising lactate oxidase for a l-lactate biosensor
JPH0419503B2 (en)
JP2001508176A (en) Glucose sensor
JP2022537489A (en) Electrochemical biosensor for biosignal measurement containing carbon nanotubes and method for manufacturing the same
JPS63182559A (en) Production of enzyme electrode
Nakako et al. Neutral lipid enzyme electrode based on ion-sensitive field effect transistors
JP2021525371A (en) Crosslinker for manufacturing sensing or diffusion control membranes of electrochemical sensors containing genipin
JPH0339648A (en) Glucose biosensor
JPH01153952A (en) Enzyme sensor
Lukachova et al. Non-aqueous enzymology approach for improvement of reagentless mediator-based glucose biosensor
JPH01253648A (en) Biosensor
JPH0231741A (en) Electrode for immobilizing physiologically active substance
Ekanayake et al. An amperometric glucose biosensor with enhanced measurement stability and sensitivity using an artificially porous conducting polymer
Pandey et al. Fabrication of Potentiometric Cholesterol Biosensor by Crosslinking of Cholesterol Oxidase and Carbon Nanotubes Modified Cellulose Acetate Membrane
JP3447374B2 (en) Enzyme sensor and method for producing the same
Reynolds et al. Direct sensing platinum ultramicrobiosensors for glucose
JPS61274682A (en) Production of membrane supporting immobilized enzyme
JP2705199B2 (en) Glucose sensor
JP2615220B2 (en) Enzyme sensor
JPS6257942B2 (en)