[go: up one dir, main page]

JPH033903B2 - - Google Patents

Info

Publication number
JPH033903B2
JPH033903B2 JP57220893A JP22089382A JPH033903B2 JP H033903 B2 JPH033903 B2 JP H033903B2 JP 57220893 A JP57220893 A JP 57220893A JP 22089382 A JP22089382 A JP 22089382A JP H033903 B2 JPH033903 B2 JP H033903B2
Authority
JP
Japan
Prior art keywords
powder
oxygen
metal
reference electrode
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57220893A
Other languages
Japanese (ja)
Other versions
JPS59109852A (en
Inventor
Koichi Yamada
Mitsutoshi Murase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP57220893A priority Critical patent/JPS59109852A/en
Publication of JPS59109852A publication Critical patent/JPS59109852A/en
Publication of JPH033903B2 publication Critical patent/JPH033903B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/411Cells and probes with solid electrolytes for investigating or analysing of liquid metals
    • G01N27/4115Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts
    • G01N27/4117Reference electrodes or reference mixtures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は溶融金属中の溶存酸素濃度の測定を目
的とした酸素センサーの酸素基準極の改良に関す
るものである。 更に詳細には、該酸素センサーの固体酸素基準
極構成物質に特定物質を添加共存せしめることに
より、酸素基準極構成物質の焼結防止を計りか
つ、該基準極の発生する酸素基準分極を小変更せ
しめることにより溶融金属中への浸漬時に示す起
電力を迅速に変化せしめ、変化後の起電力を安定
指示せしめうる所謂、応答性に優れた酸素センサ
ーの酸素基準極に関するものである。 近年、安定化或は部分安定化ジルコニアを固体
電解質として酸素イオン伝導体に用いた酸素セン
サーが自動車排ガス制御やボイラー等の燃焼管
理、更には製鋼や製銅分野の溶融金属中の酸素分
析計として迅速な応答が得られかつ、廉価である
という点より広く用いられている。 酸素センサーの酸素基準極としては従来空気を
用いることが多かつたが、空気を酸素基準極とし
て用いる場合には酸素センサーの構造が複雑とな
ることから、特に消耗型の溶融金属用の酸素セン
サーではジルコニア管の底に詰めるだけで良いと
いう構造の簡便さより特定の金属とその金属の酸
化物との混合物から成る固体基準極が使用されて
いる。 溶融金属用酸素センサーは主として鉄鋼業界で
使用されており、転炉の終点判定、RH炉、DH
炉での真空脱ガス、脱酸反応の事前分析と反応後
の確認分析、連続鋳造時のタンデイシユでの測定
或は各製鋼分野での工程管理等の酸素測定が主で
ある。測定は1600℃前後の高温溶鋼中に酸素セン
サーを浸漬して実施するため、酸素センサーの構
成要素が浸食される前に(例えば5〜10秒で)安
定した平衡起電力を求める必要がある。かかる迅
速な応答が得られる酸素センサーとしては耐熱衝
撃性に優れたMgO部分安定化ジルコニア管を固
体電解質とし、Mo/MoO2、Cr/Cr2O3等の金
属/金属酸化物の混合物又は焼結体を固体酸素基
準極としたものが知られている。しかしながら酸
素基準極としてかかる構成要素を使用した場合、
その応答性が異なる現象が観測される。例えば添
付第1図に示すごとくCr/Cr2O3系基準極が示す
起電力変化は浸漬直後の急激な起電力値の増加、
引き続いて起る減少後の平衡値への変化で、起電
力差はMo/MoO2系基準極にくらべ大きく、こ
のため平衡値への到達時間が長い。Cr/Cr2O3
基準極は上述のごとき欠点を有するが、溶鋼中の
溶存酸素濃度(通常1〜1000ppm)が低い場合
(例えば100ppm以下)にはCr/Cr2O3基準極自体
の示す酸素分圧(1600℃で溶鋼中28ppm相当)に
近いために、酸素分圧差に基づく測定誤差が原理
的には少なく、脱酸鋼や高炭素鋼などの酸素セン
サー用に適している。 これに対してMo/MoO2系基準極は第2図に
示すごとくその酸素分圧が1600℃の溶鋼の飽和酸
素濃度以上に相当するものであり、高酸素濃度測
定用の固体酸素基準極としては適するが、低酸素
溶鋼用に使用する場合には分圧差が大きく測定誤
差が大きくなる。それ故低酸素濃度域では原理的
にCr/Cr2O3系基準極の方が有利である。 かかる事情下に本発明者らはCr/Cr2O3系基準
極の応答性改良につき鋭意検討を行なつた結果、
特定の金属或は該金属とその金属の酸化物を添加
共存せしめる場合には上記目的が満足される
Cr/Cr2O3系固体酸素基準極となしうることを見
出し、本発明を完成するに至つた。 すなわち本発明は金属クロム粉末、又は金属ク
ロム粉末とCr2O3粉末100重量部にCr2O3よりも不
安定な酸化物を形成しかつ、金属クロムよりも高
融点を有する金属の粉末、又は該金属粉末と該金
属の酸化物粉末を50〜200重量部共存せしめて構
成されたことを特徴とする溶融金属用酸素センサ
ーの酸素基準極を提供するにある。 以下本発明を更に詳細に説明する。 本発明の対象となる溶融金属用酸素センサー
は、ジルコニア質酸化物を固体電解質とし、
Cr/Cr2O3を酸素基準極とする公知汎用のジルコ
ニア質酸素センサー、例えばY2O3、CaO、MgO
の内の少なくとも1種とジルコニアとからなる所
謂、部分安定化又は安定化ジルコニア質酸化物を
固体電解質とし、使用時においてCr/Cr2O3を酸
素基準極として構成された酸素センサーであり、
該センサーの形状は例えば石英等のガラス管先端
に固体電解質チツプを接着したプラグ型、固体電
解質を成形焼結した管型のいずれにも適用可能で
ある。 本発明の酸素基準極はCr粉末、又はCr粉末と
Cr2O3粉末100重量部にCr2O3よりも不安定な酸化
物を形成しかつ、Crよりも高い融点を有する金
属の粉末、又は該金属とその金属の酸化物粉末を
50〜200重量部添加混合して構成される固定基準
極である。 ここでCr2O3よりも不安定な酸化物を形成しか
つ、Crよりも高い融点を有する金属の粉末、又
は該金属粉末とその金属の酸化物粉末とは1500〜
1800℃の温度領域で金属クロムと上述の如き定義
に該当する金属の酸化物(例えばMxOy)との反
応でCr2O3と金属Mを形成するような金属および
その金属の酸化物であつて、具体的にはモリブデ
ン(Mo)、二酸化モリブデン(MoO2)、タング
ステン(W)、二酸化タングステン(WO2)であ
る。 該添加量が50重量部未満の場合には応答速度の
改良効果が十分なものとはならず、他方200重量
部を越える場合には添加物の酸素分圧による波形
が現われ、その後にCr/Cr2O3の波形が生起する
ので結果として応答時間が長くなり好ましくな
い。 本発明において固体酸素基準極を構成するCr
とCr2O3の混合比は通常、Cr粉末に対しCr2O3
末の割合が50重量%以下の範囲で使用される。
Crに対するCr2O3の混合比が50重量%を越える場
合には管内に残留する空気中の酸素がすみやかに
除去されず、基準極の導電性が悪化するので適当
ではない。他方酸化性雰囲気下にジルコニア質固
体電解質容器に該基準極を構成するCr粉末を詰
める場合には、Cr粉末が雰囲気中の酸素により
酸化物を生成するので、Cr2O3粉末なしでCr粉末
のみの使用も可能である。 かかるCr粉末、あるいはCr/Cr2O3粉末はその
ままジルコニア固体電解質容器に詰めて使用して
もよいが、予め焼結せしめ、これを粉砕して使用
する場合には溶鋼等に浸漬中焼結による収縮が起
りにくく、平衡に達する時間が短かくなるのでよ
り好ましい。更には焼結時炭素存在下に焼結せし
め、これを粉砕して使用する場合にはCr/Cr2O3
系基準極の特徴である波形がV字型に落ち込むこ
とがなく、このため応答時間が著しく短縮される
ので特に推奨される。 本発明においてCr/Cr2O3に添加共存せしめる
Mo/MoO2および/又はW/WO2等の金属と金
属酸化物の割合は該金属粉末に対して通常10重量
%以下の範囲で用いられる。その混合割合が10重
量%を越える場合には該金属酸化物の影響が強く
現われ、2段の起電力値を示し、応答時間が長く
なるので適当ではない。 以上詳述した構成により何故観測される起電力
波形、即ち応答性が改良されるかの理由は詳らか
ではないが、添加剤である少量の金属酸化物が初
期にのみCr/Cr2O3の分圧よりも高い分圧を示
し、このため第1図にみられる起電力差を補償す
るとともに該添加物中の金属酸化物の割合が少な
いため、起電力差を補償したあと該添加金属酸化
物は直ちに分解を終了し、本来の基準極の示す起
電力値に大きな変化を与えず、また残部の添加金
属はCr/Cr2O3の焼結防止剤として作用し、この
両者の効果が相俟つて本発明の効果が達成される
ものと考える。 以上詳述した如く本発明は従来使用されている
酸素基準極構成物質であるCr/Cr2O3粉末に単に
Moおよび/又はWの金属粉末とそれぞれの金属
酸化物粉末を特定量で混合使用するのみで、起電
力を安定指示せしめかつ、応答性に優れた溶鋼用
酸素センサーの提供を可能ならしめるもので、そ
の工業的利用価値は頗る大なるものである。 以下実施例により本発明を更に詳細に説明する
が、実施例は本発明の実施態様を示すものであつ
て、本発明はかかる実施例により限定されるもの
ではない。 実施例 金属クロム粉末70重量部、Cr2O3粉末30重量部
をボールミルで混合後、CO雰囲気下1300℃で2
時間焼結せしめ、その後乳鉢で解砕、粉砕し、平
均粒径5μmのCr/Cr2O3混合粉末を得た。 このようにして得たCr/Cr2O3混合粉に第1表
(実験No.2〜7)に示すMo/MoO2および/又は
W/WO2混合粉を添加し、ボールミルで混合し
た後、得られた混合粉体を第3図に示す構造の外
径5.6mm、長さ35mmの7モル%のMgOで部分安定
化されたジルコニアの一端閉管2の底部に充填
し、酸素基準極1となし、該基準極1にモリブデ
ン線よりなる電極4を挿入し、更に基準極押え棒
3を挿入設置することにより酸素センサーを組立
てた。 かようにして構成した酸素センサーをアルミナ
ルツボ中で高周波溶融した1600℃の溶鋼中に浸漬
し、30秒間起電力を観測記録した。得られた結果
を第4〜10図に示す。 またCr粉末90重量部、Cr2O3粉末10重量部より
なる混合粉体をボールミルを用いて混合後アルゴ
ン雰囲気、炭素存在下に1300℃で2時間焼結し、
その後乳鉢で解砕、粉砕し、平均粒径3μmの
Cr/Cr2O3混合粉末としたものに第1表実験No.8
に表示した添加物を混合し、前記と同様に酸素セ
ンサーを構成しその性能を測定した。その結果を
第11図に示す。
The present invention relates to an improvement in the oxygen reference electrode of an oxygen sensor for measuring the concentration of dissolved oxygen in molten metal. More specifically, by adding a specific substance to the solid oxygen reference electrode constituent material of the oxygen sensor and causing it to coexist, it is possible to prevent sintering of the oxygen reference electrode constituent material and to slightly change the oxygen reference polarization generated in the reference electrode. This invention relates to a so-called oxygen reference electrode for an oxygen sensor with excellent responsiveness, which can quickly change the electromotive force exhibited when immersed in molten metal and stably indicate the electromotive force after the change. In recent years, oxygen sensors using stabilized or partially stabilized zirconia as a solid electrolyte and oxygen ion conductor have been used for automobile exhaust gas control, combustion management in boilers, etc., and even as oxygen analyzers in molten metal in the steel and copper manufacturing fields. It is widely used because it provides a quick response and is inexpensive. Conventionally, air has often been used as the oxygen reference electrode in oxygen sensors, but when air is used as the oxygen reference electrode, the structure of the oxygen sensor becomes complicated, so it is particularly difficult to use consumable oxygen sensors for molten metal. In this case, a solid reference electrode made of a mixture of a specific metal and an oxide of that metal is used because of its simple structure, which allows it to be simply packed in the bottom of a zirconia tube. Oxygen sensors for molten metal are mainly used in the steel industry, and are used for determining the end point of converters, RH furnaces, DH
The main uses are vacuum degassing in furnaces, preliminary analysis of deoxidation reactions and confirmation analysis after the reaction, measurements in tundishes during continuous casting, and oxygen measurements for process control in various steelmaking fields. Since the measurement is carried out by immersing the oxygen sensor in high-temperature molten steel at around 1600°C, it is necessary to determine a stable equilibrium electromotive force before the oxygen sensor components are eroded (for example, within 5 to 10 seconds). An oxygen sensor that can obtain such a quick response uses a MgO partially stabilized zirconia tube with excellent thermal shock resistance as a solid electrolyte, and a mixture of metals/metal oxides such as Mo/MoO 2 , Cr/Cr 2 O 3 or sintered zirconia tubes. It is known to use a solid oxygen reference electrode as a solid oxygen reference electrode. However, when using such a component as an oxygen reference electrode,
Phenomena with different responses are observed. For example, as shown in the attached Figure 1, the electromotive force change exhibited by the Cr/Cr 2 O 3 reference electrode is a sudden increase in electromotive force value immediately after immersion.
In the subsequent change to the equilibrium value after the decrease, the electromotive force difference is larger than that of the Mo/MoO 2 reference pole, and therefore the time to reach the equilibrium value is longer. The Cr/Cr 2 O 3 reference electrode has the drawbacks mentioned above, but when the dissolved oxygen concentration in molten steel (usually 1 to 1000 ppm) is low (e.g. 100 ppm or less), the Cr/Cr 2 O 3 reference electrode itself Since the oxygen partial pressure is close to the indicated oxygen partial pressure (equivalent to 28 ppm in molten steel at 1600°C), measurement errors due to oxygen partial pressure differences are theoretically small, making it suitable for oxygen sensors such as deoxidized steel and high carbon steel. On the other hand, as shown in Figure 2, the Mo/MoO 2- based reference electrode has an oxygen partial pressure equivalent to or higher than the saturated oxygen concentration of molten steel at 1600°C, and is therefore suitable as a solid oxygen reference electrode for measuring high oxygen concentrations. is suitable, but when used for low-oxygen molten steel, the partial pressure difference is large and the measurement error becomes large. Therefore, in principle, a Cr/Cr 2 O 3 reference electrode is more advantageous in a low oxygen concentration region. Under these circumstances, the present inventors conducted intensive studies on improving the response of the Cr/Cr 2 O 3 based reference electrode, and as a result, found that
The above objective is satisfied when a specific metal or an oxide of the metal is added and made to coexist.
It was discovered that a solid oxygen reference electrode based on Cr/Cr 2 O 3 could be used, and the present invention was completed. That is, the present invention provides metallic chromium powder, or a metal powder that forms an oxide more unstable than Cr 2 O 3 in 100 parts by weight of metallic chromium powder and Cr 2 O 3 powder and has a higher melting point than metallic chromium. Another object of the present invention is to provide an oxygen reference electrode for an oxygen sensor for molten metal, characterized in that the metal powder and the metal oxide powder coexist in an amount of 50 to 200 parts by weight. The present invention will be explained in more detail below. The oxygen sensor for molten metal, which is the object of the present invention, uses zirconia oxide as a solid electrolyte,
Known general-purpose zirconia oxygen sensors using Cr/Cr 2 O 3 as an oxygen reference electrode, such as Y 2 O 3 , CaO, MgO
An oxygen sensor configured with a so-called partially stabilized or stabilized zirconia oxide consisting of at least one of the following and zirconia as a solid electrolyte, and Cr/Cr 2 O 3 as an oxygen reference electrode during use,
The shape of the sensor can be either a plug type in which a solid electrolyte chip is bonded to the tip of a glass tube made of quartz or the like, or a tube type in which a solid electrolyte is molded and sintered. The oxygen reference electrode of the present invention is made of Cr powder or Cr powder.
Add to 100 parts by weight of Cr 2 O 3 powder a powder of a metal that forms an oxide that is more unstable than Cr 2 O 3 and has a higher melting point than Cr, or a powder of the metal and its oxide.
This is a fixed reference electrode constructed by adding and mixing 50 to 200 parts by weight. Here, the powder of a metal that forms an oxide that is more unstable than Cr 2 O 3 and has a melting point higher than that of Cr, or the metal powder and the oxide powder of the metal, is 1500~
Metals and oxides of such metals that form Cr 2 O 3 and metal M by the reaction of metallic chromium with oxides of metals falling under the above definition (e.g. MxOy) in the temperature range of 1800 ° C. , specifically molybdenum (Mo), molybdenum dioxide (MoO 2 ), tungsten (W), and tungsten dioxide (WO 2 ). If the amount added is less than 50 parts by weight, the response speed improvement effect will not be sufficient, while if it exceeds 200 parts by weight, a waveform due to the oxygen partial pressure of the additive will appear, and then Cr/ Since a Cr 2 O 3 waveform occurs, the response time becomes longer as a result, which is undesirable. Cr constituting the solid oxygen reference electrode in the present invention
The mixing ratio of Cr 2 O 3 and Cr 2 O 3 is usually such that the ratio of Cr 2 O 3 powder to Cr powder is 50% by weight or less.
If the mixing ratio of Cr 2 O 3 to Cr exceeds 50% by weight, oxygen in the air remaining in the tube will not be removed quickly and the conductivity of the reference electrode will deteriorate, which is not suitable. On the other hand, when filling a zirconia solid electrolyte container with Cr powder constituting the reference electrode in an oxidizing atmosphere, the Cr powder generates oxides due to oxygen in the atmosphere, so the Cr powder is packed without the Cr 2 O 3 powder. It is also possible to use only one. Such Cr powder or Cr/Cr 2 O 3 powder may be used as it is by being packed into a zirconia solid electrolyte container, but if it is sintered in advance and used after being crushed, it may be sintered while immersed in molten steel etc. This is more preferable because it is less likely to cause shrinkage and the time required to reach equilibrium is shorter. Furthermore, when sintering is performed in the presence of carbon and used after being crushed, Cr/Cr 2 O 3
It is particularly recommended because the waveform does not fall into a V-shape, which is a characteristic of the system reference pole, and the response time is therefore significantly shortened. In the present invention, Cr/Cr 2 O 3 is added to coexist.
The proportion of metal such as Mo/MoO 2 and/or W/WO 2 and metal oxide is usually 10% by weight or less based on the metal powder. If the mixing ratio exceeds 10% by weight, the influence of the metal oxide will be strong, two levels of electromotive force will be exhibited, and the response time will be long, which is not appropriate. It is not clear why the configuration described above improves the observed electromotive force waveform, that is, the response, but a small amount of the metal oxide as an additive causes the Cr/Cr 2 O 3 to react only in the initial stage. Therefore, since the proportion of metal oxide in the additive is small, the added metal oxide after compensating for the electromotive force difference is The material immediately finished decomposing, and there was no significant change in the electromotive force value of the original reference electrode, and the remaining added metal acted as a sintering inhibitor for Cr/Cr 2 O 3 , and both effects were combined. It is believed that the effects of the present invention will be achieved in combination. As described in detail above, the present invention simply replaces Cr/Cr 2 O 3 powder, which is the constituent material of the oxygen reference electrode used conventionally.
By simply mixing specific amounts of Mo and/or W metal powder and each metal oxide powder, it is possible to provide an oxygen sensor for molten steel that can stably indicate the electromotive force and has excellent responsiveness. , its industrial utility value is extremely great. The present invention will be explained in more detail with reference to Examples below, but the Examples show embodiments of the present invention, and the present invention is not limited by these Examples. Example After mixing 70 parts by weight of metallic chromium powder and 30 parts by weight of Cr 2 O 3 powder in a ball mill, the mixture was heated at 1300°C in a CO atmosphere for 2
The mixture was sintered for a period of time, and then crushed and ground in a mortar to obtain a Cr/Cr 2 O 3 mixed powder with an average particle size of 5 μm. The Mo/MoO 2 and/or W/WO 2 mixed powder shown in Table 1 (Experiment Nos. 2 to 7) was added to the Cr/Cr 2 O 3 mixed powder obtained in this way, and the mixture was mixed in a ball mill. The obtained mixed powder was filled in the bottom of a zirconia tube 2 with an outer diameter of 5.6 mm and a length of 35 mm, one end of which was partially stabilized with 7 mol% MgO, as shown in Fig. 3, and the oxygen reference electrode 1 was filled with the mixed powder. Then, an electrode 4 made of a molybdenum wire was inserted into the reference electrode 1, and a reference electrode holding rod 3 was further inserted and installed, thereby assembling an oxygen sensor. The oxygen sensor thus constructed was immersed in high-frequency molten steel at 1600°C in an aluminum crucible, and the electromotive force was observed and recorded for 30 seconds. The results obtained are shown in Figures 4-10. Further, a mixed powder consisting of 90 parts by weight of Cr powder and 10 parts by weight of Cr 2 O 3 powder was mixed using a ball mill, and then sintered at 1300°C for 2 hours in an argon atmosphere and in the presence of carbon.
After that, crush and crush in a mortar to obtain an average particle size of 3 μm.
Table 1 Experiment No. 8 for Cr/Cr 2 O 3 mixed powder
The additives listed above were mixed, an oxygen sensor was constructed in the same manner as above, and its performance was measured. The results are shown in FIG.

【表】【table】

【表】 * 添加物中の金属粉末に対する酸化
物の重量%
以上の結果本発明に該当する実験No.2、6、
7、8は従来のCr/Cr2O3単独よりなる酸素基準
極を使用した酸素センサーに比較し、著しく応答
性が改良されていることがわかる。
[Table] * Weight percent of oxide to metal powder in additives
As a result of the above, Experiment Nos. 2, 6, which correspond to the present invention,
It can be seen that samples No. 7 and No. 8 have significantly improved responsiveness compared to the conventional oxygen sensor using an oxygen reference electrode made of Cr/Cr 2 O 3 alone.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図および第4〜11図は酸素セン
サーの示す起電力波形図を示し、第3図は実施例
に用いた酸素センサーの概要を示す縦断面図であ
り図中1は基準極構成物質、2はジルコニア質一
端閉管、3は基準極押え棒、4は電極を示す。
Figures 1, 2, and 4 to 11 show electromotive force waveform diagrams shown by the oxygen sensor, and Figure 3 is a vertical cross-sectional view showing an outline of the oxygen sensor used in the example. The electrode constituent materials include a zirconia tube with one end closed, 3 a reference electrode holding rod, and 4 an electrode.

Claims (1)

【特許請求の範囲】 1 金属クロム粉末、又は金属クロム粉末と
Cr2O3粉末100重量部にCr2O3よりも不安定な酸化
物を形成しかつ、金属クロムよりも高融点を有す
る金属の粉末、又は該金属粉末と該金属の酸化物
粉末を50〜200重量部共存せしめて構成されたこ
とを特徴とする溶融金属用酸素センサーの酸素基
準極。 2 金属クロム粉末に対するCr2O3粉末の割合が
50重量%以下である特許請求の範囲第1項記載の
酸素基準極。 3 金属クロム粉末、又は金属クロム粉末と
Cr2O3粉末とに添加共存せしめる金属粉末に対す
る該金属の酸化物の割合が10重量%以下である特
許請求の範囲第1項記載の酸素基準極。 4 金属クロム、又は金属クロムとCr2O3粉末と
に添加共存せしめる金属粉末、又は金属粉末とそ
の金属の酸化物がモリブデンおよび/又はタング
ステン、およびそれらの金属の酸化物である特許
請求の範囲第1項記載の酸素基準極。 5 予め焼結せしめた後これを粉砕した金属クロ
ム粉末、又は金属クロム粉末とCr2O3粉末を使用
する特許請求の範囲第1項記載の酸素基準極。 6 予め炭素存在下に焼結せしめた後粉砕した金
属クロム粉末、又は金属クロム粉末とCr2O3粉末
を使用する特許請求の範囲第1項記載の酸素基準
極。
[Claims] 1 Metal chromium powder or metal chromium powder and
To 100 parts by weight of Cr 2 O 3 powder, add 50 parts by weight of a metal powder that forms an oxide that is more unstable than Cr 2 O 3 and has a higher melting point than metallic chromium, or the metal powder and the oxide powder of the metal. An oxygen reference electrode for an oxygen sensor for molten metal, characterized in that the oxygen reference electrode is made up of 200 parts by weight. 2 The ratio of Cr 2 O 3 powder to metal chromium powder is
The oxygen reference electrode according to claim 1, wherein the oxygen content is 50% by weight or less. 3 Metallic chromium powder or metallic chromium powder
2. The oxygen reference electrode according to claim 1, wherein the proportion of the oxide of the metal to the metal powder added and coexisting with the Cr 2 O 3 powder is 10% by weight or less. 4. Claims in which the metallic chromium, the metallic powder added to the metallic chromium and the Cr 2 O 3 powder, or the metallic powder and its metal oxide are molybdenum and/or tungsten, and their metallic oxides. The oxygen reference electrode according to item 1. 5. The oxygen reference electrode according to claim 1, which uses metallic chromium powder that has been sintered in advance and then pulverized, or metallic chromium powder and Cr 2 O 3 powder. 6. The oxygen reference electrode according to claim 1, which uses metallic chromium powder that has been sintered in advance in the presence of carbon and then pulverized, or metallic chromium powder and Cr 2 O 3 powder.
JP57220893A 1982-12-16 1982-12-16 Reference oxygen electrode of oxygen sensor for molten metal Granted JPS59109852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57220893A JPS59109852A (en) 1982-12-16 1982-12-16 Reference oxygen electrode of oxygen sensor for molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57220893A JPS59109852A (en) 1982-12-16 1982-12-16 Reference oxygen electrode of oxygen sensor for molten metal

Publications (2)

Publication Number Publication Date
JPS59109852A JPS59109852A (en) 1984-06-25
JPH033903B2 true JPH033903B2 (en) 1991-01-21

Family

ID=16758180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57220893A Granted JPS59109852A (en) 1982-12-16 1982-12-16 Reference oxygen electrode of oxygen sensor for molten metal

Country Status (1)

Country Link
JP (1) JPS59109852A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001239558B2 (en) 2000-03-29 2004-11-18 Tomio Fukui Method of constructing structures useful as catwalks and building scaffolds on slopes, and catwalk and building scaffold constructed thereby
KR100594841B1 (en) 2004-12-21 2006-06-30 한국원자력연구소 High-temperature molten salt reference electrode and its manufacturing method
KR101136903B1 (en) * 2009-11-04 2012-04-20 한국수력원자력 주식회사 A Reference Electrode for Electrochemistry of Molten Salt and a Preparation Method for the Same
CN103586455B (en) * 2013-10-15 2015-07-08 钟祥市中原电子有限责任公司 Reference electrode powder for molten metal oxygen-measuring batteries and production process
CN105548308B (en) * 2015-12-10 2018-05-18 湖南镭目科技有限公司 A kind of oxygen cell sensor reference electrode and preparation method thereof and a kind of oxygen cell sensor
CN106770586A (en) * 2017-01-10 2017-05-31 湖南镭目科技有限公司 A kind of oxygen cell reference electrode powder and preparation method thereof

Also Published As

Publication number Publication date
JPS59109852A (en) 1984-06-25

Similar Documents

Publication Publication Date Title
US3773641A (en) Means for determining the oxygen content of liquid metals
KR101768227B1 (en) Measuring probes for measuring and taking samples with a metal melt
Brisley et al. Determination of the sodium activity in aluminum and aluminum silicon alloys using sodium beta alumina
US3752753A (en) Method of fabricating a sensor for the determination of the oxygen content of liquid metals
JPH033903B2 (en)
JPH0511568B2 (en)
US6013163A (en) Probe for detection of the concentration of various elements in molten metal
US3359188A (en) Methods and apparatus for determining the oxygen activity of molten metals, metal oxides and slags
KR960010691B1 (en) Probes for Determination of Impurity Element Concentrations in Molten Metals
US5656143A (en) Sensors for the analysis of molten metals
US4399022A (en) Reference electrode for oxygen probe
JP2638298B2 (en) A method for determining the carbon equivalent, carbon content and silicon content of cast iron, as well as predicting its physical and mechanical properties
Fitterer et al. Oxygen in Steel Refining as Determined by Solid Electrolyte Techniques
JPH0246103B2 (en)
Nakamura et al. Study on solid electrolyte for oxygen activity measurement in steelmaking process
JP4596886B2 (en) Magnesium sensor probe
JPS6213006Y2 (en)
JPH037264B2 (en)
JPH0222901B2 (en)
JPH0439030B2 (en)
JPH0829379A (en) Sensor for measuring quantity of hydrogen dissolved in molten metal
JPH06258282A (en) Oxygen probe
JPH10213563A (en) Solid electrolyte element and oxygen concentration measuring device
Tshilombo, KG & Pistorius Oxygen activity measurements in simulated converter matte
WO2001061333A1 (en) Sensors