[go: up one dir, main page]

JPH0337497B2 - - Google Patents

Info

Publication number
JPH0337497B2
JPH0337497B2 JP58190272A JP19027283A JPH0337497B2 JP H0337497 B2 JPH0337497 B2 JP H0337497B2 JP 58190272 A JP58190272 A JP 58190272A JP 19027283 A JP19027283 A JP 19027283A JP H0337497 B2 JPH0337497 B2 JP H0337497B2
Authority
JP
Japan
Prior art keywords
layer
film
tubular body
heat
composite film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58190272A
Other languages
Japanese (ja)
Other versions
JPS6082336A (en
Inventor
Masaki Ooya
Yoshihiro Matsuko
Mitsuru Anzai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP58190272A priority Critical patent/JPS6082336A/en
Publication of JPS6082336A publication Critical patent/JPS6082336A/en
Publication of JPH0337497B2 publication Critical patent/JPH0337497B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/06Making preforms having internal stresses, e.g. plastic memory
    • B29C61/08Making preforms having internal stresses, e.g. plastic memory by stretching tubes

Landscapes

  • Processing Of Meat And Fish (AREA)
  • Laminated Bodies (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、最外層としてのオレフイン系樹脂
と、芯層としての塩化ビニリデン共重合体と、最
内層としてのポリアミドと、且つ最外層と芯層及
び最内層と芯層との間の接着剤層としてエチレン
とビニルエステルもしくはアクリル酸エステルと
の共重合体をエチレン性不飽和カルボン酸もしく
はその酸無水物で変性した重合体又は該酸変性重
合体を金属化合物で変性した重合体とを管状形態
に溶融積層し、該ポリアミドの2次転移温度以上
で且つそれよりも20℃以上高くない温水により冷
却しながら環状ダイ中央部下方に取り付けられた
円錐状内部マンドレルに沿わせて且つ捲取方向に
引つぱりながら同時に2軸延伸し、続いて管状体
に空気を内封することによつて、捲取方向に直交
する横方向の管状体内径が該円錐状内部マンドレ
ルの最大径以上となるように膨張させ同時2軸延
伸することからなる熱収縮性複合フイルムの製造
方法に関する。 従来、ペースト状のハム、ソーセージ等の食肉
は熱可塑性ケーシングフイルムに充填包装後、包
装製品を約70〜95℃の温度範囲で数分〜数時間加
熱処理した後に市場に提供されてきた。 このような加熱処理を施す食品を包装するため
の適切な包装材としては次に記載の事項を満足す
べきものでなければならない。 (1) ケーシングフイルムは適切な流通期間中の内
容物の腐敗を防止するに十分な酸素ガス遮へい
性を有していること。 (2) ケーシングフイルムと内容物との界面には肉
汁等のゼリーが沈着しないように、特に内容物
がハム、ソーセージ等の食肉の場合にはケーシ
ングフイルムが内容物と強固に密着しているこ
と。 (3) 包装製品にしわが寄つたり又はひだの多い外
観は消費者に古い商品という印象を与えるため
ケーシングフイルムにしわが寄らないこと。 (4) ケーシングフイルムが充填時の圧力(一般に
0.2〜0.5Kg/cm2G)及び加熱処理時の内容物の
膨張等による圧力によつて破断したり又包装製
品の円筒形状が変形しないこと。即ちケーシン
グフイルムは特に耐高温クリープ性が要求さ
れ、例えば70〜95℃の加熱処理時で少なくとも
0.2Kg/mm2〜0.3Kg/mm2の応力で変形しないこと
が要求される。 (5) ケーシングフイルムは操作の上から十分な可
撓性を有しており、充填時等にピンホールが生
じないこと。 (6) 包装製品を約70〜95℃の温度範囲で数分間〜
数時間加熱処理した時に、ケーシングフイルム
にメルトホールが生じないこと。 (7) ケーシングフイルムが優れた強度(ヤング
率、耐寒強度)を有すること。 このような包装フイルムとして要求される事項
に関して公知のホモポリアミド(ナイロン11及び
ナイロン12)を内層としナイロン6を外層とした
2層の共押出しケーシングフイルムは充填圧力で
変形しやすく、又非延伸フイルムであるため加熱
処理後、冷却時にケーシングにしわが著しく発生
する。一方、特開昭55−74744においてはポリア
ミド若しくはこれらのポリアミドとオレフイン系
樹脂との混合物からなる熱収縮性ケーシングフイ
ルムが開示されている。 更に熱収縮包装においては熱可塑性ポリエステ
ル(例えばポリエチレンテレフタレート)からな
るケーシングフイルムも知られている。しかし上
述のケーシングフイルムはいずれも十分な酸素ガ
ス遮へい性及び水蒸気遮へい性を有しないため可
食保存期間を短縮せざるを得ないという共通した
欠点を有する。又該ポリエステルからなるケーシ
ングフイルムはハム、ソーセージ等の内容物と強
固に密着しないという欠点がある。 他方、酸素ガス遮へい性及び水蒸気遮へい性を
有する塩化ビニリデン系共重合樹脂からなるケー
シングフイルムは既に食品包装用材料として広く
使われているが、これ等のケーシングフイルム
は、内容物であるハム、ソーセージとの密着の程
度が十分でないばかりか、多量の内容物を包装す
ると加熱処理時の内容物の自重により円筒形状が
変形する傾向があり、耐高温クリープ性の不足が
指摘されている。更に、塩化ビニリデン系共重合
体からなるケーシングフイルムは充填時にピンホ
ールが発生しやすい欠点を有している。 塩化ビニリデン系共重合体を有する積層体フイ
ルムの一例としての、塩化ビニリデン系共重合体
を芯層としオレフイン系樹脂を最外層とし、アイ
オノマーを最内層とし、芯層と最外層及び最内層
をエチレン−酢酸共重合体の如き接着剤層で接着
してなる熱収縮性5層積層体フイルムは、該フイ
ルムで多量の内容物を包んだ包装製品を沸騰水
(90〜98℃)中に10分間以上つけて、加熱・殺菌
処理した場合、メルトホールを生じ且つクリープ
変形を生ずる欠点を有している。更に該5層積層
体の最内層が内容物に付着し難いという欠点を有
している。 本発明の目的は、これ等従来技術の欠点を克服
した酸素ガス遮へい性、水蒸気遮へい性、耐高温
クリープ性、耐ピンホール性、内容物肉密着性及
び衛生性優れた且つひだがなく、しわの寄らな
い、優れた強度、特に捲取方向に直交する横方向
の力に対する強さを有する食品包装用熱収縮性複
合フイルムの製造方法を提供することにある。 本発明で芯層として使用される塩化ビニリデン
共重合体とは塩化ビニリデンを主とする共重合体
であり、65〜95重量%の塩化ビニリデン及びこれ
と共重合可能な少なくとも1種の単量体35〜5重
量%とからなる共重合体である。共重合可能な単
量体としては、例えば塩化ビニル、アクリルニト
リル、アクリル酸アルキルエステル(アルキル基
炭素数1〜18個)、メタアクリル酸アルキルエス
テル(アルキル基炭素数1〜18個)、アクリル酸、
メタアクリル酸等から選ばれたものである。塩化
ビニリデン共重合体において塩化ビニリデンが65
重量%より少量では塩化ビニリデン共重合体は常
温でゴム状となり、形状安定な成形物が得られな
い。また塩化ビニリデンが95重量%より多量では
融点が高くなり過ぎ、熱分解し易く安定な溶融押
出加工が難しい。塩化ビニリデン共重合体中には
必要に応じて少量の可塑剤及び安定剤その他の添
加剤を含有してもよい。これ等の添加剤は当業者
には公知であり、塩化ビニリデン共重合体に使用
される代表的可塑剤としてはジオクチルセバケー
ト、ジブチルセバケート、アセチルトリプチルサ
イトレート等があり、安定剤としてはエポキシ化
大豆油等がある。 本発明における熱収縮性複合フイルムの塩化ビ
ニリデン共重合体層は3〜30μの厚みを有する。
3μ以下の厚みでは目的とする酸素ガス、水蒸気
の遮へい特性を維持することが困難となり、また
30μを越すと最外層のポリオレフイン系樹脂層と
最内層のポリアミド層によつて保護されていても
低温脆性のクラツク乃至ピンホール発生を防止す
ることが困難となる。 最外層を形成するオレフイン系樹脂としては、
高圧法ポリエチレン、中低圧法ポリエチレン、エ
チレン−酢酸ビニル共重合体、エチレン−アクリ
ル酸エステル共重合体、ポリプロピレン、エチレ
ン−プロピレン共重合体、エチレン−αオレフイ
ン共重合体でいわゆる低密度線状ポリエチレン、
アイオノマーが使用される。オレフイン系樹脂層
は機械的強度、特に耐寒強度及び柔軟性を熱収縮
性複合フイルムに附与するのに有効である。特に
制約はないが熱収縮性複合フイルムの延伸性を阻
害しないためには熱収縮性複合フイルムのオレフ
イン系樹脂層の厚さは5〜50μであることが好ま
しい。 最内層を形成するポリアミドとしては、ナイロ
ン−6(ポリカプラミド)、ナイロン6−6(ポリ
ヘキサメチレンアジパミド)、ナイロン6−66(ε
−カプロラクタムとヘキサメチレンアジパミドの
共重合体)、ナイロン6−10(ポリヘキサメチレン
セパカミド)、ナイロン12(ラウリンラクタムの開
環重合体)が使用される。 これらのポリアミドは押出しの加工性及び延伸
工程における操作性の観点から溶融粘度が高化式
フローテスターで230℃、100sec-1の剪断速度で
5×103〜50×103ポイズの範囲のものが好まし
く、特に10〜20×103ポイズのものが最も好まし
い。 一方積層管状体を同時2軸延伸する際に大きな
延伸力を要するので積層フイルム自体はその延伸
中の応力に耐えられなければならない。更に熱収
縮性複合フイルムは内容物を充填する際の圧力に
耐える性質及び加熱処理(70〜95℃で数分〜数時
間)時の耐高温クリープ性を有していなければな
らない。この要求を満すために、熱収縮性複合フ
イルムのポリアミド樹脂層の厚みは5〜50μ、好
ましくは20〜40μが好ましい。またポリアミド樹
脂層は食品内に含まれる脂肪によつて膨潤されに
くいと言う耐油性を有しており更に内容物である
ハム、ソーセージとは強固に密着する特性を有す
ることから最内層に配することが好ましい。 本発明においては芯層の塩化ビニリデン共重合
体と外層のオレフイン系樹脂又はポリアミドとを
強固に接着せしめるため接着剤層を使用する。接
着剤としてはエチレン−酢酸ビニル共重合体とエ
チレン−アクリル酸共重合体の混合物(特開昭49
−41476号)、エチレン−酢酸ビニル共重合体、エ
チレン−エチルアクリレート共重合体(特開昭51
−19075号)が知られている。しかし本発明のよ
うに各層をダイ内接着したのちに共押出し、ある
いは押出したのちに積層し、得られた管状体を2
軸に延伸して熱収縮性フイルムを製造する際に
は、延伸時の層間剥離に対抗するため極めて優れ
た接着力を有する接着剤が必要である。しかし上
述の従来の接着剤では本発明の目的とする熱収縮
性複合フイルムの製造において延伸時に層間剥離
が生じたりして未だ十分満足な結果が得られなか
つた。 本発明ではエチレンとビニルエステルもしくは
アクリル酸エステルとの共重合体をエチレン性不
飽和カルボン酸又は該酸無水物で変性した重合体
又は該酸変性重合体を金属化合物で変性した重合
体を接着剤層に使用することによりその目的を達
成することが初めてできるようになつた。 本願発明の接着剤のエチレンと共重合するビニ
ルエステルとしては酢酸ビニル、プロピオン酸ビ
ニルが用いられ、アクリル酸エステルとしては炭
素数1〜8のアルキル基を有するアクリル酸エス
テルが好ましい。 本発明の接着剤に使用される重合体はこれらの
エチレン−ビニルエステル、エチレン−アクリル
酸エステル共重合体に例えばアクリル酸、メタク
リル酸、マレイン酸、フマール酸の不飽和カルボ
ン酸又は該酸無水物例えば無水マレイン酸で変性
した重合体が用いられる。ここでいう変性とはグ
ラフト重合反応等で不飽和カルボン酸又は該酸無
水物を共重合体中に導入することを指す。 更に本発明の接着剤としてはこれら酸変性重合
体を金属化合物、好ましくはアルカリ金属塩、ア
ルカリ金属酸化物等、若しくはアルカリ土類金属
塩、アルカリ土類酸化物等で変性した重合体も用
いられる。ここでいう変性とは中和反応等により
金属を重合体に導入することを指す。酸変性重合
体中の不飽和カルボン酸の量は好ましくは0.01〜
10重量%であり、金属変性重合体中の金属の量は
1/50〜10モル%の範囲のものが好ましい。 接着剤として代表的なものとしては商品名N−
ポリマー〔日本石油化学(株)製品〕が挙げられる。 熱収縮性複合フイルムの接着剤層の厚みは1μ
以上で5μ未満好ましくは1.5〜4.0μが用いられる。
1μより薄いと好適な接着力を発揮することがで
きない。 本発明の積層フイルムは4台の押出機を用いて
環状ダイを使用して筒状に押出すことにより、ダ
イ内はダイ外で積層される。 次いで高融点樹脂であるポリアミドの融点以上
で溶融積層された管状体を溶融状態から速やかに
冷却して延伸温度まで降下させると同時に鋭伸を
開始することによつて各構成樹脂とも球晶の生成
を防止することができ、透明性の優れた且つ延伸
配向効果を附与した熱収縮性複合フイルムを得る
ことができる。 管状体フイルムの延伸方法として空気を内封し
たインフレーシヨン法を用いうるが、本発明のポ
リアミド層を含む複合5層構成フイルムを延伸す
る場合、必要とする延伸張力が大きいためインフ
レーシヨン空気圧を大きくしなければならない。
そのためにフイルム中の若干の厚み斑に対して応
力集中が発生し、フイルムの肉厚斑が生じたり、
破裂が生じたりして空気を内封したインフレーシ
ヨン法ででは連続した延伸捲取が困難である。 本願発明の、溶融積層された管状体を、溶融状
態から速やかに冷却して延伸温度まで降下させる
と同時に、管状体を環状ダイ中央部下方に取付け
られた円錐状内部マンドレルに沿わせ且つ、引取
ロールによつて捲取方向に引つぱりながら同時2
軸延伸し、続いて直ちに管状体に空気を内封し
て、捲取方向に直交する横方向の管状体内径が該
円錐状内部マンドレルの最大径よりも大きくなる
ように膨張させ、同時2軸延伸することによつ
て、従来よりも苛酷な条件下においても十分優れ
た耐高温クリープ性を有し、そして延伸後にフイ
ルムの肉厚斑が生じない且つ、フイルムが延伸時
に破裂しない熱収縮性複合フイルムの連続した延
伸捲取が可能となつた。 苛酷な条件下においても満足し得る耐高温クリ
ープ性を得るためには、複合フイルムの捲取方向
に直交する横方向の延伸配向率が捲取方向の延伸
配向率よりも高いことが必要である。すなわち、
包装製品を円柱状と見做した場合、内容物にかか
る圧力をP0、複合フイルムの肉厚をt、内容物
の半径をRとすると、 複合フイルムの捲取方向Lにかかる応力
(σL): σL=R×P0/2t 複合フイルムの捲取方向に直交する横方向Tに
かかる応力(σT): σT=R×P0/t となり、複合フイルムの捲取方向に直交する横方
向の応力(σT)が捲取方向の応力(σL)の2倍の
値を示し、複合フイルムは、捲取方向に直交する
横方向により大きな変形力を受ける。従つて、複
合フイルムは、捲取軸方向よりも捲取方向に直交
する横方向により高度に延伸配向されることが好
ましい。 以下、本発明の複合フイルムの製造方法を附図
により説明する。 第1図、第2図において押出機7(実際には4
台であるが図では省略した)により環状ダイ1を
経て押出された筒状の5層管状体14は環状ダ
イ・リツプ直後に設置したエアリング2によつて
管状を容易に維持できる程度の温度、好ましくは
本質的に非晶質状態を維持するために最内層のポ
リアミド層の結晶化温度より5〜10℃高い温度ま
で冷却し、その後シヤワーリング3によつて最内
層のポリアミド層の2次転移温度以上で且つそれ
よりも20℃以上高くない、好ましくは2次転移温
度より5〜10℃高い温水を膜状に、5層管状体を
好ましくは50℃/sec以上の速度で延伸温度(ポ
リアミドの結晶化温度と2次転移温度との間の温
度)まで冷却するように吹付ける。次いで環状ダ
イ中央部から下方に垂直に支持棒13を介して取
付けられた円錐状内部マンドレル4に冷却された
5層管状体を沿わせて且つ、引取ロール9により
複合フイルム15を引つぱりながら同時2軸延伸
をおこなう。この際必要あれば内部マンドレルは
熱媒体循環温度調節機8により好ましくは30〜80
℃に温度調整され管状体を内部からも冷却する。 しかし、上述のように単に円錐状内部マンドレ
ル4により捲取方向に直交する横方向の延伸倍率
を捲取方向と同じく所定の倍率(2〜5倍)まで
延伸する方法では2軸延伸後の5層管状体15は
引取ロール9による引取張力により、捲取軸方向
に再延伸配向される傾向があり、延伸配向が捲取
軸方向に支配的な5層管状熱収縮フイルムとなり
易く、横方向により延伸配向されたフイルムを得
難い。 従つて本発明では、この点を改良するため内部
マンドレルで延伸した後続いて、空気圧調節弁1
7によつて適度に圧力調整された空気を内封する
ことによつて、該内部マンドレルの外径以上に予
め同時2軸延伸された5層管状体を膨張させ且
つ、引取りローラ9で5層管状体を引取ることに
より同時2軸延伸する。この時、シヤワーリング
3よりかけられた温水は、押えリング5により排
除される。 この場合環状ダイのダイリツプ口径と円錐状内
部マンドレルの最大径部の直径との比は1.5〜2.5
倍が好ましい。更に、ダイリツプ口径と空気圧に
よつて膨張せしめたバブル部最大径部の直径との
比及び延伸直前の管状体14の軸方向速度と引取
ローラ9の速度との比を調節することにより捲取
軸方向及び該方向と直交する横方向の延伸倍率が
決定される。一般には捲取軸方向及び横方向とも
に2〜5倍の倍率が好ましい。 以上のように円錐状内部マンドレル及び直後に
空気圧によつて延伸されたフイルム15はもはや
更に延伸する必要がないため冷却リング6により
5〜30℃の冷却水を吹付けることによつて特に最
内層のポリアミドの2次転移温度以下に冷却し、
複合フイルム15の捲取軸方向の延伸を防止す
る。この時複合フイルム15は十分冷却されてい
るためピンチしても最内層同志が粘着することが
ないのでパイル剤を使用する必要がない。従つて
このチユーブ状熱収縮性複合フイルムをソーセー
ジ等のケーシングに応用する場合内容物であるハ
ム、ソーセージ等と最内層のポリアミド系樹脂層
との密着を阻害する物質が存在せず極めて好都合
である。延伸された複合フイルム15は引取りロ
ーラ9を経て、過剰に延伸された複合フイルムを
リラツクスさせるため及びしわのばしのため1対
のピンチローラ10,11(ピンチローラ11は
ピンチローラ10と同速度か若干遅い速度で駆動
されている)の間で複合フイルムを緩和処理し、
好ましくは空気を封入して緩和処理し、更に必要
であれば遠赤外オーブン12にて40〜100℃に管
理された雰囲気内で加熱された後、捲取りロール
16にて捲き取られ、透明性光沢の良好な5層管
状熱収縮フイルムを得ることができる。 以上のような本発明の製造方法により得られた
本発明の熱収縮複合フイルムは90℃で3秒間弛緩
状態で加熱した場合、熱収縮率が捲取軸方向L及
び横方向Tのそれぞれ平均15%以上である。 また本発明の方法によつて得られた2軸に延伸
された熱収縮性複合フイルムを食品包装用フイル
ムとして用いた場合、内容物を充填した後、加熱
するに際し適当な収縮が起り、内容物である食品
練製品等に密着し、しわがよつたり、ひだの多い
外観を呈することがない。 以下実施例を示す。 実施例 1 以下に記載する重合体 A; 塩化ビニリデン−塩化ビニル共重合体
(83/17重量%) 100重量部 ジブチルセパレート 1 〃 エポキシ化大豆油 2 〃 B; エチレン−エチルアクリレート共重合体
(エチルアクリレート含量15重量%)を無水マ
レイン酸でグラフト重合した重合体を更に
MgCO3で変性した重合体。 Melt Index 6g/10分。グラフト重合体中
の無水マレイン酸は0.5重量%。 B重合体中のMgは0.84モル%であつた。 C; 低密度ポリエチレン Melt Index 1.22
g/10分、密度0.92 D; ポリアミド ナイロン6−66、東洋レーヨ
ン(株)製、商品名CM−6041、融点200℃、結晶
化温度150℃、二次転移点60℃、η*=1.7×104
ポイズ(220℃) を4台の押出機で別々に押出し、溶融された重合
体を環状ダイに導入し、これで内より外に
DBABCの順に溶融接合しダイ内で5層とし共押
出した。ダイ出口部で管状体14の樹脂温度は
220℃であつた。該管状体はダイリツプ部の0.2
Kg/cm2Gの空気圧で吹付けるエアリング2で冷却
され、更にシヤワーリング3によつて60℃の温水
をかけて延伸温度まで冷却された。次いで下部最
大径部の直径がダイリツプ口径の2倍からなる円
錐状内部マンドレル4に沿わせて初期延伸を行な
いその直後に空気圧調節弁17によつて0.3Kg/
cm2Gに調整された内封空気によつてダイリツプ口
径の3倍まで延伸した。この時マンドレルには60
℃の媒体を循環し、この時の引取りローラ9の速
度は20m/分であり、延伸直前の管状体の捲取軸
方向速度は6m/分で捲取軸方向の倍率は約3.3
倍であつた。押えリング5は温水を排除すると同
時にバブル内部に封入された圧縮空気が管状体1
4へ洩れないように延伸途中のフイルムを円錐状
内部マンドレル4に押えている。更に延伸フイル
ムを冷却するためバルブ冷却リング6によつて15
℃の冷却水を吹付け、次の緩和ゾーン18でしわ伸
し後捲取つた。該2軸延伸フイルムの折り幅は
230mm、厚み構成はD層=30μ、B層=3μ、A層
=10μ、C層=10μであり、全層の厚さが56μであ
つた。 この実施例1で得られたフイルム及びクリツプ
包装体に対して表1に示す方法で物性測定を行な
つた。その結果を表2に示す。該延伸フイルムは
熱収縮率が捲取軸方向より寧ろ横方向の値が大き
い。得られた熱収縮性複合フイルムに、通常の方
法によつて約6Kgのソーセージを充填後、従来よ
り高温且つ長時間吊下げ状態で加熱処理(90℃4
時間)した包装製品も及び5℃の冷蔵庫で一日保
管したものも、複合フイルムにしわがなく且つ包
装製品の外径変化のないものであつた。
The present invention comprises an olefin resin as the outermost layer, a vinylidene chloride copolymer as the core layer, a polyamide as the innermost layer, and an adhesive layer between the outermost layer and the core layer and between the innermost layer and the core layer. A polymer obtained by modifying a copolymer of ethylene and vinyl ester or acrylic ester with an ethylenically unsaturated carboxylic acid or its acid anhydride, or a polymer obtained by modifying the acid-modified polymer with a metal compound, into a tubular form. The polyamide is melted and laminated, and while being cooled with hot water having a temperature equal to or higher than the secondary transition temperature of the polyamide and not higher than it by 20°C, it is pulled along a conical internal mandrel attached below the center of the annular die and in the winding direction. By simultaneous biaxial stretching while tightening, and then enclosing air in the tubular body, the diameter of the tubular body in the transverse direction perpendicular to the winding direction is equal to or larger than the maximum diameter of the conical internal mandrel. The present invention relates to a method for producing a heat-shrinkable composite film, which comprises expanding and simultaneously biaxially stretching. Conventionally, pasty meats such as hams and sausages have been filled and packaged in thermoplastic casing films, and the packaged products have been heat-treated in a temperature range of approximately 70 to 95° C. for several minutes to several hours before being provided to the market. Appropriate packaging materials for packaging foods that undergo such heat treatment must satisfy the following requirements. (1) The casing film must have sufficient oxygen gas shielding properties to prevent the contents from spoiling during the appropriate distribution period. (2) In order to prevent jelly such as meat juice from depositing on the interface between the casing film and the contents, especially when the contents are meat such as ham or sausage, the casing film must be firmly attached to the contents. . (3) The casing film should not be wrinkled, as a wrinkled or folded appearance on the packaged product gives consumers the impression that the product is old. (4) The pressure when the casing film is filled (generally
0.2 to 0.5 Kg/cm 2 G) and the cylindrical shape of the packaged product should not be broken or deformed by the pressure caused by the expansion of the contents during heat treatment. In other words, the casing film is particularly required to have high temperature creep resistance.
It is required not to deform under stress of 0.2Kg/mm 2 to 0.3Kg/mm 2 . (5) The casing film must have sufficient flexibility for operation, and no pinholes will form during filling. (6) Heat the packaged product in a temperature range of approximately 70 to 95℃ for several minutes.
No melt holes should occur in the casing film after heat treatment for several hours. (7) The casing film must have excellent strength (Young's modulus, cold resistance strength). Regarding the requirements for such packaging films, a two-layer coextruded casing film with an inner layer of homopolyamide (nylon 11 and nylon 12) and an outer layer of nylon 6, which is known, is easily deformed by the filling pressure, and is not a non-stretched film. Therefore, after heat treatment, the casing wrinkles significantly during cooling. On the other hand, JP-A-55-74744 discloses a heat-shrinkable casing film made of polyamide or a mixture of these polyamides and an olefinic resin. Furthermore, casing films made of thermoplastic polyester (for example polyethylene terephthalate) are also known for heat shrink packaging. However, all of the above-mentioned casing films have a common drawback in that they do not have sufficient oxygen gas shielding properties and water vapor shielding properties, so that the edible storage period must be shortened. Furthermore, the casing film made of polyester has the disadvantage that it does not adhere firmly to the contents of ham, sausage, etc. On the other hand, casing films made of vinylidene chloride copolymer resins that have oxygen gas shielding properties and water vapor shielding properties are already widely used as food packaging materials. Not only is the degree of adhesion insufficient, but when a large amount of contents are packaged, the cylindrical shape tends to deform due to the weight of the contents during heat treatment, and it has been pointed out that the high temperature creep resistance is insufficient. Furthermore, a casing film made of a vinylidene chloride copolymer has the disadvantage that pinholes are likely to occur during filling. As an example of a laminate film having a vinylidene chloride copolymer, the core layer is a vinylidene chloride copolymer, the outermost layer is an olefin resin, the innermost layer is an ionomer, and the core layer, outermost layer, and innermost layer are ethylene. - A heat-shrinkable 5-layer laminate film bonded with an adhesive layer such as an acetic acid copolymer can be prepared by immersing a packaged product containing a large amount of contents in boiling water (90-98°C) for 10 minutes. If the above-mentioned material is applied and subjected to heating and sterilization treatment, it has the disadvantage of producing melt holes and creep deformation. Furthermore, the innermost layer of the five-layer laminate has the disadvantage that it is difficult to adhere to the contents. The purpose of the present invention is to overcome these drawbacks of the prior art, to provide a product that has excellent oxygen gas shielding properties, water vapor shielding properties, high temperature creep resistance, pinhole resistance, content adhesion to meat, and hygienic properties, and is free from folds and wrinkles. It is an object of the present invention to provide a method for producing a heat-shrinkable composite film for food packaging, which does not sag and has excellent strength, particularly strength against forces in the lateral direction perpendicular to the winding direction. The vinylidene chloride copolymer used as the core layer in the present invention is a copolymer mainly composed of vinylidene chloride, and contains 65 to 95% by weight of vinylidene chloride and at least one monomer copolymerizable therewith. It is a copolymer consisting of 35 to 5% by weight. Examples of copolymerizable monomers include vinyl chloride, acrylonitrile, acrylic acid alkyl esters (alkyl group having 1 to 18 carbon atoms), methacrylic acid alkyl esters (alkyl group having 1 to 18 carbon atoms), and acrylic acid. ,
It is selected from methacrylic acid and the like. In vinylidene chloride copolymer, vinylidene chloride is 65
If the amount is less than % by weight, the vinylidene chloride copolymer becomes rubbery at room temperature, and a molded article with stable shape cannot be obtained. Furthermore, if the amount of vinylidene chloride is more than 95% by weight, the melting point will be too high and it will be easily thermally decomposed, making stable melt extrusion processing difficult. The vinylidene chloride copolymer may contain small amounts of plasticizers, stabilizers, and other additives, if necessary. These additives are known to those skilled in the art, and typical plasticizers used in vinylidene chloride copolymers include dioctyl sebacate, dibutyl sebacate, acetyl triptyl citrate, etc., and stabilizers include Examples include epoxidized soybean oil. The vinylidene chloride copolymer layer of the heat-shrinkable composite film in the present invention has a thickness of 3 to 30 microns.
If the thickness is less than 3μ, it will be difficult to maintain the desired oxygen gas and water vapor shielding properties, and
If the thickness exceeds 30μ, it becomes difficult to prevent the occurrence of cracks or pinholes due to low temperature brittleness even if protected by the outermost polyolefin resin layer and the innermost polyamide layer. The olefin resin that forms the outermost layer is
High-pressure polyethylene, medium-low pressure polyethylene, ethylene-vinyl acetate copolymer, ethylene-acrylic acid ester copolymer, polypropylene, ethylene-propylene copolymer, ethylene-α-olefin copolymer, so-called low-density linear polyethylene,
Ionomers are used. The olefin resin layer is effective in imparting mechanical strength, particularly cold resistance strength and flexibility, to the heat-shrinkable composite film. Although there are no particular restrictions, the thickness of the olefin resin layer of the heat-shrinkable composite film is preferably 5 to 50 microns in order not to impede the stretchability of the heat-shrinkable composite film. Examples of the polyamide forming the innermost layer include nylon-6 (polycapramide), nylon 6-6 (polyhexamethylene adipamide), and nylon 6-66 (ε
- a copolymer of caprolactam and hexamethylene adipamide), nylon 6-10 (polyhexamethylene sepacamide), and nylon 12 (a ring-opened polymer of laurin lactam). These polyamides have a melt viscosity in the range of 5 x 10 3 to 50 x 10 3 poise at 230°C and a shear rate of 100 sec -1 using an enhanced flow tester from the viewpoint of extrusion processability and operability in the drawing process. is preferable, and most preferably 10 to 20×10 3 poise. On the other hand, since a large stretching force is required when simultaneously biaxially stretching a laminated tubular body, the laminated film itself must be able to withstand stress during the stretching. Furthermore, the heat-shrinkable composite film must have properties that can withstand pressure during filling and high-temperature creep resistance during heat treatment (several minutes to several hours at 70 to 95°C). In order to meet this requirement, the thickness of the polyamide resin layer of the heat-shrinkable composite film is preferably 5 to 50 microns, preferably 20 to 40 microns. In addition, the polyamide resin layer has oil resistance that prevents it from being swollen by the fat contained in the food, and it also has the property of adhering tightly to the contents of ham and sausage, so it is placed as the innermost layer. It is preferable. In the present invention, an adhesive layer is used to firmly adhere the vinylidene chloride copolymer of the core layer and the olefin resin or polyamide of the outer layer. The adhesive used is a mixture of ethylene-vinyl acetate copolymer and ethylene-acrylic acid copolymer (Japanese Unexamined Patent Publication No. 1973
-41476), ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer (JP-A No. 51
-19075) is known. However, as in the present invention, each layer is bonded in a die and then coextruded, or extruded and then laminated, and the resulting tubular body is made into two
When producing a heat-shrinkable film by axial stretching, an adhesive with extremely high adhesive strength is required to prevent delamination during stretching. However, with the above-mentioned conventional adhesives, during the production of the heat-shrinkable composite film, which is the object of the present invention, delamination occurs during stretching, so that sufficiently satisfactory results have not yet been obtained. In the present invention, a polymer obtained by modifying a copolymer of ethylene and vinyl ester or acrylic ester with an ethylenically unsaturated carboxylic acid or an acid anhydride, or a polymer obtained by modifying the acid-modified polymer with a metal compound is used as an adhesive. For the first time, it became possible to achieve that purpose by using it in layers. As the vinyl ester copolymerized with ethylene in the adhesive of the present invention, vinyl acetate and vinyl propionate are used, and as the acrylic ester, an acrylic ester having an alkyl group having 1 to 8 carbon atoms is preferred. The polymers used in the adhesive of the present invention include these ethylene-vinyl esters, ethylene-acrylic ester copolymers, and unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, and fumaric acid, or their acid anhydrides. For example, a polymer modified with maleic anhydride is used. The term "modification" as used herein refers to introducing an unsaturated carboxylic acid or its acid anhydride into a copolymer through a graft polymerization reaction or the like. Furthermore, as the adhesive of the present invention, polymers obtained by modifying these acid-modified polymers with metal compounds, preferably alkali metal salts, alkali metal oxides, etc., or alkaline earth metal salts, alkaline earth oxides, etc. can also be used. . Modification here refers to introducing a metal into a polymer through a neutralization reaction or the like. The amount of unsaturated carboxylic acid in the acid-modified polymer is preferably from 0.01 to
10% by weight, and the amount of metal in the metal-modified polymer is preferably in the range of 1/50 to 10% by mole. A typical adhesive is the product name N-
Examples include polymers (products of Nippon Petrochemicals Co., Ltd.). The thickness of the adhesive layer of heat-shrinkable composite film is 1μ
or more, less than 5μ, preferably 1.5 to 4.0μ.
If it is thinner than 1μ, suitable adhesive force cannot be exhibited. The laminated film of the present invention is extruded into a cylindrical shape using an annular die using four extruders, so that the inside of the die is laminated outside the die. Next, the tubular bodies melted and laminated at a temperature higher than the melting point of polyamide, which is a high melting point resin, are quickly cooled from the molten state to the drawing temperature, and at the same time, sharp drawing is started, thereby forming spherulites in each of the constituent resins. It is possible to obtain a heat-shrinkable composite film which has excellent transparency and has been given a stretching orientation effect. An inflation method in which air is enclosed can be used as a method for stretching the tubular film, but when stretching the composite five-layer film containing the polyamide layer of the present invention, the inflation pneumatic pressure is required because the required stretching tension is large. must be made larger.
As a result, stress concentration occurs on slight unevenness in the thickness of the film, resulting in uneven thickness of the film.
Continuous stretching and winding is difficult with the inflation method in which rupture occurs and air is enclosed. The melt-laminated tubular body of the present invention is rapidly cooled from the molten state to the drawing temperature, and at the same time, the tubular body is placed along the conical internal mandrel attached below the center of the annular die and taken off. 2 at the same time while being pulled in the winding direction by the roll.
axial stretching, and then immediately enclosing air in the tubular body and expanding it so that the diameter of the tubular body in the transverse direction perpendicular to the winding direction is larger than the maximum diameter of the conical internal mandrel, and simultaneously biaxially stretching the tubular body. By stretching, a heat-shrinkable composite that has sufficiently excellent high-temperature creep resistance even under harsher conditions than before, and that does not cause thickness unevenness in the film after stretching and does not rupture during stretching. It became possible to stretch and wind the film continuously. In order to obtain satisfactory high temperature creep resistance even under severe conditions, it is necessary that the stretch orientation ratio in the transverse direction perpendicular to the winding direction of the composite film is higher than the stretch orientation ratio in the winding direction. . That is,
When the packaging product is assumed to be cylindrical, and the pressure applied to the contents is P 0 , the thickness of the composite film is t, and the radius of the contents is R, then the stress applied in the winding direction L of the composite film (σ L ): σ L = R×P 0 /2t Stress applied in the transverse direction T perpendicular to the winding direction of the composite film (σ T ): σ T = R×P 0 /t, which is perpendicular to the winding direction of the composite film The stress in the lateral direction (σ T ) is twice the stress in the winding direction (σ L ), and the composite film is subjected to a larger deformation force in the lateral direction perpendicular to the winding direction. Therefore, it is preferable that the composite film is stretched and oriented more highly in the transverse direction perpendicular to the winding direction than in the winding axis direction. Hereinafter, the method for manufacturing a composite film of the present invention will be explained with reference to the accompanying drawings. In Figs. 1 and 2, extruder 7 (actually 4
The cylindrical five-layer tubular body 14 extruded through the annular die 1 by a stand (not shown in the figure) is kept at a temperature such that its tubular shape can be easily maintained by the air ring 2 installed immediately after the annular die lip. , preferably to a temperature 5 to 10°C higher than the crystallization temperature of the innermost polyamide layer in order to maintain an essentially amorphous state, and then shearing 3 to cool the innermost polyamide layer to a secondary state. The 5-layer tubular body is stretched at a temperature ( The polyamide is cooled to a temperature between the crystallization temperature and the second order transition temperature). Next, the cooled five-layer tubular body is placed along the conical inner mandrel 4 which is vertically attached via a support rod 13 downward from the center of the annular die, and the composite film 15 is pulled by the take-off roll 9. Perform simultaneous biaxial stretching. At this time, if necessary, the temperature of the internal mandrel is preferably set to 30 to 80 by using the heat medium circulation temperature controller 8.
The temperature is adjusted to ℃ and the tubular body is also cooled from the inside. However, as described above, in the method of simply stretching the transverse direction orthogonal to the winding direction using the conical internal mandrel 4 to a predetermined stretching ratio (2 to 5 times), which is the same as the winding direction, the 5 The layered tubular body 15 tends to be re-stretched in the direction of the winding axis due to the tension applied by the winding roll 9, and tends to become a five-layer tubular heat-shrinkable film in which the stretching orientation is dominant in the direction of the winding axis. It is difficult to obtain a stretched and oriented film. Therefore, in the present invention, in order to improve this point, after stretching with an internal mandrel, the air pressure regulating valve 1 is
By enclosing air whose pressure has been appropriately adjusted by rollers 7, the five-layer tubular body, which has been simultaneously biaxially stretched, is expanded to a diameter greater than the outer diameter of the internal mandrel, and the five-layer tubular body, which has been simultaneously biaxially stretched, is expanded by a take-up roller 9. Simultaneous biaxial stretching is carried out by taking off the layered tubular body. At this time, the hot water sprayed from the shower ring 3 is removed by the presser ring 5. In this case, the ratio of the die lip diameter of the annular die to the diameter of the maximum diameter part of the conical inner mandrel is 1.5 to 2.5.
Double is preferred. Further, by adjusting the ratio between the diameter of the die lip and the diameter of the maximum diameter portion of the bubble portion expanded by air pressure, and the ratio between the axial speed of the tubular body 14 immediately before stretching and the speed of the take-up roller 9, the winding shaft can be adjusted. The direction and the stretching ratio in the transverse direction perpendicular to the direction are determined. Generally, a magnification of 2 to 5 times is preferred in both the winding axis direction and the lateral direction. As described above, the conical inner mandrel and the film 15 immediately after being stretched by air pressure do not need to be further stretched, so that the film 15, especially the innermost layer, is sprayed with cooling water of 5 to 30°C by the cooling ring 6. cooled to below the second-order transition temperature of the polyamide,
Stretching of the composite film 15 in the direction of the winding axis is prevented. Since the composite film 15 is sufficiently cooled at this time, the innermost layers will not stick together even if pinched, so there is no need to use a pile agent. Therefore, when this tubular heat-shrinkable composite film is applied to casings for sausages, etc., it is extremely convenient as there is no substance that would inhibit the adhesion between the contents such as ham, sausage, etc. and the innermost polyamide resin layer. . The stretched composite film 15 passes through a take-up roller 9, and a pair of pinch rollers 10 and 11 (the pinch roller 11 is at the same speed as the pinch roller 10) is used to relax the excessively stretched composite film and to remove wrinkles. (which is driven at a slightly slower speed), the composite film is relaxed between
Preferably, it is subjected to a relaxation treatment by enclosing air, and if necessary, it is heated in a far-infrared oven 12 in an atmosphere controlled at 40 to 100°C, and then rolled up with a winding roll 16 to make it transparent. A 5-layer tubular heat-shrinkable film with good glossiness can be obtained. When the heat-shrinkable composite film of the present invention obtained by the manufacturing method of the present invention as described above is heated in a relaxed state at 90°C for 3 seconds, the heat shrinkage rate is 15 on average in the winding axis direction L and the transverse direction T, respectively. % or more. Furthermore, when the biaxially stretched heat-shrinkable composite film obtained by the method of the present invention is used as a film for food packaging, appropriate shrinkage occurs during heating after filling the contents, and the contents It adheres closely to food paste products, etc., and does not appear wrinkled or wrinkled. Examples are shown below. Example 1 Polymer A described below: Vinylidene chloride-vinyl chloride copolymer (83/17% by weight) 100 parts by weight dibutyl separate 1 Epoxidized soybean oil 2 B: Ethylene-ethyl acrylate copolymer (ethyl A polymer obtained by graft-polymerizing acrylate content (15% by weight) with maleic anhydride is further
Polymer modified with MgCO3 . Melt Index 6g/10min. Maleic anhydride in the graft polymer is 0.5% by weight. Mg in Polymer B was 0.84 mol%. C; Low density polyethylene Melt Index 1.22
g/10 minutes, density 0.92 D; Polyamide nylon 6-66, manufactured by Toyo Rayon Co., Ltd., trade name CM-6041, melting point 200°C, crystallization temperature 150°C, secondary transition point 60°C, η * = 1.7× 10 4
Poise (220℃) is extruded separately using four extruders, and the molten polymer is introduced into an annular die, which allows it to flow from the inside to the outside.
DBABC was melted and bonded in the order of 5 layers in a die and coextruded. The resin temperature of the tubular body 14 at the die exit is
It was 220℃. The tubular body has a diameter of 0.2 mm at the die lip.
It was cooled by an air ring 2 blowing air at an air pressure of Kg/cm 2 G, and further cooled to the drawing temperature by spraying hot water at 60° C. by a shower ring 3. Next, initial stretching is carried out along a conical internal mandrel 4 whose lower maximum diameter is twice the diameter of the die lip, and immediately after that, the air pressure control valve 17 is used to draw 0.3 kg/
It was stretched to three times the diameter of the die lip using the enclosed air adjusted to cm 2 G. At this time, the mandrel has 60
℃ medium was circulated, the speed of the take-up roller 9 at this time was 20 m/min, the speed in the direction of the winding axis of the tubular body immediately before stretching was 6 m/min, and the magnification in the direction of the winding axis was approximately 3.3.
It was twice as hot. The presser ring 5 removes hot water and at the same time compressed air sealed inside the bubble is released into the tubular body 1.
The film that is being stretched is held against the conical internal mandrel 4 to prevent it from leaking to the film. 15 by the valve cooling ring 6 to further cool the stretched film.
Cooling water at ℃ was sprayed on the fabric, and the wrinkles were smoothed out in the next relaxation zone 18, and then the fabric was rolled up. The folding width of the biaxially stretched film is
The thickness was 230 mm, and the thickness structure was: D layer = 30 μm, B layer = 3 μm, A layer = 10 μm, C layer = 10 μm, and the total thickness was 56 μm. The physical properties of the film and clip package obtained in Example 1 were measured using the methods shown in Table 1. The results are shown in Table 2. The stretched film has a higher heat shrinkage rate in the transverse direction than in the winding axis direction. The resulting heat-shrinkable composite film was filled with approximately 6 kg of sausage using a conventional method, and then heat-treated (90°C 4
In both the packaged products that had been stored for 30 minutes and those that had been stored in a refrigerator at 5° C. for one day, there were no wrinkles in the composite film and no change in the outer diameter of the packaged products.

【表】【table】

【表】 実施例 2 実施例1の重合体C:低密度ポリエチレンのか
わりに重合体E:低密度線状ポリエチレン(三井
化学社製、ウルトゼツクス2021L)を用いること
を除いては、実施例1と同じ重合体を4台の押出
機で別々に押出し、溶融された重合体を環状ダイ
に導入し、ここで内側よりDBABEの順に溶融接
合しダイ内で5層とし共押出した。 続いて実施例1に記載の方法と同じ方法を用い
て複合フイルムを製造した。該複合フイルムの各
層の厚みは、D層=30μ、B層=3μ、A層=10μ
及びE層=10μであり全層の厚さは56μであつた。 この実施例2で得られたフイルム及びクリツプ
包装体に対して表1に示す方法で物性測定を行な
つた。結果を表2に示す。
[Table] Example 2 Same as Example 1 except that Polymer E: Low density linear polyethylene (manufactured by Mitsui Chemicals, Urtozex 2021L) was used instead of Polymer C: Low density polyethylene of Example 1. The same polymer was extruded separately using four extruders, and the molten polymers were introduced into an annular die, where they were melt-bonded in the order of DBABE from the inside and coextruded into five layers within the die. Subsequently, a composite film was produced using the same method as described in Example 1. The thickness of each layer of the composite film is: D layer = 30μ, B layer = 3μ, A layer = 10μ.
and E layer = 10μ, and the total layer thickness was 56μ. The physical properties of the film and clip package obtained in Example 2 were measured using the methods shown in Table 1. The results are shown in Table 2.

【表】 実施例2により製造された熱収縮性複合フイル
ムに通常の方法により、約6Kgのソーセージを充
填後、90℃で4時間吊下げ状態で加熱処理した包
装製品も5℃の冷蔵庫で24時間保管したものも、
複合フイルムにしわがなく且つ包装製品の外径変
化が見られなかつた。 更に、実施例1及び2によつて製造された熱収
縮性複合フイルムに対して表3に示す方法で物性
測定をおこなつた。その結果を表4に示す。
[Table] The packaged product prepared by filling the heat-shrinkable composite film produced in Example 2 with approximately 6 kg of sausage by a normal method and then heat-treating it by suspending it at 90°C for 4 hours was also heat-treated in a refrigerator at 5°C for 24 hours. Things that have been stored for a while,
There were no wrinkles in the composite film and no change in the outer diameter of the packaged product was observed. Furthermore, the physical properties of the heat-shrinkable composite films produced in Examples 1 and 2 were measured using the methods shown in Table 3. The results are shown in Table 4.

【表】【table】

【表】【table】

【表】 表4より実施例1及び2の2軸延伸複合フイル
ムは、捲取軸方向に直交する横方向の熱収縮率が
捲取軸方向の熱収縮率よりも大きい。更に引張強
度、引張伸度、熱収縮応力及び熱水クリープに関
する表4の値より、捲取軸方向に直交する横方向
の延伸配向が捲取軸方向のそれよりも高いことが
明らかである。
[Table] From Table 4, the biaxially stretched composite films of Examples 1 and 2 have a higher heat shrinkage rate in the transverse direction perpendicular to the winding axis direction than in the winding axis direction. Further, from the values in Table 4 regarding tensile strength, tensile elongation, heat shrinkage stress, and hot water creep, it is clear that the stretching orientation in the transverse direction perpendicular to the winding axis direction is higher than that in the winding axis direction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の複合フイルムの製造するため
のレイアウトを示した図であり、第2図は、第1
図のダイ及び円錐状内部マンドレル部分の拡大図
である。 1……環状ダイ、2……エアリング、3……シ
ヤワリング、4……円錐状内部マンドレル、5…
…押えリング、6……冷却リング、9……引取ロ
ーラ、10,11……ピンチローラ、14……管
状体、15……複合フイルム。
FIG. 1 is a diagram showing a layout for manufacturing the composite film of the present invention, and FIG.
FIG. 2 is an enlarged view of the die and conical inner mandrel portion of the figure; 1... Annular die, 2... Air ring, 3... Shear ring, 4... Conical internal mandrel, 5...
... Pressing ring, 6 ... Cooling ring, 9 ... Take-up roller, 10, 11 ... Pinch roller, 14 ... Tubular body, 15 ... Composite film.

Claims (1)

【特許請求の範囲】 1 最外層としてのオレフイン系樹脂と、芯層と
しての塩化ビニリデン共重合体と、最内層として
のポリアミドと、且つ最外層と芯層及び最内層と
芯層との間の接着剤層としてエチレンとビニルエ
ステルもしくはアクリル酸エステルとの共重合体
をエチレン性不飽和カルボン酸もしくはその酸無
水物で変性した重合体又は該酸変性重合体を金属
化合物で変性した重合体とを管状体形態に溶融積
層し、得られた管状体を該ポリアミドの2次転移
温度以上で且つそれよりも20℃以上高くない温水
により冷却しながら環状ダイ中央部下方に取り付
けられた円錐状内部マンドレルに沿わせて且つ捲
取方向に引つぱりながら同時に2軸延伸し、続い
て管状体に空気を内封することによつて捲取方向
に直交する横方向の管状体内径が該円錐状内部マ
ンドレルの最大径以上となるように膨張させ同時
2軸延伸することを特徴とする熱収縮性複合フイ
ルムの製造方法。 2 熱収縮性複合フイルムの両外層の厚みが5〜
50μ、芯層の厚みが3〜30μ且つ、接着剤層の厚
みが1μ以上5μ未満であることを特徴とする特許
請求の範囲第1項に記載の熱収縮性複合フイルム
の製造方法。 3 管状体の捲取方向及び捲取方向に直交する横
方向の延伸倍率がそれぞれ2〜5倍となるように
同時2軸延伸することを特徴とする特許請求の範
囲第1項に記載の熱収縮性複合フイルムの製造方
法。
[Scope of Claims] 1. Olefin resin as the outermost layer, vinylidene chloride copolymer as the core layer, polyamide as the innermost layer, and between the outermost layer and the core layer and between the innermost layer and the core layer. For the adhesive layer, a polymer obtained by modifying a copolymer of ethylene and vinyl ester or acrylic ester with an ethylenically unsaturated carboxylic acid or its acid anhydride, or a polymer obtained by modifying the acid-modified polymer with a metal compound. A conical internal mandrel is attached to the lower center of the annular die while melt-laminating the resulting tubular body in the form of a tubular body and cooling the resulting tubular body with hot water at a temperature not lower than the second-order transition temperature of the polyamide and not higher than it by more than 20°C. At the same time, the inner diameter of the tubular body in the transverse direction perpendicular to the winding direction is expanded by biaxial stretching while being pulled along the winding direction and in the winding direction. A method for producing a heat-shrinkable composite film, which comprises expanding the film to a maximum diameter of a mandrel or more and simultaneously biaxially stretching the film. 2 The thickness of both outer layers of the heat-shrinkable composite film is 5~
50μ, the thickness of the core layer is 3 to 30μ, and the thickness of the adhesive layer is 1μ or more and less than 5μ. 3. The heat treatment according to claim 1, characterized in that simultaneous biaxial stretching is carried out so that the stretching magnification in the winding direction of the tubular body and in the transverse direction orthogonal to the winding direction is 2 to 5 times, respectively. A method for producing a shrinkable composite film.
JP58190272A 1983-10-12 1983-10-12 Manufacture of heat shrinkable composite film Granted JPS6082336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58190272A JPS6082336A (en) 1983-10-12 1983-10-12 Manufacture of heat shrinkable composite film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58190272A JPS6082336A (en) 1983-10-12 1983-10-12 Manufacture of heat shrinkable composite film

Publications (2)

Publication Number Publication Date
JPS6082336A JPS6082336A (en) 1985-05-10
JPH0337497B2 true JPH0337497B2 (en) 1991-06-05

Family

ID=16255388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58190272A Granted JPS6082336A (en) 1983-10-12 1983-10-12 Manufacture of heat shrinkable composite film

Country Status (1)

Country Link
JP (1) JPS6082336A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111715A (en) * 1985-11-12 1987-05-22 Kishimoto Akira Manufacture of laminated structure of vinylidene chloride series resin
US4762748A (en) * 1986-06-30 1988-08-09 W. R. Grace & Co. Multilayer film with better layer adhesion
US4855183A (en) * 1986-11-17 1989-08-08 W. R. Grace & Co.-Conn. Multiple-layer, cook-in film
CN113021856B (en) * 2021-03-23 2022-12-27 四川群琪科技有限公司 Multilayer plastic film blowing method

Also Published As

Publication number Publication date
JPS6082336A (en) 1985-05-10

Similar Documents

Publication Publication Date Title
JPH028583B2 (en)
US4892765A (en) Heat-shrinkable laminate film and process to produce the same
JP3280777B2 (en) Heat shrinkable nylon food casing with functionalized ethylene polymer core layer
US5425974A (en) 5-layered coextruded biaxially stretched tubular film having at least 3 polyamide layers
JP3204995B2 (en) Polyamide multilayer synthetic sausage casing
JP4864177B2 (en) Stretched multilayer film casing
JPS64216B2 (en)
JPH06197679A (en) Heat-shrinkable nylon food casing having polyolefin core layer
JPS6412226B2 (en)
EP0141555A1 (en) Oriented polymeric films, packaging made from such films and methods of making the films and packaging
JP2001113650A (en) Multi-layer biaxially stretched high barrier plastic skin
US4284458A (en) Method for producing laminated film
US7244481B2 (en) Nylon food casing having a barrier core layer
JPH1094360A (en) Concertinaed package casing
JPH08238053A (en) Sausage casing of which base is polyamide
US20110027404A1 (en) Multi-tube extrusion apparatus and method
JPH0337497B2 (en)
US4731214A (en) Process for preparing a thermally shrinkable multilayer film
JPS6410180B2 (en)
US4156749A (en) Elastic multilayer packaging film containing plasticized polyvinyl chloride
JPH0143626B2 (en)
JPH08230035A (en) Method for producing coextruded multilayer stretched film
JPH0289619A (en) Film manufacturing method
JPH033572B2 (en)
JPS6243871B2 (en)