JPH0335179A - Multi-axial magnetic detector - Google Patents
Multi-axial magnetic detectorInfo
- Publication number
- JPH0335179A JPH0335179A JP17067989A JP17067989A JPH0335179A JP H0335179 A JPH0335179 A JP H0335179A JP 17067989 A JP17067989 A JP 17067989A JP 17067989 A JP17067989 A JP 17067989A JP H0335179 A JPH0335179 A JP H0335179A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- signal
- axis
- magnetic
- excitation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Magnetic Variables (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)産業上の利用分野
この発明は、地磁気などの計測、一般磁気計測、磁気異
常物の検知、艦船、車両の探知、艦船の耐機雷の消磁シ
ステム等に使用される多軸磁気探知器に関する。[Detailed Description of the Invention] (a) Industrial Application Fields This invention is used for measurement of geomagnetism, general magnetic measurement, detection of magnetic abnormal objects, detection of ships and vehicles, demagnetization system for ship mines, etc. This paper relates to a multi-axis magnetic detector.
(ロ)従来の技術
上記地磁気などの計測には、従来励振コイル、信号コイ
ル及び補償コイルを備えた磁気センサと励振コイルを駆
動する励振回路部、信号コイルから磁気信号を導出する
°信号導出部を含む回路部とから構成される磁気探知器
が使用され、しかも単一の磁気探知器を3個用い、磁気
センサが互いに直交する方向、つまりX軸、Y軸、Z軸
となるように配置する多軸磁気検知器を使用するのが通
常である。(b) Conventional technology In order to measure the earth's magnetic field, etc., conventionally, a magnetic sensor is equipped with an excitation coil, a signal coil, and a compensation coil, an excitation circuit section that drives the excitation coil, and a signal derivation section that derives a magnetic signal from the signal coil. A magnetic detector is used, which consists of a circuit section including Typically, a multi-axis magnetic detector is used.
(ハ)発明が解決しようとする課題
多軸磁気探知器は、各軸を近接して高密度に配置すると
、また高感度に検知しようとすると、各軸同志の相互干
渉、雑音購入等の問題が無視できなくなる。そこでこれ
ら問題を解消するために静電シルードや磁気シールドを
施したり、各軸の励振信号の位相、周波数シフト等の方
法を取っている。しかしながら、これらの方法では相互
干渉、雑音混入を完全に除去するには限界があった。(c) Problems to be solved by the invention Multi-axis magnetic detectors suffer from problems such as mutual interference between the axes, noise noise, etc. when the respective axes are arranged closely and densely, and when high-sensitivity detection is attempted. becomes impossible to ignore. Therefore, in order to solve these problems, methods such as applying electrostatic shielding or magnetic shielding, or shifting the phase and frequency of the excitation signal of each axis are used. However, these methods have limitations in completely eliminating mutual interference and noise contamination.
この発明は、上記問題点に着目してなされたものであっ
て、各軸間の相互干渉を従来よりもさらに軽減し得る多
軸磁気検知器を提供することを目的としている。The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a multi-axis magnetic detector that can further reduce mutual interference between the respective axes than in the past.
(ニ)課題を解決するための手段及び作用この発明の多
軸磁気検知器は、各々に励振コイル、信号コイル及び補
償コイルを備え、互いに直交配置される複数の磁気セン
サと、それぞれにこれら磁気センサの励振コイルを駆動
する励振回路部、信号コイルが磁気信号を導出する信号
導出部を含む複数の回路部とからなるものにおいて、前
記磁気センサと回路部との接続を時分割的に切り替える
接続切替回路を備えるとともに、前記各励振回路部から
の励振信号の振幅を徐々に低減してOFFさせるように
している。(D) Means and Effects for Solving the Problems The multi-axis magnetic detector of the present invention includes a plurality of magnetic sensors each having an excitation coil, a signal coil, and a compensation coil and arranged orthogonally to each other, and each of these magnetic sensors having an excitation coil, a signal coil, and a compensation coil. A connection for switching the connection between the magnetic sensor and the circuit section in a time-sharing manner in a device comprising a plurality of circuit sections including an excitation circuit section that drives an excitation coil of a sensor and a signal derivation section from which a signal coil derives a magnetic signal. A switching circuit is provided, and the amplitude of the excitation signal from each of the excitation circuit sections is gradually reduced to be turned off.
この多軸磁気検知器では、接続切替回路が動作すると、
各軸の磁気センサと回路部が、時分割的に順次に接続さ
れる。そのため、ある軸の磁気センサと回路部が接続さ
れると、他の軸の磁気センサと回路部は接続されず、し
たがって常に1つの磁気センサの励振コイルにのみ励振
信号が入力されることになり、各軸間の相互干渉が発生
しなくなる。また、接続切替時の励振信号は徐々に振幅
が低減されてOFFするので、センサコアの残留磁気を
最小化できる。In this multi-axis magnetic detector, when the connection switching circuit operates,
The magnetic sensor and circuit section of each axis are sequentially connected in a time-sharing manner. Therefore, when the magnetic sensor and circuit section of one axis are connected, the magnetic sensor and circuit section of the other axes are not connected, and therefore the excitation signal is always input to only the excitation coil of one magnetic sensor. , mutual interference between each axis will no longer occur. Further, since the excitation signal at the time of connection switching is gradually reduced in amplitude and turned off, residual magnetism in the sensor core can be minimized.
(ホ)実施例
以下、実施例により、この発明をさらに詳細に説明する
。(E) Examples The present invention will be explained in more detail with reference to Examples below.
第1図は、この発明の一実施例を示す3軸フラツクスゲ
ート型の磁気検知器のブロック図である。この実施例磁
気検知器は、3軸用の磁気センサlx −l’v S
lzと、3軸用の回路部2X%27.2□と、マルチプ
レクサ3と、軸測定選別指示回路4とから構成されてい
る。磁気センサ1にはリング型の磁気センサであり、リ
ングコア11と励振コイル12と信号コイル13とフィ
ードバックコイル(補償コイル)14とから構成されて
おり、磁気センサIy、1□も磁気センサ1xと同型の
ものが使用されている。回路部2Xは、制御器21、ア
ンプ22からなる励振回路部23と、アンプ24、同期
整流器25、積分回路26からなる信号導出部27と、
アンプ28を含み、積分回路26の出力フィードバック
コイル14にフィードバックする回路29とから構成さ
れている。他の回路部2Y、2□も回路部2Xと同様の
構成である。FIG. 1 is a block diagram of a three-axis fluxgate type magnetic detector showing one embodiment of the present invention. This example magnetic sensor is a three-axis magnetic sensor lx -l'v S
1z, a three-axis circuit section 2X%27.2□, a multiplexer 3, and an axis measurement selection instruction circuit 4. The magnetic sensor 1 is a ring-type magnetic sensor, and is composed of a ring core 11, an excitation coil 12, a signal coil 13, and a feedback coil (compensation coil) 14, and the magnetic sensors Iy and 1□ are also of the same type as the magnetic sensor 1x. are used. The circuit section 2X includes an excitation circuit section 23 consisting of a controller 21 and an amplifier 22, a signal deriving section 27 consisting of an amplifier 24, a synchronous rectifier 25, and an integrating circuit 26.
It includes an amplifier 28 and a circuit 29 that feeds back to the output feedback coil 14 of the integrating circuit 26. The other circuit sections 2Y and 2□ also have the same configuration as the circuit section 2X.
マルチプレクサ3は、回路部2Xの励振回路部23より
の励振信号を励振コイル12に加え、信号コイル13の
検出信号を回路部28の信号導出部27に加え、またフ
ィードバック信号をフィードバックコイル14に加える
ためのスイッチ部3X、Y軸に関する同様のスイッチ部
37、Z軸に関する同様のスイッチ部3□を備えており
、軸測定選別指示回路4からの制御信号により、′スイ
ッチ部3x、3v、32が時分割的に繰り返し、順次O
Nされるようになっている。The multiplexer 3 applies an excitation signal from the excitation circuit section 23 of the circuit section 2X to the excitation coil 12, adds a detection signal of the signal coil 13 to the signal derivation section 27 of the circuit section 28, and adds a feedback signal to the feedback coil 14. , a similar switch section 37 for the Y-axis, and a similar switch section 3□ for the Z-axis. Repeat in time division, sequentially O
It is designed to be N.
回路部2.l、27.2□において、励振回路部23か
ら出力される励振信号は、第3図に示すようにONから
OFFへの切替時に振幅を徐々に低減するように構成さ
れている。また、制御器21の制御により積分回路26
の出力をOFF時にホールドしておき、回路部2X、2
v、2□のOFFからONへの切替時の応答性を良くす
るようにしている。Circuit section 2. 1, 27.2□, the excitation signal output from the excitation circuit unit 23 is configured to gradually reduce the amplitude when switching from ON to OFF, as shown in FIG. Also, under the control of the controller 21, the integrating circuit 26
The output of circuit section 2X, 2 is held when it is OFF.
v, 2□ is designed to improve responsiveness when switching from OFF to ON.
次に、上記実施例磁気検知器の動作を説明する。Next, the operation of the magnetic detector of the above embodiment will be explained.
動作が開始されると、軸測定選別指示回路4から軸選択
信号SX 、Sv 、Szが各回路部2X、27.2□
に時間順次に出力されるとともに、マルチプレクサ3に
軸選択信号Sll、SV、S、に同期信号Sが出力され
る。軸選択信号SXが回路部2.に加えられると、回路
部2にが動作状態になり、同時にマルチプレクサ3のス
イッチ部3.lがONされる。同様に軸選択信号S7が
回路部2vに加えられると回路部2Yが動作状態になり
、同時にマルチプレクサ3のスイッチ部37がONされ
る0次に軸選択信号S2が回路部2□に加えられると回
路部2zが動作状態になり、同時にスイッチ部3□′が
ONされる。以後軸選択信号SX、Sv、Szが時間順
次に繰り返し出力される毎に上記動作が繰り返される。When the operation starts, axis selection signals SX, Sv, Sz are sent from the axis measurement selection instruction circuit 4 to each circuit section 2X, 27.2□
The axis selection signals Sll, SV, S, and the synchronizing signal S are outputted to the multiplexer 3 in time sequential order. The axis selection signal SX is sent to the circuit section 2. , the circuit section 2 becomes operational, and at the same time the switch section 3. of the multiplexer 3 becomes active. l is turned on. Similarly, when the axis selection signal S7 is applied to the circuit section 2v, the circuit section 2Y becomes operational, and at the same time, the switch section 37 of the multiplexer 3 is turned on.When the axis selection signal S2 is applied to the circuit section 2□ The circuit section 2z becomes operational, and at the same time, the switch section 3□' is turned on. Thereafter, the above operation is repeated every time the axis selection signals SX, Sv, and Sz are repeatedly output in time sequence.
軸選択信号S、、SY、S2の周波数は測定対象周波数
成分よりも高く設定されている。The frequencies of the axis selection signals S, SY, and S2 are set higher than the frequency component to be measured.
回路部2xが動作状態に入ると、その励振回路部23よ
り第3図に示す励振信号が出力され、励振コイル12に
与えられる。今、外部より磁気センサ1×に磁界Hが与
えられていると、これに応じ信号コイル13より検出信
号が得られ、スイッチ部3X%アンプ24、同期整流回
路25、積分回路26を経て、出力H,が導出される。When the circuit section 2x enters the operating state, an excitation signal shown in FIG. 3 is outputted from the excitation circuit section 23 and applied to the excitation coil 12. Now, when a magnetic field H is applied to the magnetic sensor 1x from the outside, a detection signal is obtained from the signal coil 13 in response to this, and is output via the switch section 3x% amplifier 24, synchronous rectifier circuit 25, and integration circuit 26. H, is derived.
なお、フィードバック回路29にオフセット信号が与え
られ、背景磁界、たとえば地磁気などのベース分を与え
、これを打消補償する。Note that an offset signal is applied to the feedback circuit 29, and a background magnetic field, such as the base component of earth's magnetism, is applied to cancel and compensate for this.
励振信号はONからOFFへの切替時に振幅が徐々に小
さく減らされているので磁気センサIXの商運確率のコ
ア11の残留磁気を最小にしてOFF状態となる。Since the amplitude of the excitation signal is gradually reduced when switching from ON to OFF, the residual magnetism of the core 11 of the magnetic sensor IX is minimized and the OFF state is reached.
また、回路部2Xは、数サイクル以下の非常に低い周波
数の磁気測定に使用するもので回路部に大きな時定数を
持つ積分回路26をもってクローブドループを形成して
いる。そのため、磁気センサI x側がOFF状態にな
ったとき、この積分回路26のため動作範囲外にあって
、OFFからON状態に要求されても、すぐ応答できな
い、したがってこの実施例で制御器21の中に積分をホ
ールドする回路を設け、OFFからONになると即応等
可能な、つまり高速応答可能な状態となる。Further, the circuit section 2X is used for magnetic measurement at a very low frequency of several cycles or less, and includes an integrating circuit 26 having a large time constant to form a cloved loop. Therefore, when the magnetic sensor Ix side becomes OFF, it is out of the operating range due to this integrating circuit 26, and cannot respond immediately even if it is requested to change from OFF to ON. Therefore, in this embodiment, the controller 21 A circuit is provided inside to hold the integral, and when it is turned from OFF to ON, it becomes possible to respond immediately, that is, to enable high-speed response.
また、他の回路部2V、2□も回路部2Xと全く同様に
動作する。Further, the other circuit sections 2V and 2□ operate in exactly the same manner as the circuit section 2X.
なお、上記実施例で磁気センサlx、lv、lzはリン
グ型の磁気センサを用いた場合を示しているが、磁気セ
ンサとしては、例えば第2図に示す各軸2個の軸型フラ
ックスゲートセンサXAsX1s YaSYs、Za、
Zsからなる軸型磁気センサを用いてもよい。In the above embodiment, the magnetic sensors lx, lv, and lz are ring-type magnetic sensors, but the magnetic sensors may be, for example, two shaft-type flux gate sensors on each axis as shown in FIG. XAsX1s YaSYs, Za,
An axial magnetic sensor made of Zs may also be used.
(へ)発明の効果
この発明によれば、各磁気の磁気センサ及び回路部を時
分割的に動作させ、ある軸が磁気測定中のタイミングに
は、他の軸は動作状態としないので、互い1に他軸の干
渉を受けることなく、高感度に測定できる。また励振信
号をONからOFFへの切替時に振幅を徐々に低減して
いるので、各磁気センサのコアの残留磁気量を最小化で
きるという利点がある。(F) Effects of the Invention According to this invention, the magnetic sensors and circuit sections for each magnetic field are operated in a time-sharing manner, and when one axis is measuring magnetism, other axes are not in an operating state, so that they can be mutually connected. 1. Highly sensitive measurement is possible without interference from other axes. Furthermore, since the amplitude is gradually reduced when switching the excitation signal from ON to OFF, there is an advantage that the amount of residual magnetism in the core of each magnetic sensor can be minimized.
第1図は\この発明の一実施例を示す多軸磁気検出器の
ブロック図、第2図は、同多軸磁気検出器に使用される
他の磁気センサ例を示す図、第3図は、同多軸磁気検知
器の励振信号を示す波形図である。
lx ’IY ’1K ?磁気センサ、2X ・
27 ・2.:回路部、
3:マルチプレクサ、
4:軸測定選択指示回路、11:コア、12:励振コイ
ル、 13:信号コイル、14:フィードバック
コイル・
23:励振回路部、 27:信号導出部。Figure 1 is a block diagram of a multi-axis magnetic detector showing one embodiment of the present invention, Figure 2 is a diagram showing another example of a magnetic sensor used in the same multi-axis magnetic detector, and Figure 3 is a block diagram of a multi-axis magnetic detector showing an embodiment of the present invention. , is a waveform diagram showing an excitation signal of the same multi-axis magnetic detector. lx 'IY '1K? Magnetic sensor, 2X ・
27 ・2. : circuit section, 3: multiplexer, 4: axis measurement selection instruction circuit, 11: core, 12: excitation coil, 13: signal coil, 14: feedback coil, 23: excitation circuit section, 27: signal derivation section.
Claims (1)
備え、互いに直交配置される複数の磁気センサと、それ
ぞれにこれら磁気センサの励振コイルを駆動する励振回
路部、信号コイルが磁気信号を導出する信号導出部を含
む複数の回路部とからなる多軸磁気検知器において、 前記磁気センサと回路部との接続を時分割的に切り替え
る接続切替回路を備えるとともに、前記各励振回路部か
らの励振信号の振幅を徐々に低減してOFFさせること
を特徴とする多軸磁気検知器。(1) A plurality of magnetic sensors each having an excitation coil, a signal coil, and a compensation coil arranged orthogonally to each other, an excitation circuit section that drives the excitation coils of these magnetic sensors, and a signal coil that derives a magnetic signal. A multi-axis magnetic sensor comprising a plurality of circuit sections including a signal deriving section, further comprising a connection switching circuit for time-divisionally switching connections between the magnetic sensor and the circuit sections, and an excitation signal from each excitation circuit section. A multi-axis magnetic detector characterized by gradually reducing the amplitude of the magnetic field and turning it off.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17067989A JPH0335179A (en) | 1989-06-30 | 1989-06-30 | Multi-axial magnetic detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17067989A JPH0335179A (en) | 1989-06-30 | 1989-06-30 | Multi-axial magnetic detector |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0335179A true JPH0335179A (en) | 1991-02-15 |
Family
ID=15909385
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17067989A Pending JPH0335179A (en) | 1989-06-30 | 1989-06-30 | Multi-axial magnetic detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0335179A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07181002A (en) * | 1991-08-14 | 1995-07-18 | Elmeg Elektro Mechanik Gmbh | Dielectric measuring method of position of metallic strip and device thereof |
-
1989
- 1989-06-30 JP JP17067989A patent/JPH0335179A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07181002A (en) * | 1991-08-14 | 1995-07-18 | Elmeg Elektro Mechanik Gmbh | Dielectric measuring method of position of metallic strip and device thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101092490B1 (en) | Magnetic flux fixing circuit, magnetic flux fixing method, and SV measuring device | |
EP0380562B1 (en) | Magnetometer employing a saturable core inductor | |
JP5535467B2 (en) | Phase correction type active magnetic shield device | |
JP2829375B2 (en) | Weak magnetic field measuring device and measuring method | |
US5952734A (en) | Apparatus and method for magnetic systems | |
US7391210B2 (en) | Integrated fluxgate-induction sensor | |
JPH04268472A (en) | Highly sensitive device for detecting magnetic field | |
US4972146A (en) | Saturble core device with DC component elimination for measuring an external magnetic field | |
JPH0335179A (en) | Multi-axial magnetic detector | |
JPH05232202A (en) | Software Gladiometer | |
JPS5925726A (en) | Diagnostic observation apparatus | |
JPH06174471A (en) | Electronic compass | |
SU832502A1 (en) | Method of device measuring magnetic field | |
JPH09292451A (en) | Fluxgate-type magnetism detector and position detector | |
RU2091806C1 (en) | Gradiometer | |
JP3291858B2 (en) | Magnetic detector | |
JPS62242318A (en) | Demagnetizing device for structure | |
SU920594A1 (en) | Digital ferro-probe magnetometer | |
RU2124736C1 (en) | Magnetometer (variants) | |
JP2503390B2 (en) | Skid magnetometer | |
RU1279376C (en) | Device for determination of coordinates and magnetic moment of dipole source of magnetic | |
SU789949A1 (en) | Gradientometer | |
SU769469A1 (en) | Device for magnetic field gradient measuring device | |
RU2152002C1 (en) | Device for remote determination of position of object ( versions ) | |
RU1830493C (en) | Way of determination of magnetic induction vector component |