JPH0335032B2 - - Google Patents
Info
- Publication number
- JPH0335032B2 JPH0335032B2 JP20694482A JP20694482A JPH0335032B2 JP H0335032 B2 JPH0335032 B2 JP H0335032B2 JP 20694482 A JP20694482 A JP 20694482A JP 20694482 A JP20694482 A JP 20694482A JP H0335032 B2 JPH0335032 B2 JP H0335032B2
- Authority
- JP
- Japan
- Prior art keywords
- flux
- overlay
- welding
- mgo
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/36—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
- B23K35/3601—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
- B23K35/3603—Halide salts
- B23K35/3605—Fluorides
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Nonmetallic Welding Materials (AREA)
Description
本発明はステンレス鋼帯状電極を用いた水平エ
レクトロスラグ肉盛溶接用フラツクスに関するも
のである。
従来から帯状電極肉盛溶接法は、極厚鋼板を用
いた圧力容器の内面を耐食材料であるステンレス
鋼等でオーバレイするために用いられてきた。帯
状電極肉盛溶接法には、アークで電極を溶かす潜
弧溶接方式とジユール熱で電極を溶かす水平エレ
クトスラグ方式とがあるが、ビード重ねのなじみ
がよいことや磁気の影響を受けにくく広幅電極が
使用でき高能率である等の理由から水平エレクト
ロスラグ方式が最近多く用いられるようになつて
きた。
水平エレクトロスラグ肉盛溶接法はフラツクス
に特長があり、その水平エレクトロスラグ肉盛溶
接用のフラツクスは、溶融スラグでの電気伝導度
を高めアークが生じないように工夫されており、
成分的には電気伝導性のよいCaF2やTiO2を多量
に含有しており、また溶融スラグの流動性を調整
するためSiO2、ZrO2などを添加したり、フラツ
クスの溶融点の調整にCaO、MgO、Al2O3などを
添加したりしてある。CaF2を50%以上含有した
フラツクスでは比較的容易に水平エレクトロスラ
グ方式になりやすいが溶接中にSiF4ガスなどの刺
激のある悪臭を生ずる。このようなことから、
CaF2を減じTiO2を増加したフラツクスがある。
この従来の圧力容器のオーバレイ用のフラツク
スを、軟鋼スラブ表面に肉盛して圧延する、いわ
ゆる肉盛圧延クラツド鋼に適用するために実験し
たところ、圧延条件しだいでは肉盛金属の酸素含
有量に起因するクラツド表面にへげ状疵が生じる
ことがあることが判明した。
この疵表面の原因につき調査した結果TiO2は
スラグの塩基度を酸性にし肉盛金属の酸素量を増
加させ、そして特に肉盛金属のビード表面に極く
近い層に微細なチタン酸化物を析出させ、肉盛圧
延クラツド鋼の加熱条件あるいは圧加率によつて
は圧延したクラツド鋼板の表面にへげ状疵を発生
させることが分かつた。
本発明は、上記のへげ状疵を生じないで水平エ
レクトロスラグ肉盛溶接法を肉盛圧延クラツド鋼
へ適用できる肉盛用のフラツクスを提供すること
を目的とする。
而して、本発明の要旨とするところはCaF241
〜49%、Al2O34〜9%、MgO15〜30%、CaO10
〜20%で、かつMgO+CaO25〜40%を含有し、
酸性酸化物であるSiO2、TiO2、ZrO2の和が20%
以下で、かつ、PbOが0.1%以下に制限したこと
を特徴とした水平エレクトロスラグ肉盛溶接用フ
ラツクスである。
以下、本発明について詳細に説明する。
先ず、フラツクスの化学成分範囲について述べ
る。
CaF2は電気伝導度が高く、比較的適当な溶融
点(1418℃)を有しているところから、エレクト
ロスラグ溶接に必須の成分である。そして、スラ
ツクス中のCaF2が50%以上になると容易に水平
エレクトロスラグ溶接を行うだけの電気伝導度が
得られる。しかし、一方では弗化物ガスを発生さ
せ悪臭を生じ作業循環を悪化させるので、CaF2
の上限を49%に抑え、代りにCaO、MgOなどを
添加してCaF250%以上に匹敵する電気伝導度を
確保し、かつ溶接中の悪臭を防止することができ
た。またCaFを減少して、代りにCaO、MgOを
増加していくにつれフラツクスの溶融点が上昇
し、溶接中溶融スラグの厚さが薄くなりCaF2が
41%未満では溶接に不都合が生じることが分つ
た。したがつて、CaF2は少なくとも41%以上は
必要であるところからCaF2の範囲を41〜49%に
限定した。
Al2O3はフラツクスの溶融点を高め、溶接中に
溶融するフラツクスの量を抑え電気エネルギーが
必要以上にフラツクスの溶融に費やされることな
く、適度に電極の溶融速度を上げることができ
る。また、ビード形状を整えスラグの剥離性を改
善する性質があるが、4%未満ではその効果が少
なく、また、Al2O3は電気伝導度を低下させる成
分であり10%以上ではアークが発生し、添加量の
増加とともにその傾向が大となるので、Al2O3の
添加量は4〜9%に限定した。
MgOは、フラツクスの溶融点及び溶融スラグ
の電気伝導度を高め、スラグの剥離性を改善し、
塩基度を向上させて肉盛金属の酸素量を低減させ
る極めて重要な成分である。即ちフラツクスの溶
融量を抑えて、かつ、水平エレクトロスラグの維
持に必要な電気伝導度を与え、肉盛金属の酸素量
の低下による圧延性改善に対して寄与するところ
が大きい。しかし、MgOは高融点(2800℃)の
酸化物であるため、添加量の増加にともないフラ
ツクスの溶融点が高まり、溶融スラグの深さが浅
くなるため溶接条件範囲が狭くなる。前記の
MgOの効果が有効に出てくるのは15%以上で、
30%超になるとフラツクスの溶融点が高くなり過
ぎるのでMgOの範囲を15〜30%に限定した。
CaOはMgOと同様に電気伝導度及び塩基度を
高める。しかし、多量の添加はスラグ剥離性を害
するばかりでなく、フラツクスの溶融点を高め過
ぎ溶接作業性を劣化させる。CaOの効果が現われ
るのは10%以上であり、20%超では溶接作業性を
劣化させるので、CaOの範囲は10〜20%に限定し
た。
しかし、MgOの添加量と重なつてCaO量が20
%以下であつてもMgO+CaOが40%超になると
フラツクスの溶融点が高過ぎ溶接作業性を劣化さ
せる。一方、MgO+CaOが25%未満であれば、
酸性酸化物である後記SiO2、TiO2、ZrO2の和が
多い場合、塩基度が上がらず、目的とする肉盛金
属の酸化量低減が不十分となる。したがつて、
MgO+CaOが25〜40%と限定した。
SiO2、TiO2、ZrO2などは溶接作業性を改善す
る成分として知られている。SiO2及びZrO2はビ
ード止端部を揃えビードの蛇行防止に役立つ。し
かし、SiO2あるいはZrO2が20%超となるとスラ
グがビード表面に焼き付きスラグ剥離性を悪くす
る。TiO2は電気伝導度を高めたり、ビード形状
を整えるのには都合のよい成分で多量に用いてそ
の効果を発揮するので、従来のフラツクスには多
量に加えられているが、20%超のような多量の
TiO2を含有したフラツクスは肉盛金属の表層部
に微細なチタン酸化物の介在物を折出させるので
肉盛圧延クラツド鋼板製造としては適当ではな
い。このようにSiO2、TiO2、ZrO2が単独で20%
超となつても不都合が生じるが、さらにSiO2、
TiO2、ZrO2の和が20%超となると十分な塩基度
が得られず、肉盛金属の酸素量を高める原因とな
り圧延性を劣化させることが実験により知られ
た。即ち、CaF2に若干のAl2O3を添加し、MgO
+CaOをほぼ27%に一定にしてSiO2+TiO2+
ZrO2の量を種々変えたフラツクスを作り、
SUS304(厚さ0.4mm×幅100mm)のステンレス帯鋼
を電極として軟鋼板上に水平エレクトロスラグ溶
接を行つて調べたところ第1図のようにSiO2、
TiO2、ZrO2の和が20%を超えると肉盛金属の酸
素を0.015%以下に抑えることがむづかしくなる。
尚、圧延性の良好な肉盛金属の酸素量は、0.015
%以下である。したがつて、SiO2、TiO2、ZrO2
の和は20%以下に限定した。
また、不純物として圧延性を劣化さす成分とし
てP、S、Pbがあるが、通常の電極材とフラツ
クスではP、Sの肉盛金属の含有量はP0.035
%、S0.015%であり故意に添加しない限り実
害の生じる量には達しない。ところで、Pbある
いはPbOは特開昭49−9443などでも知られるよう
にフラツクス中に添加してやるとスラグの剥離性
を著しく改善する元素である。しかし、圧延性の
点は肉盛金属中のPbが0.005%以上になると高温
(1100℃前後)での引張試験の絞り値を大幅に低
下させるところPbOの使用には制限を設ける必要
がある。したがつて、PbOは0.1%以下に抑える
必要がある。
フラツクス中に、Crの歩留を向上さす目的で
溶融型フラツクスではCr2O3を若干添加したり、
ボンドフラツクスではFe−Cr又は金属Cr粉やFe
−Si、Fe−Mn、Fe−Alなどを若干添加すること
ができる。本発明のフラツクスにおいても、この
ような添加は何等差しつかえない。
フラツクスの粒度分布はフラツクスホツパーか
らのフラツクスの流れや、フラツクスの取り扱い
の際粉塵問題、溶接中におけるフラツクスの溶け
やすさ、溶融プールの堰としての役目など重要な
役割をするが、通常2380μmから74μmの間に粒
度が入つていればよい。
以下に本発明の効果を実施例によつて更に具体
的に示す。
実施例
母材は第1表に示す鋼板を使用した。第2表に
はステンレス鋼帯状電極を示す。第3表に実施
例、比較例に使用したフラツクスを一括して示
す。なお、フラツクスは溶解炉にて溶融したメル
トフラツクスを用いた。溶接条件を第4表に、そ
して溶接の結果を第5表に示す。化学分析はビー
ド表面より約2mmの部分から採取した試料で行つ
た。
第5表の溶接結果から明らかなように比較例と
して示したフラツクスはスラグ剥離、ビード形状
不良、止端不揃い、アークの発生、の何れかの欠
点が見られ、肉盛圧延クラツド鋼用フラツクスと
しては不都合なものであつた。一方本発明のフラ
ツクスを用いた例では、いずれも平滑で外観の美
しいビードが得られ、かつ、酸素量の低い圧延性
の良好な肉盛金属が得られている。
以上詳細に説明したように本発明フラツクスに
よれば、ステンレス鋼帯状電極を用いた水平エレ
クトロスラグ肉盛溶接用フラツクスとして良好な
溶接作業性を示しかつ、低酸素の優れた肉盛金属
が得られる。
The present invention relates to a flux for horizontal electroslag overlay welding using a stainless steel strip electrode. Conventionally, the strip electrode build-up welding method has been used to overlay the inner surface of a pressure vessel made of extremely thick steel plate with a corrosion-resistant material such as stainless steel. Band electrode overlay welding methods include the submerged arc welding method, in which the electrode is melted with an arc, and the horizontal elect-slag method, in which the electrode is melted by Joule heat. The horizontal electroslag method has recently come into widespread use due to its high efficiency. The horizontal electroslag overlay welding method is characterized by flux, and the flux for horizontal electroslag overlay welding is designed to increase electrical conductivity in the molten slag and prevent arcing.
In terms of components, it contains large amounts of CaF 2 and TiO 2 , which have good electrical conductivity, and SiO 2 , ZrO 2 , etc. are added to adjust the fluidity of molten slag, and it is used to adjust the melting point of flux. CaO, MgO, Al 2 O 3 , etc. are added. Fluxes containing 50% or more of CaF 2 are relatively easy to use in the horizontal electroslag method, but produce a pungent odor such as SiF 4 gas during welding. From such a thing,
There is a flux with reduced CaF 2 and increased TiO 2 . When we conducted an experiment to apply this conventional flux for overlay of pressure vessels to so-called overlay rolled clad steel, which is overlaid on the surface of a mild steel slab and rolled, we found that depending on the rolling conditions, the oxygen content of the overlay metal It has been found that cracks may occur on the surface of the cladding. Investigation into the cause of this surface flaw revealed that TiO 2 makes the basicity of the slag acidic, increases the amount of oxygen in the overlay metal, and precipitates fine titanium oxides, especially in a layer very close to the bead surface of the overlay metal. It was found that depending on the heating conditions or pressing rate of the overlay-rolled clad steel, sludge-like flaws were generated on the surface of the rolled clad steel sheet. SUMMARY OF THE INVENTION An object of the present invention is to provide a flux for overlay that allows the horizontal electroslag overlay welding method to be applied to overlay rolled clad steel without producing the above-mentioned flaws. Therefore, the gist of the present invention is that CaF 2 41
~49%, Al2O3 4~9%, MgO15~ 30 %, CaO10
~20% and contains MgO + CaO25~40%,
The sum of acidic oxides SiO 2 , TiO 2 and ZrO 2 is 20%
This flux is for horizontal electroslag overlay welding, and is characterized in that the PbO content is limited to 0.1% or less. The present invention will be explained in detail below. First, the chemical composition range of flux will be described. CaF 2 is an essential component for electroslag welding because it has high electrical conductivity and a relatively appropriate melting point (1418°C). When the CaF 2 content in the slacks is 50% or more, the electrical conductivity can be easily obtained to perform horizontal electroslag welding. However, on the other hand, CaF 2
By suppressing the upper limit of CaF 2 to 49% and adding CaO, MgO, etc. instead, we were able to secure electrical conductivity comparable to 50% or more of CaF 2 and prevent bad odors during welding. Also, as CaF is decreased and CaO and MgO are increased, the melting point of the flux increases, and the thickness of the molten slag during welding becomes thinner, causing CaF2 to increase.
It was found that if it was less than 41%, problems would occur in welding. Therefore, since CaF 2 is required to be at least 41%, the range of CaF 2 was limited to 41-49%. Al 2 O 3 increases the melting point of the flux, suppresses the amount of flux melted during welding, and can moderately increase the melting rate of the electrode without wasting electrical energy more than necessary to melt the flux. In addition, Al 2 O 3 has the property of adjusting the bead shape and improving the peelability of slag, but if it is less than 4%, this effect is small, and Al 2 O 3 is a component that reduces electrical conductivity, and if it is more than 10%, arcing occurs. However, since this tendency increases as the amount added increases, the amount of Al 2 O 3 added was limited to 4 to 9%. MgO increases the melting point of flux and the electrical conductivity of molten slag, improves the peelability of slag,
It is an extremely important component that improves basicity and reduces the amount of oxygen in overlay metal. That is, it suppresses the amount of melted flux, provides the electrical conductivity necessary to maintain horizontal electroslag, and greatly contributes to improving rolling properties due to a reduction in the amount of oxygen in the overlay metal. However, since MgO is an oxide with a high melting point (2800°C), as the amount added increases, the melting point of the flux increases and the depth of the molten slag becomes shallow, narrowing the range of welding conditions. the above
The effect of MgO becomes effective at 15% or more.
If it exceeds 30%, the melting point of the flux becomes too high, so the range of MgO was limited to 15 to 30%. CaO increases electrical conductivity and basicity similarly to MgO. However, addition of a large amount not only impairs slag removability but also raises the melting point of the flux too much and deteriorates welding workability. The effect of CaO appears at 10% or more, and since over 20% deteriorates welding workability, the range of CaO was limited to 10 to 20%. However, the amount of CaO overlaps with the amount of MgO added, and the amount of CaO is 20
% or less, if MgO+CaO exceeds 40%, the melting point of the flux will be too high and will deteriorate welding workability. On the other hand, if MgO + CaO is less than 25%,
If the sum of SiO 2 , TiO 2 , and ZrO 2 described below, which are acidic oxides, is large, the basicity does not increase, and the desired reduction in the amount of oxidation of the overlay metal becomes insufficient. Therefore,
MgO + CaO was limited to 25-40%. SiO 2 , TiO 2 , ZrO 2 and the like are known as components that improve welding workability. SiO 2 and ZrO 2 help to align the bead toe and prevent the bead from meandering. However, when SiO 2 or ZrO 2 exceeds 20%, slag is baked onto the bead surface and the slag removability becomes poor. TiO 2 is a convenient component for increasing electrical conductivity and adjusting bead shape, and its effects are achieved when used in large amounts. such a large amount
Fluxes containing TiO 2 are not suitable for producing overlay-rolled clad steel sheets because they cause fine titanium oxide inclusions to be precipitated in the surface layer of overlay metal. In this way, SiO 2 , TiO 2 , and ZrO 2 alone account for 20%
Although there are inconveniences even if it becomes super SiO 2 ,
It has been found through experiments that when the sum of TiO 2 and ZrO 2 exceeds 20%, sufficient basicity cannot be obtained, which causes an increase in the amount of oxygen in the overlay metal and deteriorates rolling properties. That is, some Al 2 O 3 is added to CaF 2 , and MgO
+SiO 2 +TiO 2 + with CaO constant at approximately 27%
We created fluxes with various amounts of ZrO 2 ,
When horizontal electroslag welding was performed on a mild steel plate using SUS304 (thickness 0.4 mm x width 100 mm) stainless steel strip as an electrode, SiO 2 ,
If the sum of TiO 2 and ZrO 2 exceeds 20%, it becomes difficult to suppress oxygen in the overlay metal to 0.015% or less.
In addition, the oxygen content of overlay metal with good rollability is 0.015
% or less. Therefore, SiO 2 , TiO 2 , ZrO 2
The sum was limited to 20% or less. In addition, there are P, S, and Pb as impurities that deteriorate rolling properties, but in normal electrode materials and flux, the content of P and S in the overlay metal is P0.035.
%, S0.015%, and unless added intentionally, it will not reach the amount that would cause actual damage. By the way, as is known from Japanese Patent Application Laid-open No. 49-9443, Pb or PbO is an element that significantly improves the releasability of slag when added to flux. However, in terms of rollability, if Pb in the overlay metal exceeds 0.005%, the reduction of area in a tensile test at high temperatures (around 1100°C) will decrease significantly, so it is necessary to place restrictions on the use of PbO. Therefore, it is necessary to suppress PbO to 0.1% or less. In order to improve the yield of Cr, a small amount of Cr 2 O 3 is added to the molten flux, or
For bond flux, Fe-Cr or metal Cr powder or Fe
-Si, Fe-Mn, Fe-Al, etc. can be added to some extent. There is no problem with such addition in the flux of the present invention. The particle size distribution of flux plays an important role, such as the flow of flux from the flux hopper, the problem of dust when handling flux, the ease with which flux melts during welding, and its role as a weir for the molten pool. It is sufficient that the particle size is between 74μm and 74μm. The effects of the present invention will be illustrated in more detail below using Examples. Example A steel plate shown in Table 1 was used as the base material. Table 2 shows stainless steel strip electrodes. Table 3 lists the fluxes used in the Examples and Comparative Examples. Note that the flux used was melt flux melted in a melting furnace. The welding conditions are shown in Table 4, and the welding results are shown in Table 5. Chemical analysis was performed on samples taken from a portion approximately 2 mm below the bead surface. As is clear from the welding results in Table 5, the flux shown as a comparative example had some defects such as slag separation, poor bead shape, uneven toe, and arc generation, and was not suitable for use as a flux for overlay-rolled clad steel. was inconvenient. On the other hand, in all the examples using the flux of the present invention, smooth beads with a beautiful appearance were obtained, and overlay metals with a low oxygen content and good rollability were obtained. As explained in detail above, the flux of the present invention exhibits good welding workability as a flux for horizontal electroslag overlay welding using a stainless steel strip electrode, and provides an excellent overlay metal with low oxygen content. .
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】
※ ◎:特に良い、○:良い、△:やゝ良い、×:
悪い
エレスラ(エレクトロスラグの略)
[Table] * ◎: Particularly good, ○: Good, △: Fairly good, ×:
Bad Elesura (abbreviation of Electroslag)
第1図はフラツクス中SiO2+TiO2+ZrO2含有
量と肉盛金属酸素量との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the SiO 2 +TiO 2 +ZrO 2 content in the flux and the amount of overlay metal oxygen.
Claims (1)
MgO15〜30%、CaO10〜20%で、かつMgO+
CaO25〜40%、酸性酸化物であるSiO2、TiO2、
ZrO2の和が20%以下、PbOを0.1%以下含有する
ことを特徴とする水平エレクトロスラグ肉盛溶接
用フラツクス。1 CaF 2 41-49%, Al 2 O 3 4-9% by weight,
MgO15-30%, CaO10-20%, and MgO+
CaO25-40%, acidic oxides SiO2 , TiO2 ,
A flux for horizontal electroslag overlay welding characterized by containing a sum of ZrO 2 of 20% or less and PbO of 0.1% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20694482A JPS5997793A (en) | 1982-11-26 | 1982-11-26 | Flux for horizontal electroslag build-up welding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20694482A JPS5997793A (en) | 1982-11-26 | 1982-11-26 | Flux for horizontal electroslag build-up welding |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5997793A JPS5997793A (en) | 1984-06-05 |
JPH0335032B2 true JPH0335032B2 (en) | 1991-05-24 |
Family
ID=16531616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20694482A Granted JPS5997793A (en) | 1982-11-26 | 1982-11-26 | Flux for horizontal electroslag build-up welding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5997793A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2883888B1 (en) * | 2005-03-29 | 2007-06-15 | Air Liquide | HIGH PRODUCTIVITY FLOW FOR ELECTROSLAG PLATING |
CN104759787A (en) * | 2015-03-25 | 2015-07-08 | 洛阳双瑞特种合金材料有限公司 | Sintered flux for nickel-based strip electrode electroslag surfacing and manufacturing method of sintered flux |
CN111394591B (en) * | 2020-04-16 | 2022-03-15 | 江苏星火特钢集团有限公司 | Slag system for electroslag remelting high-temperature alloy and use method |
-
1982
- 1982-11-26 JP JP20694482A patent/JPS5997793A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5997793A (en) | 1984-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108723636B (en) | Welding wire powder with low crack sensitivity, flux-cored wire, preparation and application | |
CN108453415B (en) | Welding wire powder, stainless steel flux-cored wire, and preparation method and application thereof | |
JP2000107885A (en) | Bond flux for submerged arc welding | |
US4338142A (en) | Melting flux composition for submerged arc welding | |
JPS5913955B2 (en) | Composite wire for stainless steel welding | |
JPH0335032B2 (en) | ||
JP4297880B2 (en) | Bond flux for submerged arc welding | |
JPH10291092A (en) | Flux-cored wire for gas shielded arc welding | |
JP2857329B2 (en) | Gas shielded arc welding method | |
JPH06200353A (en) | Austenitic stainless steel with excellent hot workability | |
JPS6261792A (en) | Method of welding silicon steel strip using YAG laser | |
JP2007136516A (en) | Bonded flux for submerged arc welding | |
WO2006126519A1 (en) | Fused flux for submerged arc welding | |
JPS6313695A (en) | Flux cored wire for welding stainless steel | |
JPS6313798B2 (en) | ||
JPH0994694A (en) | Flux cored wire for stainless steel | |
JPS5841694A (en) | Calcined flux for submerged arc welding | |
JP3836071B2 (en) | Single electrode single-sided submerged arc welding method | |
JPS60111793A (en) | Flux for electroslag build-up welding using belt-like electrode | |
JP4040765B2 (en) | Flux-cored wire for gas shielded arc welding | |
JP3476116B2 (en) | Covered arc welding rod for stainless steel welding | |
JPH082513B2 (en) | High heat input submerged arc welding firing type flux | |
JP2023176305A (en) | Ingot production method | |
JP3177638B2 (en) | Flux for submerged arc welding | |
JPS5910496A (en) | Fused flux for high speed submerged arc welding |