[go: up one dir, main page]

JPH0334394B2 - - Google Patents

Info

Publication number
JPH0334394B2
JPH0334394B2 JP8922585A JP8922585A JPH0334394B2 JP H0334394 B2 JPH0334394 B2 JP H0334394B2 JP 8922585 A JP8922585 A JP 8922585A JP 8922585 A JP8922585 A JP 8922585A JP H0334394 B2 JPH0334394 B2 JP H0334394B2
Authority
JP
Japan
Prior art keywords
heavy metal
metal ion
water
magnesium
removal device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8922585A
Other languages
Japanese (ja)
Other versions
JPS61245885A (en
Inventor
Kunihiro Tsuruta
Ikuo Kobayashi
Mitsuyo Nomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8922585A priority Critical patent/JPS61245885A/en
Publication of JPS61245885A publication Critical patent/JPS61245885A/en
Publication of JPH0334394B2 publication Critical patent/JPH0334394B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Water Treatment By Sorption (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、銅や亜鉛メツキ鋼を用いた給水給場
配管や、銅熱交換器を有する給水給湯機器に使用
する重金属イオン除去装置に関するものである。 従来の技術 従来、給水給湯管として銅や亜鉛メツキ鋼、給
水給湯機器の熱交換器として銅管が用いられてい
るが、PHの低い水質地区でこれを用いると銅イオ
ンや亜鉛イオン(最終的には鉄イオン)の溶出に
よるトラブルが時析発生していた。すなわち、銅
管における青水や亜鉛メツキ鋼管における赤水で
ある。青水は溶出した銅イオンとセツケンや汗、
垢の脂肪酸とが反応して生成した青色不溶性化合
物(脂肪酸銅)を原因とするタオルおよび浴槽の
青着色であり、赤水は亜鉛メツキ層消失による赤
さび発生を原因とする水の赤着色である。 これらの水質生障害を抑制する装置として、従
来第7図に示す装置が用いられている。この装置
は、液状の防錆剤(りん酸塩もしくはけい酸塩)
をポンプにより給水量に応じて注入するものであ
り、配管1に弁2および流量計3を取り付け、給
水の流量を流量計3で感知しその流量に比例して
液体の防錆剤を薬液タンク4よりポンプ5にて弁
2から配管1に添加する制御機構を付属させてい
る。 発明が解決しようとする問題点 しかしながら、上記のような構成では、(1)給水
流量に応じて液体防錆剤の添加量を調整する制御
機構が必要であるため、高価格であり取扱いやメ
ンテが煩雑である。(2)液体の防錆剤を使用してい
るため冬場の凍結に対して弱く防錆剤の抜き取り
が必要である等の問題点を有していた。 本発明はかかる従来の問題を解決するものであ
り、(1)制御機構が不要(2)取扱いやメンテが簡単(3)
凍結に強い(4)低コストの重金属イオン除去装置を
提供することを目的とする。 問題点を解決するための手段 上記問題点を解決するために本発明の重金属イ
オン除去装置は、開閉自在の排水口を有する容器
の内壁面に、下方と上方に隙間を設けて仕切板を
取り付けて処理槽を形成し、この処理槽に下記の
()()の群より選択した少なくとも一種の固
形重金属イオン吸着剤を格納するとともに、処理
槽に流入した水が前記仕切板の下方より前記固形
重金属イオン吸着剤を経由して溢れる水流動路と
した。 () マグネシウムもしくはマグネシウム合金。 () カリウム、ナトリウム、マグネシウム、カ
ルシウムの群より選択した少なくとも一種の元
素の珪酸塩を含有する化合物。 作 用 本発明は上記の構成にすることによつて、この
重金属イオン除去装置は制御機構が不要となり取
り扱いやメンテが容易となる。また、排水口を開
くことによつて容器内の水が流動し凍結に強くな
る。一方、仕切板の上方の隙間がバイパス流路と
して活用できるため、固形重金属イオン吸着剤を
経由する水流動路が閉塞した場合でも目詰りが生
じない。また、固形重金属イオン吸着剤も溶解度
を小さい物質であるため寿命も長い。 この重金属イオン吸着剤は、マグネシウムもし
くはマグネシウム合金はイオン化傾向のちがいよ
り重金属イオンがマグネシウム表面に重金属とし
て析出して吸着除去し、K、Na、Mg、Caの珪
酸塩はK+、Na+、Mg2+、Ca2+が溶出しかわりに
重金属イオンが吸着かされるイオン交換作用にて
除去する作用である。 実施例 以下、本発明の実施例を添付図面にもとづいて
説明する。第1図は本発明の一実施例である重金
属イオン除去装置の断面図、第2図は第1図にお
けるAA′線断面図である。重金属イオン除去装置
は箱体6と蓋体7とから成り、箱体6は流入口8
と流出口9と開閉自在の排出口10とを有する。
この箱体6の内壁面に仕切板11を上方および下
方に隙間12a,12bを設けて取り付けて処理
槽13を形成し、この処理槽13に固形重金属イ
オン吸着剤14を格納した。水は流入口8よ流入
して仕切板11により下側へ移動し、仕切板11
の下方に設けた隙間12bを経由して固形重金属
イオン吸着剤14と接触して流出口9より溢れる
水流動路である。なお、固形重金属イオン吸着剤
14はステンレスや化学繊維等から成る網15の
なかには充填して処理槽13に格納した。また、
蓋体7はボルト16およびナツト17にて箱体6
に固定されエア抜き用キヤツプ(開閉自在)18
が蓋体7に取り付けられている。このエア抜き用
キヤツプ18の取り付けは任意である。また、重
金属イオン除去装置は架台20a,20b,20
c,20dに取り付けてある。 重金属イオン吸着剤は下記の材料を用いる。マ
グネシウム、マグネシウム合金(例、マグネシウ
ム96%−アルミニウム3%−亜鉛1%のAZ31合
金、マグネシウム90%−アルミニウム9%−亜鉛
1%のAZ91合金)、ゼオライト、珪素ナトリウ
ム、珪酸カリウム、珪酸マグネシウム、珪酸カル
シウムの複合酸化物である。これらの材料は粒
状・塊状・棒状・パイプ状・糸状で用いられる
が、特に粒状は重金属イオン吸着特性がすぐれて
いる・圧力損失が小さい・材料の流出が少ない等
の観点より最適である。 箱体と蓋体は、ステンレス、スズメツキした
鋼、ほうろう処理した鉄、塗装した鋼からなり、
アルミニウム+マグネシウム等の儀牲陽極や電気
防食してもよい。 第2図は本発明の他実施例である重金属イオン
除去装置の断面図であり、箱体6と蓋体7の間に
パツキン19を用いて仕切板11の上方に隙間1
2aを設けた構成である。 なお、流入口8と流出口9は箱体6に取り付け
られているが、蓋体7に取り付けてもよい。 重金属イオン吸着剤は、マグネシウム合金、珪
酸ナトリウムを主成分とする化合物、珪酸カリウ
ムを主成分とする化合物が最適である。これは吸
着特性がすぐれているとともに溶解度が小さいの
で寿命が長い・往生際は完全溶解ぎ残渣が残らな
いので目詰りが起こりにくいの利点があるためで
ある。 第1図に示す重金属イオン除去装置を用いて効
果の判定を行つた。重金属イオン除去装置はステ
ンレス製であり、その内部に内径20cm高さ52cmの
空洞を有する。この空洞の内壁面にステンレス製
仕切板(長さ46cm)を上方に1cm、下方に5cmの
隙間を設けて流入口より4.5cm離して流入口に直
角に取り付けた。なお、流入口はその上部が仕切
板の上部先端より7cm下側に設けられている。こ
の仕切板にて形成された流出口側の空洞を処理槽
とし、この処理槽に大豆ぐらいの固形重金属イオ
ン吸着剤を格納した。この重金属イオン除去装置
に流入口より水を流入すると、水は仕切板の下方
より重金属イオン吸着剤を経由して溢れ流出口よ
り流出する水流動路となつた。重金属イオン吸着
剤としてマグネシウム合金(Mg96%−Al3%−
Zn1%のAZ31合金)、珪酸ナトリウム(SiO275
%、Na2O24%、Al2O3Fe2O3・CaO・K2O・
MgOが微量)、珪酸カリウム(SiO275%、K2O24
%、Al2O3・Fe2O3・CaO・MgOが微量)を用い
た場合の吸着除去特性を第4図、第5図、第6図
に示す。いずれも吸着除去性能がすぐれているこ
とがわかる。 この重金属イオン除去装置を用いた場合の給湯
機器の防食効果をガス瞬間式湯沸器で判定した。
ガス瞬間式湯沸器は17号の給湯能力をもつ機種で
あり、水管式(プレートフインパイプ)のりん脱
酸銅製の熱交換器を通過することによつて温水が
得られる構成である。このガス瞬間式湯沸器の給
湯口に重金属イオン除去装置を取り付け、通過前
後の水の分析を行うことによつて効果の判定を行
つた。珪酸ナトリウム粒8Kgを格納した第1図の
重金属イオン除去装置を用いた場合の結果を第2
表に示す。銅イオンが減少していることがわか
る。
INDUSTRIAL APPLICATION FIELD The present invention relates to a heavy metal ion removal device used for water supply pipes made of copper or galvanized steel, or water supply equipment having a copper heat exchanger. Conventional technology Conventionally, copper and galvanized steel have been used as water supply pipes, and copper pipes have been used as heat exchangers for water supply and hot water equipment, but when used in areas with low pH water quality, copper ions and zinc ions (final Occasionally, troubles occurred due to the elution of iron ions). That is, blue water in copper pipes and red water in galvanized steel pipes. Blue water contains eluted copper ions, dirt and sweat,
Blue coloration of towels and bathtubs is caused by a blue insoluble compound (fatty acid copper) produced by reaction with fatty acids in scale, and red water is a red coloration of water caused by rust caused by the disappearance of the zinc plating layer. As a device for suppressing these water quality disturbances, a device shown in FIG. 7 has conventionally been used. This device uses a liquid rust inhibitor (phosphate or silicate).
A pump is used to inject water according to the amount of water supplied.A valve 2 and a flow meter 3 are attached to the pipe 1, and the flow meter 3 senses the flow rate of the supplied water, and a liquid rust preventive agent is injected into the chemical tank in proportion to the flow rate. 4, a control mechanism is attached to the pump 5 for adding water from the valve 2 to the pipe 1. Problems to be Solved by the Invention However, the above configuration requires (1) a control mechanism to adjust the amount of liquid rust preventive added according to the flow rate of water supply, which is expensive and requires handling and maintenance; is complicated. (2) Because it uses a liquid rust preventive agent, it is vulnerable to freezing in winter and has problems such as the need to remove the rust preventive agent. The present invention solves these conventional problems, and has the following advantages: (1) No control mechanism is required (2) Easy handling and maintenance (3)
The purpose of this invention is to provide a low-cost heavy metal ion removal device that is resistant to freezing (4). Means for Solving the Problems In order to solve the above problems, the heavy metal ion removal device of the present invention attaches a partition plate to the inner wall surface of a container having a drain port that can be opened and closed, with gaps provided below and above. A treatment tank is formed, and at least one solid heavy metal ion adsorbent selected from the group () and () below is stored in this treatment tank, and the water flowing into the treatment tank is passed from below the partition plate to the solid heavy metal ion adsorbent. The water flow path overflowed through the heavy metal ion adsorbent. () Magnesium or magnesium alloy. () A compound containing a silicate of at least one element selected from the group of potassium, sodium, magnesium, and calcium. Effects By having the above-described configuration of the present invention, this heavy metal ion removal device does not require a control mechanism, making handling and maintenance easy. Also, by opening the drain port, the water inside the container will flow, making it resistant to freezing. On the other hand, since the gap above the partition plate can be used as a bypass flow path, no clogging occurs even if the water flow path passing through the solid heavy metal ion adsorbent is blocked. In addition, since the solid heavy metal ion adsorbent is a substance with low solubility, it also has a long life. With this heavy metal ion adsorbent, due to the difference in ionization tendency of magnesium or magnesium alloys, heavy metal ions precipitate as heavy metals on the magnesium surface and adsorb and remove them, while silicates of K, Na, Mg, and Ca absorb K + , Na + , Mg 2+ and Ca 2+ are removed through ion exchange, in which heavy metal ions are adsorbed instead of being eluted. Embodiments Hereinafter, embodiments of the present invention will be described based on the accompanying drawings. FIG. 1 is a cross-sectional view of a heavy metal ion removal apparatus according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along the line AA' in FIG. The heavy metal ion removal device consists of a box body 6 and a lid body 7, and the box body 6 has an inlet port 8.
It has an outflow port 9 and a discharge port 10 that can be opened and closed.
A processing tank 13 was formed by attaching a partition plate 11 to the inner wall surface of the box 6 with gaps 12a and 12b provided above and below, and a solid heavy metal ion adsorbent 14 was stored in this processing tank 13. Water flows in through the inlet 8 and moves downward through the partition plate 11.
This is a flow path in which water contacts the solid heavy metal ion adsorbent 14 through a gap 12b provided below and overflows from the outlet 9. The solid heavy metal ion adsorbent 14 was filled in a net 15 made of stainless steel, chemical fiber, etc., and stored in the processing tank 13. Also,
The lid body 7 is attached to the box body 6 with bolts 16 and nuts 17.
Air bleed cap (can be opened and closed) fixed to 18
is attached to the lid body 7. Attachment of this air venting cap 18 is optional. In addition, the heavy metal ion removal device has mounts 20a, 20b, 20
It is attached to c, 20d. The following materials are used as the heavy metal ion adsorbent. Magnesium, magnesium alloys (e.g. AZ31 alloy with 96% magnesium - 3% aluminum - 1% zinc, AZ91 alloy with 90% magnesium - 9% aluminum - 1% zinc), zeolite, sodium silicate, potassium silicate, magnesium silicate, silicic acid It is a complex oxide of calcium. These materials are used in the form of granules, lumps, rods, pipes, and threads, but granules are particularly optimal from the viewpoints of excellent heavy metal ion adsorption properties, low pressure loss, and little material outflow. The box and lid are made of stainless steel, polished steel, enameled steel, and painted steel.
A sacrificial anode such as aluminum + magnesium or cathodic protection may be used. FIG. 2 is a cross-sectional view of a heavy metal ion removal device according to another embodiment of the present invention, in which a gasket 19 is used between the box body 6 and the lid body 7, and a gap 1 is formed above the partition plate 11.
2a is provided. Note that although the inflow port 8 and the outflow port 9 are attached to the box body 6, they may be attached to the lid body 7. The most suitable heavy metal ion adsorbent is a magnesium alloy, a compound containing sodium silicate as a main component, or a compound containing potassium silicate as a main component. This is because it has excellent adsorption properties and has a low solubility, so it has a long life, and it has the advantage of being completely dissolved and leaving no residue at the time of death, so clogging is less likely to occur. The effectiveness was evaluated using the heavy metal ion removal apparatus shown in FIG. The heavy metal ion removal device is made of stainless steel and has a cavity with an inner diameter of 20 cm and a height of 52 cm. A stainless steel partition plate (length 46 cm) was attached to the inner wall of this cavity at right angles to the inlet at a distance of 4.5 cm from the inlet with a gap of 1 cm above and 5 cm below. Note that the upper part of the inlet is provided 7 cm below the upper tip of the partition plate. The cavity on the outlet side formed by this partition plate was used as a processing tank, and a solid heavy metal ion adsorbent about the size of soybeans was stored in this processing tank. When water was introduced into this heavy metal ion removal device from the inlet, the water overflowed from below the partition plate via the heavy metal ion adsorbent and formed a water flow path that flowed out from the outlet. Magnesium alloy (Mg96%-Al3%-
Zn1% AZ31 alloy), sodium silicate ( SiO2 75
%, Na 2 O 24%, Al 2 O 3 Fe 2 O 3・CaO・K 2 O・
trace amount of MgO), potassium silicate (SiO 2 75%, K 2 O24
%, trace amounts of Al 2 O 3 ·Fe 2 O 3 ·CaO · MgO) are shown in FIGS. 4, 5, and 6. It can be seen that both have excellent adsorption and removal performance. The anticorrosion effect of water heating equipment using this heavy metal ion removal device was evaluated using a gas instantaneous water heater.
The gas instantaneous water heater is a model with a hot water supply capacity of size 17, and is configured to obtain hot water by passing through a water tube type (plate fin pipe) heat exchanger made of phosphorus-deoxidized copper. A heavy metal ion removal device was attached to the hot water supply port of this gas instantaneous water heater, and the effectiveness was determined by analyzing the water before and after passing through it. Figure 2 shows the results when using the heavy metal ion removal device shown in Figure 1 containing 8 kg of sodium silicate particles.
Shown in the table. It can be seen that copper ions have decreased.

【表】【table】

【表】 ガス瞬間式湯沸器から得られた温水を用いてタ
オルのセツケンによる青着色実験を行なつた。従
来の湯沸器(重金属イオン除去装置なし)から得
られた温水(PH6.3、Cu2+0.66ppm)に0.5%のセ
ツケン液に浸した白いタオルを浸したところ15回
繰り返しでタオルが青くなつた。一方、本発明の
重金属イオン除去装置を用いた湯沸器から得られ
た温水(PH8.0、Cu2+0.52ppm)に0.5%のセツケ
ン液に浸した白いタオルを浸しても15回繰り返し
でもタオルは青くならなかつた。これは、本発明
を用いると銅イオンが減少することによる脂肪酸
銅(青色化合物)生成量の減少のためである。 また亜鉛メツキ鋼配管をガス瞬間式湯沸器の給
湯口に取り付けてZn2+・Fe2+の溶出量を測定す
ると、重金属イオン除去装置のない場合は
Zn2+0.05ppm、Fe2+0.03ppmであつたが、重金属
イオン除去装置を取り付けるとZn2+0.03ppm、
Fe2+0.02ppmを亜鉛イオン・鉄イオンの溶出が抑
制されていた。 一方、この重金属イオン除去装置を5.0/
minの流量で水を流しながら−5℃の環境に1日
放置しても、排水口を開の状態にして水をわずか
に重金属イオン除去装置より排出することにより
凍結が防止できた。また、仕切板の下方の隙間を
閉塞し目詰りの状態にしても水は仕切板の上方よ
り溢れて、目詰りに強いことが立証された。 発明の効果 以上のように、本発明の重金属イオン除去装置
は、開閉自在の排水口を有する装置の内壁面に、
下方と上方に隙間を設けて仕切板を取り付けて処
理槽を形成し、該処理槽に固形重金属イオン吸着
剤を格納するとともに処理槽に流入した水が仕切
板の下方より固形重金属イオン吸着剤を経由して
溢れる水流動路としているため、 (1) 制御機構が不用となり取い扱いやメンテが簡
単な重金属イオン除去装置である。 (2) 排水口を開くことによつて容器内の水が流動
し凍結しない。 (3) 仕切板の上方の隙間がバイパス流路として活
用できるため、固形重金属イオン吸着剤を経由
する水流動路が閉塞した場合でも目詰まりを生
じない。 (4) 固形重金属イオン吸着剤が、() マグネ
シウムもしくはマグネシウム合金、 ()カリウム、ナトリウム、マグネシウム、
カルシウムの群より選択した一種以上の元素の
珪酸塩を含有する化合物であるため溶解度が小
さく寿命が長い。また、本来のなかに含まれて
いる元素成分を用いているので健康に対する安
全性も高い。
[Table] Using hot water obtained from a gas instantaneous water heater, an experiment was conducted to color a towel blue using a soap bar. When a white towel soaked in 0.5% Setsuken solution was soaked in hot water (PH6.3, Cu 2+ 0.66ppm) obtained from a conventional water heater (no heavy metal ion removal device), the towel turned blue after 15 repetitions. Summer. On the other hand, even if a white towel soaked in 0.5% soap solution was soaked in hot water (PH8.0, Cu 2+ 0.52ppm) obtained from a water heater using the heavy metal ion removal device of the present invention, the results were repeated 15 times. The towels did not turn blue. This is because when the present invention is used, the amount of fatty acid copper (blue compound) produced is reduced due to the reduction of copper ions. In addition, when galvanized steel piping is attached to the hot water supply inlet of a gas instantaneous water heater and the amount of Zn 2+ and Fe 2+ eluted is measured, it is found that if there is no heavy metal ion removal device,
Zn 2+ was 0.05ppm, Fe 2+ 0.03ppm, but when a heavy metal ion removal device was installed, Zn 2+ was 0.03ppm,
Elution of zinc ions and iron ions was suppressed at Fe 2+ 0.02ppm. On the other hand, this heavy metal ion removal device is 5.0/
Even if it was left in an environment of -5°C for one day while flowing water at a flow rate of 10 min, freezing could be prevented by leaving the drain port open and discharging a small amount of water from the heavy metal ion removal device. Furthermore, even if the gap below the partition plate is closed and the gap becomes clogged, water will overflow from above the partition plate, proving that the device is resistant to clogging. Effects of the Invention As described above, the heavy metal ion removal device of the present invention has a drain port that can be opened and closed on the inner wall surface of the device.
A treatment tank is formed by attaching a partition plate with a gap between the bottom and the top, and the solid heavy metal ion adsorbent is stored in the treatment tank, and the water flowing into the treatment tank absorbs the solid heavy metal ion adsorbent from below the partition plate. (1) No control mechanism is required, making the heavy metal ion removal device easy to handle and maintain. (2) By opening the drain, the water inside the container will flow and will not freeze. (3) Since the gap above the partition plate can be used as a bypass flow path, no clogging will occur even if the water flow path passing through the solid heavy metal ion adsorbent is blocked. (4) The solid heavy metal ion adsorbent is () magnesium or magnesium alloy, () potassium, sodium, magnesium,
Since it is a compound containing silicate of one or more elements selected from the group of calcium, it has low solubility and long life. Furthermore, since it uses elemental components that are naturally present, it is highly safe for health.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である重金属イオン
除去装置の断面図、第2図は第1図における
AA′線断面図、第3図は水発明の他実施例である
重金属イオン除去装置の断面図、第4図は本発明
の効果特性図、第5図は本発明の効果特性図、第
6図は本発明の効果特性図、第7図は従来の重金
属イオン除去装置の構成図である。 8……流入口、9……流出口、10……排水
口、11……仕切板、12a,12b……隙間、
13……処理槽、14……重金属イオン吸着剤。
Figure 1 is a cross-sectional view of a heavy metal ion removal device that is an embodiment of the present invention, and Figure 2 is
AA′ line sectional view, FIG. 3 is a sectional view of a heavy metal ion removal device which is another embodiment of the water invention, FIG. 4 is an effect characteristic diagram of the present invention, FIG. 5 is an effect characteristic diagram of the present invention, and FIG. The figure is an effect characteristic diagram of the present invention, and FIG. 7 is a block diagram of a conventional heavy metal ion removal apparatus. 8... Inlet, 9... Outlet, 10... Drain port, 11... Partition plate, 12a, 12b... Gap,
13...Treatment tank, 14...Heavy metal ion adsorbent.

Claims (1)

【特許請求の範囲】 1 開閉自在の排水口を有する装置の内壁面に、
下方と上方に隙間を設けて仕切板を取り付けて処
理槽を形成し、この処理槽に下記の()()
の群より選択した少なくとも一種の固形重金属イ
オン吸着剤を格納するとともに、処理槽に流入し
た水が前記仕切板の下方より前記固形重金属イオ
ン吸着剤を経由して溢れる水流動路とした重金属
イオン除去装置。 () マグネシウムもしくはマグネシウム合金。 () カリウム、ナトリウム、マグネシウム、カ
ルシウムの群より選択した少なくとも一種の元
素の珪酸塩を含有する化合物。 2 固形重金属イオン吸着剤が、マグネシウム合
金、珪酸ナトリウムもしくは珪酸カリウムを主成
分とする化合物の群より少なくとも一種選択した
特許請求の範囲第1項記載の重金属イオン除去装
置。 3 固形重金属イオン吸着剤が粒状である特許請
求の範囲第1項記載の重金属イオン除去装置。
[Claims] 1. On the inner wall surface of a device having a drain port that can be opened and closed,
A processing tank is formed by attaching a partition plate with a gap at the bottom and top, and the following () () are installed in this processing tank.
At least one solid heavy metal ion adsorbent selected from the group is stored, and the water flowing into the treatment tank overflows from below the partition plate via the solid heavy metal ion adsorbent as a water flow path for heavy metal ion removal. Device. () Magnesium or magnesium alloy. () A compound containing a silicate of at least one element selected from the group of potassium, sodium, magnesium, and calcium. 2. The heavy metal ion removal device according to claim 1, wherein the solid heavy metal ion adsorbent is at least one selected from the group of compounds whose main components are magnesium alloy, sodium silicate, or potassium silicate. 3. The heavy metal ion removal device according to claim 1, wherein the solid heavy metal ion adsorbent is granular.
JP8922585A 1985-04-25 1985-04-25 Apparatus for removing heavy metal ion Granted JPS61245885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8922585A JPS61245885A (en) 1985-04-25 1985-04-25 Apparatus for removing heavy metal ion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8922585A JPS61245885A (en) 1985-04-25 1985-04-25 Apparatus for removing heavy metal ion

Publications (2)

Publication Number Publication Date
JPS61245885A JPS61245885A (en) 1986-11-01
JPH0334394B2 true JPH0334394B2 (en) 1991-05-22

Family

ID=13964791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8922585A Granted JPS61245885A (en) 1985-04-25 1985-04-25 Apparatus for removing heavy metal ion

Country Status (1)

Country Link
JP (1) JPS61245885A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5281885A (en) * 1989-11-14 1994-01-25 Hitachi Metals, Ltd. High-temperature stacked-type displacement device
JP4771355B2 (en) * 2004-12-27 2011-09-14 国立大学法人九州工業大学 Waste treatment method and adsorbent for waste treatment
JP5678401B2 (en) * 2008-04-11 2015-03-04 東ソー株式会社 Heavy metal treating agent and method for treating heavy metal contaminants using the same
JP5298612B2 (en) * 2008-04-15 2013-09-25 東ソー株式会社 Heavy metal treating agent and method for treating heavy metal contaminants using the same
JP5737671B2 (en) * 2010-11-16 2015-06-17 国立大学法人九州工業大学 Waste water treatment equipment containing metal ions
JP5921851B2 (en) * 2011-10-20 2016-05-24 誠悟 古川 Contaminated soil purification method and contaminated soil purification device

Also Published As

Publication number Publication date
JPS61245885A (en) 1986-11-01

Similar Documents

Publication Publication Date Title
JPH0334394B2 (en)
JP3663634B2 (en) Operation method of circulating cooling water system
CN105502705A (en) Reinforced heat-transfer agent for heating system
JP2006263718A (en) Water quality control device
JPH0334994B2 (en)
CN102897925A (en) Corrosion and scale inhibitor
JP4842056B2 (en) Water quality control device
CN204486734U (en) A kind of crystallizer cooling water treatment system
JPS5913595B2 (en) Metal corrosion inhibitor and corrosion prevention method
US5820763A (en) Method for inhibiting corrosion in water systems
US3981779A (en) Inhibition of scale on saline water heat exchange surfaces with iminodiacetic acid compounds
JPH09176872A (en) Method for inhibiting corrosion of aqueous metal and inhibiting silica scale
CA1328934C (en) Inhibiting corrosion in aqueous heat transfer apparatus
JP6635173B1 (en) Corrosion protection method for metal members of cooling water system
TWM604232U (en) Filter for water scale inhibitor
CN209197189U (en) A kind of heat-preserving water tank for solar water heater of anticorrosion good antiscale property
CN105776588A (en) Circulating water multi-effect solid agent
Venczel et al. Corrosion and corrosion product deposition in steel-copper systems with circulating hot water containing various inhibitors
US4885141A (en) Water treatment in aqueous heat transfer apparatus
KR19990018940A (en) Complex salt detergent composition and preparation method thereof
JP2000070993A (en) Scale adhesion prevention method
JPH11660A (en) Blocking agent and method for preventing blockage in industrial circulating water piping system
KR100361045B1 (en) A new liquid type anti-rust agent containing silicate as main ingredient for metal tube and the preparation method thereof
CN220098654U (en) Full-automatic high-efficient purification cooling water ion separation device
JPH09111482A (en) How to prevent corrosion of water-based metals