[go: up one dir, main page]

JPH0333345B2 - - Google Patents

Info

Publication number
JPH0333345B2
JPH0333345B2 JP57021906A JP2190682A JPH0333345B2 JP H0333345 B2 JPH0333345 B2 JP H0333345B2 JP 57021906 A JP57021906 A JP 57021906A JP 2190682 A JP2190682 A JP 2190682A JP H0333345 B2 JPH0333345 B2 JP H0333345B2
Authority
JP
Japan
Prior art keywords
pressure
extinguishing agent
pressure coil
coil
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57021906A
Other languages
Japanese (ja)
Other versions
JPS58139099A (en
Inventor
Juzo Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koatsu Gas Kogyo Co Ltd
Original Assignee
Koatsu Gas Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koatsu Gas Kogyo Co Ltd filed Critical Koatsu Gas Kogyo Co Ltd
Priority to JP57021906A priority Critical patent/JPS58139099A/en
Publication of JPS58139099A publication Critical patent/JPS58139099A/en
Publication of JPH0333345B2 publication Critical patent/JPH0333345B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)

Description

【発明の詳細な説明】 本発明は二酸化炭素やハロン1301等の不活性ガ
スを用いる消火装置に係り、核燃料の再処理室の
ように内部圧力の急激な変動を許されない消火対
象区域に使用する。
[Detailed Description of the Invention] The present invention relates to a fire extinguishing system that uses inert gas such as carbon dioxide or Halon 1301, and is used in areas to be extinguished where rapid fluctuations in internal pressure are not allowed, such as nuclear fuel reprocessing chambers. .

原子力発電所において使用された核燃料は再処
理施設へ送られ、専用の再処理室において燃え残
りのウラニウムやプルトニウム等の核燃料物質を
回収する。この再処理室は各種溶剤等の火災危険
の極めて高い可燃性物質を取扱う関係上、固定式
の自動消火装置が不可欠となつている。又消火装
置としては、再処理室内の機器に及ぼす消火剤に
よる損傷を考慮すると、水や泡系のものを使用す
ることはできず、不活性ガスを消炎剤として使用
した消火装置に限られる。ところで、二酸化炭素
やハロン1301等を消火剤として使用した従来の消
火装置は、そのまゝでは核燃料の再処理室におい
て使用できない。次にその理由を説明する。
Nuclear fuel used at a nuclear power plant is sent to a reprocessing facility, where unburned nuclear fuel materials such as uranium and plutonium are recovered in a dedicated reprocessing chamber. Because this reprocessing room handles flammable materials with extremely high fire risks, such as various solvents, a fixed automatic fire extinguishing system is essential. In addition, considering the damage caused by the extinguishing agent to the equipment in the reprocessing room, water or foam-based fire extinguishers cannot be used, and are limited to fire extinguishers that use inert gas as the extinguisher. By the way, conventional fire extinguishing systems that use carbon dioxide, Halon 1301, etc. as extinguishing agents cannot be used as they are in nuclear fuel reprocessing chambers. Next, the reason will be explained.

第1図に示す従来装置において、1は複数の消
火剤容器で、加圧液化したに二酸化炭素やハロン
1301等のガス系消火剤を貯蔵し、頂部に取付けた
容器弁2を短管3を経て1本の配管4に連結す
る。5は起動ガス(通常は二酸化炭素)を充填し
た起動容器で、頂部に取付けた電磁弁6を起動管
7により各消火剤容器の容器弁2に連結し、電磁
弁6に通電して起動ガスの圧力で各容器弁2を一
斉に開放する。Rは消火対象区画で、配管4を導
いて固定オリフイスを備える複数のノズル8を要
所に取付け、この配管4に区画選定用ソレノイド
9を備える選択弁10を取付ける。R′は別の消
火対象区画で、これには配管4から分岐した配置
4′を導いて固定オリフイスを備える複数のノズ
ル8′を要所に取付け、この配管4′に区画選定用
ソレノイド9′を備える選択弁10′を取付ける。
In the conventional device shown in Fig. 1, 1 is a plurality of extinguishing agent containers, which contain pressurized liquefied carbon dioxide or halon.
A gas fire extinguishing agent such as 1301 is stored, and a container valve 2 attached to the top is connected to one pipe 4 via a short pipe 3. Reference numeral 5 denotes a starting container filled with starting gas (usually carbon dioxide), and a solenoid valve 6 attached to the top is connected to the container valve 2 of each extinguishing agent container through a starting pipe 7, and the solenoid valve 6 is energized to release the starting gas. The container valves 2 are simultaneously opened at a pressure of . R is a section to be extinguished, a pipe 4 is guided, a plurality of nozzles 8 with fixed orifices are installed at important points, and a selection valve 10 having a section selection solenoid 9 is attached to this pipe 4. R' is another section to be extinguished, in which a plurality of nozzles 8' with fixed orifices are installed at key points by guiding an arrangement 4' branched from the piping 4, and a section selection solenoid 9' is attached to this piping 4'. Attach the selection valve 10' with the following.

従来装置の一例は以上の構成からなり、火災感
知器(図示なし)その他の手段が消火対象区画R
内の火災を覚知すると、リレー回路(図示なし)
によりソレノイド9に通電され、選択弁10が開
放して区画Rへの配管4を開く。これと同時に他
のリレー回路(図示なし)により電磁弁6が開放
し、起動容器5に充填された起動ガスが起動管7
を経て各容器弁2へ至り、起動ガスの圧力で各容
器弁が一斉に開放して消火剤容器1に貯蔵された
消火剤を流出させ、消火剤は配管4を通つてノズ
ル8から消火対象区画内へ噴射される。消火対象
区画R′において火災が発生した場合も同じよう
に作動して消火剤がノズル8′から噴射される。
An example of a conventional device has the above configuration, and a fire detector (not shown) and other means are connected to the area R to be extinguished.
When a fire inside is detected, a relay circuit (not shown) is activated.
The solenoid 9 is energized, the selection valve 10 is opened, and the pipe 4 to the section R is opened. At the same time, the solenoid valve 6 is opened by another relay circuit (not shown), and the starting gas filled in the starting container 5 is transferred to the starting pipe 7.
The pressure of the starting gas causes the container valves to open all at once, allowing the extinguishing agent stored in the extinguishing agent container 1 to flow out. Injected into the compartment. When a fire occurs in the area R' to be extinguished, the same operation is performed and extinguishing agent is injected from the nozzle 8'.

この従来装置において問題となるのは消火剤が
液化ガスであるため、その飽和蒸気気圧が周囲温
度によつて変動することであり、換言するとノズ
ル8の放出圧力が消火剤容器1の内部圧力に依存
している以上、夏季と冬季において消火剤の放出
率に差を生ずるのである。他方核燃料の再処理室
はその内部から漏れるがあると放射能による汚染
を生ずるから、室内を常に一定の負圧に維持して
周囲の大気から空気が流入しても外部へは絶対に
漏れないように構成されている。従つてこの再処
理室に放出される消火剤ガスの流量が変動して万
一室内圧力が周囲の大気圧より高くなると、外部
への放射能汚染という重大な事故を引起こすこと
になる。消火装置には窒素ガスのような圧縮性の
不活性ガスを使用したものもあるが、これは液化
ガスに比べて数倍の容器が必要となるし、周囲温
度により消火剤容器の内部圧力も変動するという
欠点をもつている。
The problem with this conventional device is that since the extinguishing agent is a liquefied gas, its saturated vapor pressure fluctuates depending on the ambient temperature.In other words, the discharge pressure of the nozzle 8 depends on the internal pressure of the extinguishing agent container 1 Because of this dependence, there is a difference in the release rate of extinguishing agent in summer and winter. On the other hand, if a nuclear fuel reprocessing chamber leaks from inside, it will cause radioactive contamination, so the chamber is always maintained at a constant negative pressure so that even if air flows in from the surrounding atmosphere, it will never leak outside. It is configured as follows. Therefore, if the flow rate of the extinguishing agent gas discharged into the reprocessing chamber fluctuates and the pressure inside the chamber becomes higher than the surrounding atmospheric pressure, a serious accident of radioactive contamination to the outside may occur. Some fire extinguishing systems use compressible inert gases such as nitrogen gas, but this requires several times the container size compared to liquefied gas, and the internal pressure of the extinguishing agent container also increases depending on the ambient temperature. It has the disadvantage of being variable.

本発明は温水を利用して消火剤ガスを加熱し、
完全に気化させた消火剤ガスを一旦減圧したのち
再び温水で加熱し、これにより消火剤ガスを常に
一定の圧力で放出することに成功したのである。
The present invention uses hot water to heat extinguishing agent gas,
After the completely vaporized extinguishing agent gas was depressurized, it was heated again with hot water, thereby successfully releasing the extinguishing agent gas at a constant pressure.

第2図に示す本発明の一実施例において、11
は温水Wをほゞ一杯に満たした水槽で、全周に断
熱材12を貼つて熱損失を最小限にとどめ、複数
個のヒータ13により加温するがサーモスタツト
14でヒータをオンオフして所定の温度範囲に保
ち、水道管15から注水してボールタツプ16で
水面を自動的に調節し、水面検出スイツチ17と
水量計13を備えて、冷却水供給手断を構成す
る。20は水槽11の上部と底部を連結する循環
パイプで、ポンプ21により水槽内の温水を強制
的に循環させて上端に連なる撹拌パイプ22のオ
リフイスから噴出させて、温水強制循環手段を構
成する。ポンプ21は消火装置の動作と同時に運
転を開始し、水槽内の温水を撹拌して熱交換能力
を高める。
In one embodiment of the present invention shown in FIG.
is an aquarium filled with hot water W. A heat insulating material 12 is pasted around the entire circumference to minimize heat loss, and a plurality of heaters 13 are used to heat the water tank, which is turned on and off using a thermostat 14 to maintain a predetermined temperature. A cooling water supply system is constructed by maintaining the temperature within a temperature range of 1, and automatically adjusting the water level by injecting water from a water pipe 15 and using a ball tap 16, and is equipped with a water level detection switch 17 and a water meter 13. Reference numeral 20 denotes a circulation pipe that connects the top and bottom of the water tank 11, and a pump 21 forcibly circulates the hot water in the water tank and jets it out from an orifice of a stirring pipe 22 connected to the top end, thereby forming forced hot water circulation means. The pump 21 starts operating simultaneously with the operation of the fire extinguishing system, and stirs the hot water in the water tank to increase heat exchange capacity.

このような水槽内に熱交換用の高圧コイル24
と低圧コイル25を装入し、高圧コイル24の入
口を消火剤の導入管23に接続し、この導入管2
3を消火剤容器の容器弁2から出る短管3に連結
し、高圧コイル24の出口と低圧コイル25の入
口を結ぶ連結管26に圧力調整弁27とバイパス
弁28を取付け、低圧コイル25の出口を流出管
29により消火対象区画R,R′へ至る配管4,
4′に連結する。導入管23には圧力スイツチ3
0を取付けて消火剤の流れを感知し、消火装置が
作動していることを知らせ、この導入管に監視用
の圧力計31とガス温度計32を取付け、流出管
29にも監視用の圧力計33とガス温度計34を
取付ける。この実施例においては消火容器1に取
付けた容器弁2を短管3により導入管23に連結
しており、このほかは従来装置と同じように起動
容器5に取付けた電磁弁6を起動管7により各容
器弁2に連結し、配管4,4′消火対象区画R,
R′へ導いて各区画内の要所に8,8′を取付け、
配管4,4′にそれぞれソレノイド9,9′を有す
る選択弁10,10′を取付ける。なお複数の消
火剤容器1を台秤35に載せて常時消化剤の適量
を監視し、消火剤が減少したとき内蔵するリミツ
トスイツチで報知する。
A high voltage coil 24 for heat exchange is installed in such a water tank.
and a low-voltage coil 25, and connect the inlet of the high-voltage coil 24 to the extinguishing agent introduction pipe 23.
3 is connected to the short pipe 3 coming out from the container valve 2 of the extinguishing agent container, and a pressure regulating valve 27 and a bypass valve 28 are attached to the connecting pipe 26 that connects the outlet of the high pressure coil 24 and the inlet of the low pressure coil 25. Piping 4 whose outlet is connected to the fire extinguishing target sections R and R' through an outflow pipe 29,
Connect to 4'. A pressure switch 3 is installed in the introduction pipe 23.
0 is installed to detect the flow of extinguishing agent and notify that the fire extinguishing system is in operation.A pressure gauge 31 and a gas temperature gauge 32 for monitoring are installed on this inlet pipe, and a pressure gauge for monitoring is also installed on the outflow pipe 29. Install total 33 and gas thermometer 34. In this embodiment, a container valve 2 attached to a fire extinguishing container 1 is connected to an inlet pipe 23 by a short pipe 3, and a solenoid valve 6 attached to a starting container 5 is connected to a starting pipe 7 in the same manner as in the conventional device. are connected to each container valve 2, and pipes 4, 4' are connected to each container valve 2,
Lead to R' and install 8, 8' at important points in each section,
Selection valves 10 and 10' having solenoids 9 and 9' are attached to the pipes 4 and 4', respectively. A plurality of extinguishing agent containers 1 are placed on a platform scale 35 to constantly monitor the appropriate amount of extinguishing agent, and a built-in limit switch notifies when the amount of extinguishing agent decreases.

本発明の一実施例は以上の構成からなり、今消
火対象区画Rに火災が発生したものとすると従来
装置と同じようにして選択弁10が開き、起動ガ
スの圧力で各容器弁2が開放して消火剤が導入管
23へ流れ込む。導入管へ入つた消火剤が高圧コ
イル24を流れると周囲の温水から熱を吸収して
液体消火剤は完全に気化する。この際流れによる
圧力降下が殆んど起らないように高圧コイル24
の内径と長さを決める。換言すれば圧力が一定で
温度のみ上昇する(エンタルピーが増大する)よ
うに設定する。気化した消火剤ガスは連結管26
を経て圧力調整弁27に入り、こゝで予め設定さ
れた一定の圧力に減圧(この時温度も低下する)
されたのち、連結管26を経て低圧コイル25へ
導かれる。減圧された消火剤ガスがこの低圧コイ
ル25を流れる際再び周囲の温水から熱を吸収
し、もう一度温度が上昇して完全に気化する。こ
の低圧コイル25も流れによる圧力降下が殆んど
起らないように内径と長さを設定しておく。低圧
コイル25を通過した消火剤ガスは流出管29を
流れて配管4に入り、予め開放している選択弁1
0を経てノズル8から消火対象区画R内に噴射さ
れる。消化対象区画R′についても同じである。
One embodiment of the present invention has the above-described configuration, and if a fire occurs in the section R to be extinguished, the selection valve 10 opens in the same way as in the conventional device, and each container valve 2 opens with the pressure of the starting gas. The extinguishing agent then flows into the introduction pipe 23. When the extinguishing agent that has entered the introduction pipe flows through the high-pressure coil 24, it absorbs heat from the surrounding hot water and the liquid extinguishing agent completely vaporizes. At this time, the high-pressure coil 24 is
Determine the inner diameter and length. In other words, it is set so that the pressure is constant and only the temperature increases (enthalpy increases). The vaporized extinguishing agent gas is transferred to the connecting pipe 26.
The pressure then enters the pressure regulating valve 27, where the pressure is reduced to a preset constant pressure (at this time, the temperature also decreases).
After that, it is guided to the low voltage coil 25 via the connecting pipe 26. When the decompressed extinguishing agent gas flows through this low-pressure coil 25, it absorbs heat from the surrounding hot water again, and the temperature rises once more to completely vaporize it. The inner diameter and length of this low-pressure coil 25 are also set so that almost no pressure drop due to flow occurs. The extinguishing agent gas that has passed through the low-pressure coil 25 flows through the outflow pipe 29 and enters the pipe 4, and then passes through the selection valve 1, which has been opened in advance.
0 and is injected from the nozzle 8 into the area R to be extinguished. The same applies to the digestion target section R'.

本発明の目的は消化剤ガスを常に所定の圧力で
順調に消火対象区画へ送込むことであるが、これ
に関連して高圧コイル24と低圧コイル25及び
圧力調整弁27の作用を第3図に基づいて説明す
る。
The purpose of the present invention is to constantly send extinguishing agent gas smoothly at a predetermined pressure to the area to be extinguished. The explanation will be based on.

第3図は二酸化炭素のp−i線図で、縦軸にp
(圧力)Kgf/cm2をとり、横軸にi(エンタルピ
ー)Kcal/Kgをとつている。二酸化炭素は加圧
液化されて20℃で消火剤容器1に貯蔵されてお
り、この二酸化炭素が容器弁2の開放により高圧
コイル24の入口に達したとき約60Kgf/cm2
100%液体で第3図のA点にあり、続いて高圧コ
イル24を流れる間に熱を吸収して一定の圧力の
まま温度のみ上昇してB点に至る。これが圧力調
整弁27の入口における状態で温度約60度の100
%気体であるが、圧力調整弁27を通過すると断
熱減圧して約−60℃、5Kgf/cm2の気体(わずか
に固体が混入している)となる。これが第3図の
B点からC点への等エントロピー変化であるが、
このまゝ配管4,4′へ送込むとその極低温のた
め途中の選択弁10,10′が凍結したり、ノズ
ル8,8′が氷塞することになる。そこで減圧さ
れた二酸化炭素を低圧コイル25へ導いて約60℃
に加熱し、圧力と温度を一定にしたのち配管4,
4′へ送込む。これが第3図のC点からD点への
過程である。
Figure 3 is a p-i diagram of carbon dioxide, with the vertical axis p
(Pressure) Kgf/cm 2 is taken, and i (enthalpy) Kcal/Kg is taken on the horizontal axis. Carbon dioxide is liquefied under pressure and stored in a fire extinguishing agent container 1 at 20°C, and when this carbon dioxide reaches the inlet of the high-pressure coil 24 by opening the container valve 2, it emits about 60 kgf/cm 2 .
It is 100% liquid and is at point A in FIG. 3, and then as it flows through the high-pressure coil 24, it absorbs heat and reaches point B, where only the temperature rises while maintaining a constant pressure. This is the state at the inlet of the pressure regulating valve 27 at a temperature of about 60 degrees.
% gas, but when it passes through the pressure regulating valve 27, it is adiabatically reduced in pressure and becomes a gas (with a slight amount of solids mixed in) at about -60°C and 5 kgf/cm 2 . This is the isentropic change from point B to point C in Figure 3.
If it continues to be fed into the pipes 4, 4', the selection valves 10, 10' in the middle will freeze due to the extremely low temperature, and the nozzles 8, 8' will become clogged with ice. There, the reduced pressure carbon dioxide is guided to the low pressure coil 25 and heated to approximately 60°C.
After heating to a constant pressure and temperature, pipe 4,
Send it to 4'. This is the process from point C to point D in FIG.

本発明は温水を利用して熱交換を行うのである
が、次に温水を利用することの利点を説明する
(熱交換率を100%とする)。
The present invention performs heat exchange using hot water. Next, the advantage of using hot water will be explained (assuming the heat exchange rate is 100%).

20℃、100%液体(飽和蒸気圧58.5Kgf/cm2
の二酸化炭素を、同じ20℃、100%気体で圧力を
5Kgf/cm2に交換するには、p−i線図より
58Kcal/Kgの熱量が必要となる。又二酸化炭素
を消火剤として使用するためには急速放出を行う
必要があり、例えば100Kgの二酸化炭素を1分間
で放出するとすれば、単位時間当りの熱交換量は 58×100Kcal/分=5.8×103Kcal/分 となり、この熱交換に温水1000を利用すると温
度降下はわずか 5.8×103÷1000=5.8(℃) であり、このような温水の水槽を設けることは容
易である。
20℃, 100% liquid (saturated vapor pressure 58.5Kgf/cm 2 )
To exchange carbon dioxide with 100% gas at the same temperature of 20℃ and a pressure of 5Kgf/ cm2 , from the p-i diagram,
58Kcal/Kg of heat is required. Also, in order to use carbon dioxide as a fire extinguisher, it is necessary to release it rapidly. For example, if 100 kg of carbon dioxide is released in 1 minute, the amount of heat exchanged per unit time is 58 x 100 Kcal/min = 5.8 x 10 3 Kcal/min, and if hot water 1000 is used for this heat exchange, the temperature drop is only 5.8 × 10 3 ÷ 1000 = 5.8 (℃), and it is easy to set up a tank with such hot water.

水は他の如何なる液体よりも安価で入手しやす
くかつ熱容量が大きいという特性があり、本発明
はこの特性に着目して水を利用した。
Water has the characteristics that it is cheaper, more easily available, and has a larger heat capacity than any other liquid, and the present invention utilized water by paying attention to these characteristics.

この熱交換を電熱器で行うとすれば1Kcal=
1.163×10-3Kwhであるから、 5.8×103×1.163×10-3×60=400KW/分 となり、400KWの電熱器が必要となる。このよ
うな大形の電熱器は市販されていないから実用的
でない。
If this heat exchange is performed using an electric heater, 1Kcal =
Since it is 1.163×10 -3 Kwh, it becomes 5.8×10 3 ×1.163×10 -3 ×60=400KW/min, and a 400KW electric heater is required. Such large electric heaters are not commercially available, so they are not practical.

以上は本発明の一実施例を説明したもので、本
発明はこの実施例に限定されることなく、発明の
要旨内において設計変更できる。
The above describes one embodiment of the present invention, and the present invention is not limited to this embodiment, and the design can be changed within the gist of the invention.

本発明においては、ヒータ、サーモスタツト、
水道水供給手段および温水強制循環手段を備える
水槽内の温水中に熱交換用の高圧コイルと低圧コ
イルを浸し、高圧コイルの出口と低圧コイルの入
口を結ぶ連結管に圧力調整弁を取付け、高圧コイ
ルの入口を液化ガス消火剤の導入管に接続し、低
圧コイルの出口を消火対象区域へ至る配管に接続
しており、これからの構成により消火剤容器に貯
蔵された液化ガス消火剤を高圧コイルで加熱して
完全に気化し、これを圧力調整弁で減圧したもの
を低圧コイルで再び加熱したのち消火対象区画に
至る配管へ送込むから、二酸化炭素やハロン1301
等のガス系消火剤を常に所定圧力で順調に送出す
ことができ、ガス系消火剤を使用する消火装置を
確実に作動しうる効果がある。
In the present invention, a heater, a thermostat,
A high-pressure coil and a low-pressure coil for heat exchange are immersed in hot water in a water tank equipped with tap water supply means and hot water forced circulation means, and a pressure regulating valve is attached to the connecting pipe connecting the outlet of the high-pressure coil and the inlet of the low-pressure coil, and the high-pressure The inlet of the coil is connected to the introduction pipe for the liquefied gas extinguishing agent, and the outlet of the low-pressure coil is connected to the piping leading to the area to be extinguished.With the future configuration, the liquefied gas extinguishing agent stored in the extinguishing agent container will be transferred to the high-pressure coil. It is heated to completely vaporize it, the pressure is reduced by a pressure regulating valve, it is heated again by a low-pressure coil, and then sent to the piping leading to the area to be extinguished, so carbon dioxide and Halon 1301
It is possible to always send gas-based extinguishing agents smoothly at a predetermined pressure, and there is an effect that a fire extinguishing system using gas-based extinguishing agents can be operated reliably.

特に、ヒータ、サーモスタツト、冷却水供手段
および温水強制循環手段を備えた水槽に熱交換用
の高圧コイルと低圧コイルを浸したので、低圧コ
イルの出口より消火対象区域に供給されるガス系
消火剤は、水槽が所定温度範囲に維持されている
ことより、所定の圧力範囲内に維持される。従つ
て室内圧力の急激な変動が許されないところの、
核燃料再処理室の消火装置としての効果はきわめ
て大である。
In particular, a high-pressure coil and a low-pressure coil for heat exchange are immersed in a water tank equipped with a heater, thermostat, cooling water supply means, and hot water forced circulation means, so that a gas-based fire extinguisher is supplied to the area to be extinguished from the outlet of the low-pressure coil. The agent is maintained within a predetermined pressure range by maintaining the water bath within a predetermined temperature range. Therefore, where rapid fluctuations in indoor pressure are not allowed,
It is extremely effective as a fire extinguishing system in nuclear fuel reprocessing chambers.

なお、室内の内部圧力の急激な変動を許されな
い消火対象区域についての消火装置として、核燃
料再処理室以外にも本発明を広く適用できること
は勿論である。
It goes without saying that the present invention can be widely applied to areas other than nuclear fuel reprocessing chambers as a fire extinguishing system for areas to be extinguished that do not allow rapid fluctuations in the internal pressure of the room.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はガス系消火剤を使用する従来の消火装
置の系統図、第2図は本発明の一実施例を示す系
統図、第3図はp−i線図による実施例の作用説
明図である。 なおR,R′は消火対象区画、4と4′は配管、
11は水槽、13は加温器、23は導入管、24
は高圧コイル、25は低圧コイル、27は圧力調
整弁である。
Fig. 1 is a system diagram of a conventional fire extinguishing system that uses a gas extinguishing agent, Fig. 2 is a system diagram showing an embodiment of the present invention, and Fig. 3 is an explanatory diagram of the operation of the embodiment using a p-i diagram. It is. Note that R and R' are the areas to be extinguished, 4 and 4' are the piping,
11 is a water tank, 13 is a warmer, 23 is an introduction pipe, 24
25 is a high-pressure coil, 25 is a low-pressure coil, and 27 is a pressure regulating valve.

Claims (1)

【特許請求の範囲】[Claims] 1 ヒータ、サーモスタツト、冷却水供給手段お
よび温水強制循環手段を備える水槽内の温水中に
熱交換用の高圧コイルと低圧コイルを浸し、高圧
コイルの出口と低圧コイルの入口を結ぶ連結管に
圧力調整弁を取付け、高圧コイルの入口に液化ガ
ス消火剤の導入管を接続し、低圧コイルの出口を
消火対象区域へ至る配管に接続したことを特徴と
する核、燃料再処理室等の消火装置。
1. A high-pressure coil and a low-pressure coil for heat exchange are immersed in hot water in a water tank equipped with a heater, thermostat, cooling water supply means, and hot water forced circulation means, and pressure is applied to a connecting pipe connecting the outlet of the high-pressure coil and the inlet of the low-pressure coil. A fire extinguishing system for nuclear, fuel reprocessing rooms, etc., characterized in that a regulating valve is installed, a liquefied gas extinguishing agent introduction pipe is connected to the inlet of the high-pressure coil, and the outlet of the low-pressure coil is connected to piping leading to the area to be extinguished. .
JP57021906A 1982-02-13 1982-02-13 Fire-extinguishing device Granted JPS58139099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57021906A JPS58139099A (en) 1982-02-13 1982-02-13 Fire-extinguishing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57021906A JPS58139099A (en) 1982-02-13 1982-02-13 Fire-extinguishing device

Publications (2)

Publication Number Publication Date
JPS58139099A JPS58139099A (en) 1983-08-18
JPH0333345B2 true JPH0333345B2 (en) 1991-05-16

Family

ID=12068138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57021906A Granted JPS58139099A (en) 1982-02-13 1982-02-13 Fire-extinguishing device

Country Status (1)

Country Link
JP (1) JPS58139099A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677609B2 (en) * 1985-12-30 1994-10-05 株式会社東芝 Fire extinguisher in the flammable material handling room in a nuclear power plant
ES2343863T3 (en) * 2005-09-26 2010-08-11 University Of Leeds ADMINISTRATION OF PHARMACO.
JP5519481B2 (en) * 2010-11-30 2014-06-11 エア・ウォーター防災株式会社 Gas pressure extinguishing damper drive system for fire extinguishing equipment
RU2712649C1 (en) * 2019-07-02 2020-01-30 Общество с ограниченной ответственностью "Научно-производственное объединение технологии энергоэффективных водных систем" Installation for hot water production mainly for fire equipment and boiler for it

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49120872A (en) * 1973-03-22 1974-11-19
JPS563308U (en) * 1979-06-21 1981-01-13

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49120872A (en) * 1973-03-22 1974-11-19
JPS563308U (en) * 1979-06-21 1981-01-13

Also Published As

Publication number Publication date
JPS58139099A (en) 1983-08-18

Similar Documents

Publication Publication Date Title
JP5775217B2 (en) Foam mixing system using compressed air
KR101504605B1 (en) An apparatus for attenuating explosive shock wave in nuclear power plant
AU766737B2 (en) Method and device for regulated injection of liquid carbon dioxide in a pressurised liquid
CN109125997B (en) Fire extinguishing agent injection apparatus
JPH0333345B2 (en)
US10099077B2 (en) Installed fire fighting apparatus for flammable objects
US4227872A (en) Apparatus for supplying alternate gases to steam injection means on a flare stack
US3473612A (en) Fire extinguishing sprinkler system
CN110478829B (en) Emergency disposal method and system for inhibiting LNG (liquefied Natural gas) vapor diffusion and liquid pool fire
AU2013276275B2 (en) Fire prevention in storage silos
HU225201B1 (en) Method and apparatus for producing of fire foam and spraying tool for expandation of said foam
KR101777301B1 (en) Emission system of carbon dioxide fire extinguishing system in nuclear power plants equipped with Electric heater for prevention of dry ice generation
US7171814B2 (en) Method and apparatus for carbon dioxide accelerated unit cooldown
CN216456632U (en) A fire-fighting device for a containerized energy storage system
US2068119A (en) Method and apparatus for generating gas
JP3062954B2 (en) Apparatus and system for storing and supplying fire extinguishing liquid CO 2 at low pressure
CN213589570U (en) Fire extinguishing device and battery test equipment
CN114306984B (en) Fire extinguishing device and battery test equipment
US2091197A (en) Fire extinguishing process
KR102008986B1 (en) Automatic fire extinguisher using hydrofluorocarbon hydrate and method of extinguishing fire using the same
JP2019504305A (en) Respiratory gas supply system that can be used in a nuclear environment
SU792645A1 (en) Method of fire extinguishing and device for effective same
JP2001201419A (en) Gas leakage detecting device
SU1282850A1 (en) Apparatus for putting out fire
US20050132722A1 (en) Method and apparatus for carbon dioxide accelerated reactor cooldown