[go: up one dir, main page]

JPH0333237A - Fibrous composite material precursor - Google Patents

Fibrous composite material precursor

Info

Publication number
JPH0333237A
JPH0333237A JP17022189A JP17022189A JPH0333237A JP H0333237 A JPH0333237 A JP H0333237A JP 17022189 A JP17022189 A JP 17022189A JP 17022189 A JP17022189 A JP 17022189A JP H0333237 A JPH0333237 A JP H0333237A
Authority
JP
Japan
Prior art keywords
fibers
continuous
thermoplastic
composite material
glass fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17022189A
Other languages
Japanese (ja)
Inventor
Yoshimasa Takahashi
高橋 良誠
Toshiaki Kitahora
北洞 俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP17022189A priority Critical patent/JPH0333237A/en
Publication of JPH0333237A publication Critical patent/JPH0333237A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

PURPOSE:To obtain the subject precursor for hot press molding, etc., having excellent bending moldability and impregnating property imparting excellent physical properties and appearance to molded material by mixing thermoplastic continuous fiber and continuous glass fiber in a specific mixing ratio. CONSTITUTION:For instance, (A) thermoplastic continuous fiber as non-twisted multifilament having >=10 Turn/m twist, <=15% thermal shrinkage at (melting point -50 deg.C) and 0-0.3wt.% emulsion uptake is mixed with (B) 5-80wt.% (to total) continuous glass fiber as non-twisted multifilament having <=10 Turn/m, 8-23mum single filament diameter and 0.05-0.4wt.% emulsion uptake in >=30% mixing degree to afford the aimed precursor.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は熱可塑性複合材料を得るための繊維状複合材料
前駆体に関して、さらに詳細には、熱可塑性連続繊維と
連続ガラス繊維を混繊し、湾曲成形性および、特に含浸
性に優れた繊維状複合材料前駆体に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a fibrous composite material precursor for obtaining a thermoplastic composite material, and more specifically, to a composite material precursor for obtaining a thermoplastic composite material. The present invention relates to a fibrous composite material precursor that has excellent bendability and particularly impregnability.

(従来の技術) 従来、熱可塑性複合材料前駆体を得るためには、補強繊
維間に熱可塑性樹脂を溶融させて含浸する方法が知られ
ているが、このように含浸した複合材料前駆体のテープ
は極めて剛く、複雑な形状のモールドに沿わして湾■成
形をすることが困難であった。そこで、上記欠点を解決
するために、熱可塑性連続繊維を連続補強繊維の周囲に
巻き付ける方法が英国特許GB2105247、特開昭
60−58545などに開示されている。しかしながら
、この方法で得られた繊維状複合材料前駆体を成形加工
し、熱可塑性繊維を溶融させ補強繊維間に熱可塑性マト
リックスを十分含浸させるには、十分な時間と十分な圧
力を要し、成形のサイクルタイムが長くなり、しいては
コスト高となる。
(Prior art) Conventionally, in order to obtain a thermoplastic composite material precursor, a method of melting and impregnating a thermoplastic resin between reinforcing fibers is known. The tape was extremely stiff, making it difficult to mold it into a curve along a mold with a complex shape. In order to solve the above-mentioned drawbacks, methods of wrapping thermoplastic continuous fibers around continuous reinforcing fibers are disclosed in British Patent GB2105247, Japanese Patent Application Laid-Open No. 60-58545, and the like. However, it takes sufficient time and sufficient pressure to mold the fibrous composite material precursor obtained by this method, melt the thermoplastic fibers, and sufficiently impregnate the thermoplastic matrix between the reinforcing fibers. This increases the molding cycle time and increases costs.

そのため、この問題点を解決するため熱可塑性連続繊維
と連続補強繊維を混繊し、複合材料前駆体を得る方法が
特開昭80−209034、特開昭82−135537
、特開昭63−154745に開示されている。しかし
、これらの方法では、混繊方法が複雑で、生産性が低く
、かつ混繊度も充分とは言えず、熱処理による溶融熱可
塑性繊維の補強繊維間への含浸は不充分であった。
Therefore, in order to solve this problem, a method of mixing thermoplastic continuous fibers and continuous reinforcing fibers to obtain a composite material precursor has been proposed in Japanese Patent Application Laid-open No. 80-209034 and No. 82-135537.
, disclosed in Japanese Patent Application Laid-Open No. 63-154745. However, in these methods, the fiber mixing method is complicated, productivity is low, and the degree of fiber mixing is not sufficient, and impregnation of molten thermoplastic fibers between reinforcing fibers by heat treatment is insufficient.

(発明が解決しようとする課題) 上記熱可塑性連続繊維と、連続補強繊維とを混繊した繊
維状複合材料前駆体において、特に熱可塑性連続繊維と
連続ガラス繊維とを混繊した繊維状複合材料前駆体にお
いて、該熱可塑性連続繊維は、通常紡糸時に、収束性、
滑性、静電気発生防止など操業性を上げるため平滑剤、
静電防止剤等の処理剤を付与している。しかし、この処
理剤により熱可塑性繊維同士の収束力が強くなり、単糸
段階に熱可塑性連続繊維が開繊せず、連続ガラス繊維と
均一に混繊することができない。さらに、この処理剤は
加熱成形時の熱で劣化し変色し成形品の外観に着色をも
たらす。一方、連続ガラス繊維にはマトリックスとの接
着力を高め、更にガラス繊維の損傷を防ぎ、紡糸時の操
業性を上げるため、カップリング剤、フィルムフォーマ
−1滑剤などが付与されている。しかし、この処理剤の
ためガラス繊維同士の収束性が高く、単糸段階にガラス
繊維が開繊せず、熱可塑性連続繊維と均一に混繊するこ
とができない。このことは、より高い混繊度が得られず
、しいては複合材料成形品中における熱可塑性マトリッ
クスのガラス繊維間への含浸が難しく、またガラス繊維
の分散も悪く複合材料成形品の物性が低くなる。また、
十分に含浸させるためには、十分な時間と十分な圧力が
必要となり成形のサイクルタイムが長くなり、しいては
コスト高となる。
(Problems to be Solved by the Invention) In the fibrous composite material precursor that is a mixture of the above-mentioned thermoplastic continuous fibers and continuous reinforcing fibers, especially a fibrous composite material that is a mixture of thermoplastic continuous fibers and continuous glass fibers. In the precursor, the thermoplastic continuous fiber usually has convergence,
Smoothing agent to improve operability such as lubricity and prevention of static electricity generation.
A treatment agent such as an antistatic agent is applied. However, this treatment agent increases the convergence force between the thermoplastic fibers, so that the thermoplastic continuous fibers do not open at the single fiber stage and cannot be uniformly mixed with the continuous glass fibers. Furthermore, this treatment agent deteriorates and discolors due to the heat during hot molding, resulting in coloring of the appearance of the molded product. On the other hand, a coupling agent, a film former 1 lubricant, etc. are added to the continuous glass fiber in order to increase the adhesive strength with the matrix, further prevent damage to the glass fiber, and improve operability during spinning. However, because of this treatment agent, the glass fibers have a high convergence property, and the glass fibers do not open at the single filament stage, making it impossible to uniformly mix them with the thermoplastic continuous fibers. This means that a higher blending degree cannot be obtained, which makes it difficult to impregnate the thermoplastic matrix between the glass fibers in the composite material molded product, and the glass fibers are poorly dispersed, resulting in poor physical properties of the composite material molded product. Become. Also,
In order to achieve sufficient impregnation, sufficient time and pressure are required, which increases the molding cycle time and increases costs.

(課題を解決するための手段) 上記問題点を解決するため、鋭意研究した結果、本発明
に至った。すなわち、本発明は、下記の(a)熱可塑性
連続繊維と(b)連続ガラス繊維との混繊度が30%以
上である繊維状複合材料前駆体であり、 (a)熱可塑性連続繊維:実質的に無撚りのマルチフィ
ラメントであり、処理剤付与量が0〜0.3重量%。
(Means for Solving the Problems) In order to solve the above problems, as a result of intensive research, the present invention was achieved. That is, the present invention is a fibrous composite material precursor having a blending degree of 30% or more of the following (a) thermoplastic continuous fibers and (b) continuous glass fibers, (a) thermoplastic continuous fibers: substantially It is a non-twisted multifilament, and the amount of processing agent applied is 0 to 0.3% by weight.

(b)連続ガラス繊維:実質的に無撚りのマルチフィラ
メントであり、処理剤付与量が0.05〜0.4重量%
である。
(b) Continuous glass fiber: substantially untwisted multifilament, with a treatment agent applied amount of 0.05 to 0.4% by weight
It is.

以下に本発明の詳細な説明する。本発明に用いられる熱
可塑性連続繊維としては、ポリオレフィン、ビニル系ポ
リマー ポリエステル、ナイロン、ボリフェニレンサル
フTイド、ポリエーテルケトン、ポリ・エーテル・エー
テル・ケトン等があげられるが、熱可塑性高分子物質を
溶融状態でノズルより押し出して、紡糸した連続繊維で
あればいずれでもよく、特に限定しない。この熱可塑性
連続繊維は10本〜10000本のマルチフィラメント
であり、且つ実質的に無よりであることが必要である。
The present invention will be explained in detail below. Examples of the thermoplastic continuous fibers used in the present invention include polyolefin, vinyl polymer polyester, nylon, polyphenylene sulfide, polyether ketone, polyether ether ketone, etc. Any continuous fiber extruded from a nozzle in a molten state and spun may be used, and there is no particular limitation. This thermoplastic continuous fiber must be a multifilament of 10 to 10,000 fibers and must be substantially untwisted.

この実質的無よりとは、10Turn/m以下のことで
ある。また、上記熱可塑性連続繊維の熱収縮率が小さい
ことが望ましく、約融点−50℃での熱収縮率が15%
以下、特に望ましくは10%以下がよい。一般に、熱可
塑性連続繊維を紡糸した直後に、収束性をあげ、滑性を
付与し、静電気発生防止や、後加工性をよくするため、
通常1.0%程度処理剤を付与する。しかし本発明では
、該処理剤を全く付与しないか、もしくは、0.3重量
%以下付与したものであることが必要である。全く付与
しない場合、紡糸後の巻き取りが、静電気発生等で不可
能となることがあるので、0.3重量%以下、望ましく
は0.1〜0.2重量%付与したものがよい。またその
処理剤の種類は、通常用いられているものでよく、特に
限定しない。このように、実質的に無よりであることと
、さらに処理剤の量を減らしたことにより、熱可塑性連
続繊維が開繊し易くなり、連続ガラス繊維と混繊し易く
なる。また、処理剤の熱劣化による着色もほとんど無く
すことができる。一方、連続ガラス繊維は、実質的に無
よりの、単糸径が8〜23#園のマルチフィラメントが
よく、望ましくは13〜23μmのマルチフィラメント
がよい。この実質的無よりとは、10 Turn/ m
以下のことであり、特に5 Turn/ m未満が好ま
しい。一般に、連続ガラス繊維を紡糸した直後に、マト
リックスとの接着を高め、更にはガラス繊維の損傷を防
ぎ、紡糸時の操業性を上げるため、カップリング剤、フ
ィルムフォーマ−1滑剤などが付与されている。
This "substantially nothing" means 10 turns/m or less. In addition, it is desirable that the thermoplastic continuous fiber has a small heat shrinkage rate, and the heat shrinkage rate at about melting point -50°C is 15%.
It is particularly preferably 10% or less. Generally, immediately after spinning thermoplastic continuous fibers, in order to improve convergence, give slipperiness, prevent static electricity generation, and improve post-processability,
Usually about 1.0% of processing agent is applied. However, in the present invention, it is necessary that the processing agent is not applied at all or is applied in an amount of 0.3% by weight or less. If it is not added at all, winding after spinning may become impossible due to the generation of static electricity, so it is preferable to add 0.3% by weight or less, preferably 0.1 to 0.2% by weight. Further, the type of processing agent may be one commonly used and is not particularly limited. As described above, since the thermoplastic continuous fibers are substantially untwisted and the amount of the processing agent is reduced, the thermoplastic continuous fibers are easily opened and mixed with the continuous glass fibers. Furthermore, coloration due to thermal deterioration of the processing agent can be almost eliminated. On the other hand, the continuous glass fiber is preferably a substantially untwisted multifilament with a single thread diameter of 8 to 23 μm, preferably a multifilament of 13 to 23 μm. This virtual nothingness means 10 turns/m
The following is particularly preferred, and less than 5 Turn/m is particularly preferred. Generally, immediately after spinning continuous glass fibers, coupling agents, film former 1 lubricants, etc. are added to enhance adhesion with the matrix, prevent damage to the glass fibers, and improve operability during spinning. There is.

これら処理剤の量は目的によって異なるが通常、カップ
リング剤、フィルムフォーマ−1滑剤なと全部合計して
、0.5〜1.0重量%程度付与されている。しかし、
本発明では処理剤の量を減らし、0.05〜0.4重量
%付与したものが必要である。望ましくは、0.20〜
0.30重量%である。処理剤の種類に関しては、マト
リックスの種類に応じて選択する必要がある。
Although the amount of these processing agents varies depending on the purpose, the total amount of the coupling agent, film former lubricant, etc. is usually about 0.5 to 1.0% by weight. but,
In the present invention, it is necessary to reduce the amount of the processing agent and apply it in an amount of 0.05 to 0.4% by weight. Desirably 0.20~
It is 0.30% by weight. Regarding the type of processing agent, it is necessary to select it depending on the type of matrix.

特に、カップリング剤は吟味する必要がある。In particular, coupling agents need to be carefully examined.

般には、ポリエステルにはエポキシ系、ナイロンにはア
ミン系、ウレタン系、アクリル系がよいが、これに限定
するものではない。また、これらカップリング剤、フィ
ルムフォーマ−滑剤の比率は通常と同じでよいが、望ま
しくは、フィルムフォーマ−の比率を小さくするのがよ
い。このように、連続ガラス繊維の処理剤量を減らした
ことにより、連続ガラス繊維が開繊し易くなり、熱可塑
性連続繊維も処理剤量を減らして、開繊し易くなうたこ
とと相まって両者の混繊が容易になり、しいては熱成形
後の複合材料中のガラス繊維間への熱可塑性マトリック
スの含浸がよくなる。上記のように処理剤量を減らした
熱可塑性連続繊維と、連続ガラス繊維を混繊する手段は
、一般の繊維加工の方法が挙げられ、混繊度30%以上
を達成できるものであれば特に限定しないが、インター
レサー法やラスラン法やこれらの併用法が容易に高い混
繊度を得ることができるので好ましい。この混繊度とは
、混繊された繊維状複合材料前駆体の断面を顕微鏡下で
写真に撮影し、熱可塑性繊維に接触しているガラス繊維
の本数を数え次の式により混繊度を求める。
In general, epoxy-based materials are preferred for polyester, and amine-based, urethane-based, and acrylic materials are preferred for nylon, but the materials are not limited to these. Further, the ratio of the coupling agent and the film former to the lubricant may be the same as usual, but it is desirable to reduce the ratio of the film former. In this way, by reducing the amount of treatment agent for continuous glass fibers, continuous glass fibers are easier to open, and by reducing the amount of treatment agent for thermoplastic continuous fibers, it is easier to open them. Fiber mixing becomes easier, and the thermoplastic matrix is better impregnated between the glass fibers in the composite material after thermoforming. As mentioned above, the method of mixing thermoplastic continuous fibers with a reduced amount of processing agent and continuous glass fibers includes general fiber processing methods, and is particularly limited as long as it can achieve a mixing degree of 30% or more. However, it is preferable to use the interlacer method, the raslan method, or a combination of these methods because they can easily obtain a high degree of blending. The degree of blending is determined by taking a photograph of the cross section of the blended fibrous composite material precursor under a microscope, counting the number of glass fibers in contact with the thermoplastic fibers, and determining the degree of blending using the following formula.

また、熱可塑性連続繊維と連続ガラス繊維の混率は、全
体に対して連続ガラス繊維の重量で5〜80重量%がよ
く、目的に応じて決定すればよい。
Further, the mixing ratio of the thermoplastic continuous fibers and the continuous glass fibers is preferably 5 to 80% by weight of the continuous glass fibers based on the total weight, and may be determined depending on the purpose.

このようにして得られた、繊維状複合材料前駆体は、繊
維状態のままフィラメントワインディング、プルトルー
ジβン成形に適用したり、あるいは、製編織し熱圧プレ
ス成形に適用できる。このように、繊維状あるいは布帛
状であるので、柔軟であり複雑な形状のモールドに沿わ
して湾曲成形が可能である。更に、混繊度が高いため、
比較的短時間、低圧力の成形条件で熱可塑性マトリック
スがガラス繊維間に十分含浸しかつ接着し、また、ガラ
ス繊維が十分に開繊しているので、複合材料成形品中で
のガラス繊維の分散が良好であるため、得られた複合材
料成形品は優れた物性を有している。
The fibrous composite material precursor obtained in this manner can be applied to filament winding or pultrude beta molding in its fibrous state, or can be knitted and woven and applied to hot press molding. In this way, since it is in the form of fibers or cloth, it is flexible and can be curved and molded along a mold with a complicated shape. Furthermore, due to the high degree of blending,
The thermoplastic matrix sufficiently impregnates and bonds between the glass fibers under relatively short and low pressure molding conditions, and the glass fibers are sufficiently opened, so that the glass fibers in the composite molded product are Since the dispersion is good, the obtained composite material molded product has excellent physical properties.

(作用) 通常、熱可塑性連続繊維を紡糸したときに、平滑剤、静
電防止剤等の処理剤を、種類にもよるが約1.0重量%
程度付与する。これにより、熱可塑性連続繊維間の収束
力が高まり、開繊しにくくなり、ガラス繊維と混合しに
くくなる。そこで、処理剤を全く付与しないのが望まし
いが、静電気の発生で操業や、巻き取りが困難となる場
合がある。そのため、処理剤をできるだけ少なくシ、操
業できる処理剤量を検討したところ、繊維の種類によっ
ても異なるが約0.3重量%程度付与すればよいことが
わかった。この付与量はJIS  L1013の溶剤抽
出骨に従って測定したものである。このように、処理剤
量を減らすことにより飛躍的に熱可塑性連続繊維の開繊
性が高くなり、連続ガラス繊維との混繊が非常に容易に
なり、混繊度も大幅に高くできる。また、通常、これら
処理剤は高温で熱劣化して変色する。すなわち、酸形加
工温度で着色が生じる。しかし、0.3重量%程度では
、はぼ着色しなくなる。一方、連続ガラス繊維は、マト
リックスとの接着性、ガラス繊維の損傷防止のため、カ
ップリング剤、フィルムフォーマ−1滑剤などが0.5
〜1.0重量%程度付与されている。この処理剤により
、ガラス繊維は強固に収束し開繊せず、熱可塑性連続繊
維と混合しない。この場合も、上記と同様、処理剤を減
らせばよいが、マトリックスとの接着性を確保し、さら
には、成形品の強度を保持するため、ガラス繊維の損傷
を防がなければならない。そこで、処理剤の量を0.0
5〜0.4重量%付与することにより、上記問題が解決
できることがわかった。
(Function) Normally, when thermoplastic continuous fibers are spun, processing agents such as smoothing agents and antistatic agents are added in an amount of about 1.0% by weight, depending on the type.
Give degree. This increases the convergence force between the thermoplastic continuous fibers, making it difficult to open them and making it difficult to mix them with glass fibers. Therefore, it is desirable not to apply any processing agent at all, but the generation of static electricity may make operation and winding difficult. Therefore, when we investigated the amount of processing agent that could be used during operation by minimizing the amount of processing agent, we found that it is sufficient to apply about 0.3% by weight, although it varies depending on the type of fiber. This applied amount was measured according to JIS L1013 for solvent extracted bone. In this way, by reducing the amount of processing agent, the opening properties of the thermoplastic continuous fibers are dramatically increased, the fibers can be mixed with continuous glass fibers very easily, and the degree of fiber mixing can be greatly increased. Further, these processing agents usually undergo thermal deterioration and discoloration at high temperatures. That is, coloring occurs at acidic processing temperatures. However, at about 0.3% by weight, no uneven coloring occurs. On the other hand, for continuous glass fibers, coupling agents, film former 1 lubricants, etc.
Approximately 1.0% by weight is added. With this treatment agent, the glass fibers are tightly converged and do not spread, and do not mix with the thermoplastic continuous fibers. In this case as well, the amount of processing agent can be reduced as described above, but damage to the glass fibers must be prevented in order to ensure adhesion with the matrix and maintain the strength of the molded product. Therefore, the amount of processing agent was reduced to 0.0
It has been found that the above problem can be solved by adding 5 to 0.4% by weight.

この付与量は、強熱減量で測定したものである。This applied amount was measured by loss on ignition.

この程度の付与量でも、マトリックスとの接着性を確保
でき、ガラス繊維の損傷を防ぐことができ、しかも、ガ
ラス繊維の損傷を防ぐことができ、しかも、ガラス繊維
の開繊性を大幅に向上できることがわかった。このこと
により、連続ガラス繊維と熱可塑性連続繊維との混繊が
飛躍的に容易になり、繊維状複合材料前駆体中のガラス
繊維の分散が良好となる。しかし、マトリックスの種類
によって、処理剤の組成を変更する必要がある。すなわ
ち、最適の処理剤の選定が重要である。このように、処
理剤量を減らし、開繊しやすくなった熱可塑性連続繊維
と、連続ガラス繊維は、混合しゃすく混繊度を高くする
ことが可能である。このことは、すなわち比較的短時間
、低圧力の成形条件で熱可塑性マトリックスがガラス繊
維間に十分含浸しかつ接着し、また、ガラス繊維が十分
に開繊しているので、繊維状複合材料前駆体中及び加熱
加圧成形後の複合材料成形品中のガラス繊維の分散が良
好であるため、優れた物性を有した複合材料成形品が得
られる。
Even with this amount of application, it is possible to ensure adhesion with the matrix and prevent damage to the glass fibers.Moreover, it is possible to prevent damage to the glass fibers, and to greatly improve the opening properties of the glass fibers. I found out that it can be done. This dramatically facilitates the mixing of continuous glass fibers and thermoplastic continuous fibers, and improves the dispersion of glass fibers in the fibrous composite material precursor. However, it is necessary to change the composition of the processing agent depending on the type of matrix. That is, it is important to select the optimal treatment agent. In this way, thermoplastic continuous fibers and continuous glass fibers, which are easier to spread by reducing the amount of processing agent, can be mixed and the degree of blending can be increased. This means that the thermoplastic matrix sufficiently impregnates and adheres between the glass fibers under relatively short and low pressure molding conditions, and that the glass fibers are sufficiently opened to form a fibrous composite material precursor. Since the glass fibers are well dispersed in the body and in the composite material molded product after heat and pressure molding, a composite material molded product with excellent physical properties can be obtained.

(実施例) 以下実施例により本発明を説明するが、本発明はこれに
限定されるものではない。
(Example) The present invention will be explained below with reference to Examples, but the present invention is not limited thereto.

実施例 1 熱可塑性連続繊維としてポリエチレンテレフタレート繊
維を用いた。この繊維は450デニール、96フイラメ
ントの処理剤を付与されていない、実質的に無よりのマ
ルチフィラメントである。これを4水引そろえて、18
00デニール、384フイラメントの実質的に無よりの
マルチフィラメントとした。また、この繊維の200℃
における熱収縮率は8.7%であった。一方、連続ガラ
ス繊維として180TX、400フイラメントの実質的
に無よりのマルチフィラメントを用いた。このガラス繊
維には、通常より大幅に減らした処理剤が付与されてい
る。このガラス繊維の強熱減量を測定したところ、0.
31重量%であった。この両繊維を、横取りし、よりを
入れないようにしてインターレーサーを用いて混繊した
。このようにして、得られた繊維状複合材料前駆体断面
を顕微鏡下で写真に撮影し、本文中に示した方法でa繊
度を求めたところ、48%であった。この繊維状複合材
料前駆体を、平織物にした。この平織物を10 cm 
X 10 cmに切り出し24枚重ね、280℃のプレ
スで15 kg / cJの圧力で3分間プレスした。
Example 1 Polyethylene terephthalate fibers were used as thermoplastic continuous fibers. The fiber is a 450 denier, 96 filament, untreated, substantially pure multifilament. Align 4 of these, 18
The multifilament was a substantially solid multifilament of 00 denier, 384 filament. Also, the temperature of this fiber at 200℃
The heat shrinkage rate was 8.7%. On the other hand, a substantially untwisted multifilament of 180TX and 400 filaments was used as the continuous glass fiber. The glass fibers are treated with significantly less treatment agent than usual. When the ignition loss of this glass fiber was measured, it was found to be 0.
It was 31% by weight. Both fibers were taken aside and mixed using an interlacer without twisting. The cross section of the fibrous composite material precursor thus obtained was photographed under a microscope, and the fineness a was determined using the method described in the text, and was found to be 48%. This fibrous composite material precursor was made into a plain weave. 10 cm of this plain weave
24 sheets were cut out to a size of 10 cm x 10 cm, stacked on top of each other, and pressed at 280° C. for 3 minutes at a pressure of 15 kg/cJ.

得られた複合材料成形品は31−の厚みの平板であった
。この平板を15m■に切り出しJISK7055に従
って■げ試験をおこなったところ、曲げ試験をおこなっ
たところ、曲げ強度51 kg f/平方ミリ、曲げ弾
性率4700 kg f /平方ミリであった。この試
験片のガラス繊維含有率を強熱減量で測定したところ4
7重量%であった。試験片の断面を走査型電子顕微鏡で
観察したところ、マトリックス中にガラス繊維が均一に
分散しており、どのガラス繊維も十分濡れていた。また
、成形品の外観は白色であった。
The obtained composite material molded product was a flat plate with a thickness of 31 mm. This flat plate was cut into 15 m square pieces and subjected to a bending test according to JIS K7055.The bending test revealed that the bending strength was 51 kgf/mm2 and the bending modulus was 4700 kgf/mm2. The glass fiber content of this test piece was measured by loss on ignition.
It was 7% by weight. When the cross section of the test piece was observed using a scanning electron microscope, it was found that the glass fibers were uniformly dispersed in the matrix, and all the glass fibers were sufficiently wet. Moreover, the appearance of the molded product was white.

比較例 1 連続ガラス繊維の強熱減量が0.6重量%である以外、
実施例1と同様にした。混繊度は18%であった。同様
に平板を作製して■げ試験を行った。■げ強度は37 
kg f /平方ミリ、助げ胛性率3900 kg f
 /平方ミリであった。この試験片のガラス繊維含有率
を強熱減量で測定したところ46重量%であった。試験
片の断面を走査型電子顕微鏡で観察したところ、マトリ
ックス中にガラス繊維が固まって存在していた。また、
成形品の外観は白色であった。
Comparative Example 1 Except that the ignition loss of the continuous glass fiber was 0.6% by weight,
The same procedure as in Example 1 was carried out. The degree of blending was 18%. A flat plate was prepared in the same manner and a cracking test was conducted. ■Barge strength is 37
kg f / square millimeter, support rate 3900 kg f
/ square millimeter. The glass fiber content of this test piece was measured by loss on ignition and was found to be 46% by weight. When the cross section of the test piece was observed using a scanning electron microscope, glass fibers were found to be solidified in the matrix. Also,
The appearance of the molded product was white.

比較例 2 熱可塑性連続繊維が約1.0重量%の処理剤を付与され
ている以外、実施例1と同様にした。混繊度は23%で
あった。同様に平板を作製して1111げ試験を行った
。曲げ強度は32 kg f /平方ミリ、曲げ弾性率
3750 kg f /平方ミリであった。この試験片
のガラス繊維含有率を強熱減量で測定したところ47重
量%であった。試験片の断面を走査型電子顕微鏡で観察
したところ、ガラス繊維がマトリックス中に分散してい
るところと、マトリックスがかたまっているところがみ
られた。また、成形品の外観は茶褐色であった。
Comparative Example 2 Same as Example 1 except that the thermoplastic continuous fibers were treated with about 1.0% by weight of the treatment agent. The degree of blending was 23%. A flat plate was prepared in the same manner and the 1111 test was conducted. The bending strength was 32 kg f /mm², and the bending modulus was 3750 kg f /mm². The glass fiber content of this test piece was measured by loss on ignition and was found to be 47% by weight. When the cross section of the test piece was observed using a scanning electron microscope, it was found that the glass fibers were dispersed in the matrix and the matrix was clumped together. Moreover, the appearance of the molded product was brownish-brown.

(発明の効果) 本発明の繊維状複合材料前駆体を成形して得られた複合
材料成形品中のガラス繊維の分散がよく、かつ熱可塑性
樹脂がよく含浸されているので成形品の物性が優れてい
る。
(Effects of the Invention) The glass fibers in the composite material molded product obtained by molding the fibrous composite material precursor of the present invention are well dispersed, and the thermoplastic resin is well impregnated, so that the physical properties of the molded product are improved. Are better.

また、成形中に変色が起こらないので外観の良好な成形
品を得ることができる。
Moreover, since no discoloration occurs during molding, a molded product with good appearance can be obtained.

Claims (1)

【特許請求の範囲】 下記の(a)熱可塑性連続繊維と(b)連続ガラス繊維
との混繊度が30%以上である繊維状複合材料前駆体。 (a)熱可塑性連続繊維:実質的に無撚りのマルチフィ
ラメントであり、処理剤付与量が0〜0.3重量%。 (b)連続ガラス繊維:実質的に無撚りのマルチフィラ
メントであり、処理剤付与量が0.05〜0.4重量%
[Scope of Claims] A fibrous composite material precursor comprising the following (a) thermoplastic continuous fibers and (b) continuous glass fibers having a blending degree of 30% or more. (a) Thermoplastic continuous fiber: substantially untwisted multifilament, with a processing agent applied amount of 0 to 0.3% by weight. (b) Continuous glass fiber: substantially untwisted multifilament, with a treatment agent applied amount of 0.05 to 0.4% by weight
.
JP17022189A 1989-06-30 1989-06-30 Fibrous composite material precursor Pending JPH0333237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17022189A JPH0333237A (en) 1989-06-30 1989-06-30 Fibrous composite material precursor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17022189A JPH0333237A (en) 1989-06-30 1989-06-30 Fibrous composite material precursor

Publications (1)

Publication Number Publication Date
JPH0333237A true JPH0333237A (en) 1991-02-13

Family

ID=15900915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17022189A Pending JPH0333237A (en) 1989-06-30 1989-06-30 Fibrous composite material precursor

Country Status (1)

Country Link
JP (1) JPH0333237A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013253343A (en) * 2012-06-07 2013-12-19 Asahi Kasei Fibers Corp Composite yarn
JP2014037639A (en) * 2012-08-13 2014-02-27 Asahi Kasei Fibers Corp Composite yarn fabric
JP2014062340A (en) * 2012-09-20 2014-04-10 Asahi Kasei Fibers Corp Cord knitted fabric
WO2014136662A1 (en) 2013-03-06 2014-09-12 三菱瓦斯化学株式会社 Combined filamanet yarn, woven and knitted fabric, composite material, and process for manufacturing composite material
WO2015056642A1 (en) * 2013-10-18 2015-04-23 三菱瓦斯化学株式会社 Commingled yarn, method for producing same, and textile

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013253343A (en) * 2012-06-07 2013-12-19 Asahi Kasei Fibers Corp Composite yarn
JP2014037639A (en) * 2012-08-13 2014-02-27 Asahi Kasei Fibers Corp Composite yarn fabric
JP2014062340A (en) * 2012-09-20 2014-04-10 Asahi Kasei Fibers Corp Cord knitted fabric
WO2014136662A1 (en) 2013-03-06 2014-09-12 三菱瓦斯化学株式会社 Combined filamanet yarn, woven and knitted fabric, composite material, and process for manufacturing composite material
WO2015056642A1 (en) * 2013-10-18 2015-04-23 三菱瓦斯化学株式会社 Commingled yarn, method for producing same, and textile
CN105189842A (en) * 2013-10-18 2015-12-23 三菱瓦斯化学株式会社 Commingled yarn, method for producing same, and textile
TWI571542B (en) * 2013-10-18 2017-02-21 Mitsubishi Gas Chemical Co Mixed yarn and its manufacturing method and fabric
CN105189842B (en) * 2013-10-18 2017-03-15 三菱瓦斯化学株式会社 Combined yarn and its manufacture method and yarn fabric
US11236446B2 (en) 2013-10-18 2022-02-01 Mitsubishi Gas Chemical Company, Inc. Commingled yarn, method for manufacturing the commingled yarn, and, weave fabric

Similar Documents

Publication Publication Date Title
Sohn et al. Mode II delamination toughness of carbon-fibre/epoxy composites with chopped Kevlar fibre reinforcement
JP5033300B2 (en) Flexible polymer elements as toughening agents in prepregs.
EP3029089B1 (en) Fiber-reinforced composite material and method for producing same
EP0091547B1 (en) Coated extended chain polyolefin fiber
CA1294772C (en) Composite fiber blends
US3063883A (en) Reinforced resin laminates
JPH0580499B2 (en)
JP2676532B2 (en) Highly heat-stable polyarylene thioether ketone prepreg and molded articles thereof
JPH0333237A (en) Fibrous composite material precursor
JP4305081B2 (en) Oil for carbon fiber production and method for producing carbon fiber
JP3178562B2 (en) Yarn for thermoplastic composites
JP2623282B2 (en) Molding material
JP3345661B2 (en) Yarn for thermoplastic composites
JP3145182B2 (en) Prepreg
JP2830458B2 (en) Reinforced fiber composite pellet mixture
JP2000303362A (en) Sizing agent and chopped carbon fiber treated with the sizing agent
JPH01111040A (en) Blended fabric and molded article thereof
JP3067058B2 (en) Non-woven fabric for resin reinforcement
JPH0359038A (en) Precursor of thermoplastic composite material and its production
JP3314826B2 (en) Thermoplastic composite sheet
KR960005469B1 (en) Molded Composite Fiber Yarn
JPH0439334A (en) Production of thermoplastic polyester resin composition reinforced with long fiber
JPH0647740A (en) Continuous glass filament thermoplastic resin pellet
JPH02206621A (en) Friction material
Handlos et al. Sheet extrusion of microcomposites based on thermotropic liquid crystalline polymers and polypropylene