JPH0331093B2 - - Google Patents
Info
- Publication number
- JPH0331093B2 JPH0331093B2 JP1823787A JP1823787A JPH0331093B2 JP H0331093 B2 JPH0331093 B2 JP H0331093B2 JP 1823787 A JP1823787 A JP 1823787A JP 1823787 A JP1823787 A JP 1823787A JP H0331093 B2 JPH0331093 B2 JP H0331093B2
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- formula
- separation
- polyamide
- repeating unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000012528 membrane Substances 0.000 claims description 115
- 238000000926 separation method Methods 0.000 claims description 56
- 239000004952 Polyamide Substances 0.000 claims description 37
- 229920002647 polyamide Polymers 0.000 claims description 37
- 239000000463 material Substances 0.000 claims description 12
- 239000002253 acid Substances 0.000 claims description 4
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical group OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 claims description 3
- KKEYFWRCBNTPAC-UHFFFAOYSA-N terephthalic acid group Chemical group C(C1=CC=C(C(=O)O)C=C1)(=O)O KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 claims description 3
- 239000007789 gas Substances 0.000 description 31
- 239000012510 hollow fiber Substances 0.000 description 20
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 15
- 239000001301 oxygen Substances 0.000 description 15
- 229910052760 oxygen Inorganic materials 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 230000009172 bursting Effects 0.000 description 10
- 238000000108 ultra-filtration Methods 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 229920001577 copolymer Polymers 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 230000001954 sterilising effect Effects 0.000 description 7
- 238000004659 sterilization and disinfection Methods 0.000 description 7
- 239000010408 film Substances 0.000 description 6
- 239000012530 fluid Substances 0.000 description 6
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 239000011550 stock solution Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 229920002307 Dextran Polymers 0.000 description 3
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- KIFDSGGWDIVQGN-UHFFFAOYSA-N 4-[9-(4-aminophenyl)fluoren-9-yl]aniline Chemical class C1=CC(N)=CC=C1C1(C=2C=CC(N)=CC=2)C2=CC=CC=C2C2=CC=CC=C21 KIFDSGGWDIVQGN-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- FDQSRULYDNDXQB-UHFFFAOYSA-N benzene-1,3-dicarbonyl chloride Chemical compound ClC(=O)C1=CC=CC(C(Cl)=O)=C1 FDQSRULYDNDXQB-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 238000001223 reverse osmosis Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- LXEJRKJRKIFVNY-UHFFFAOYSA-N terephthaloyl chloride Chemical compound ClC(=O)C1=CC=C(C(Cl)=O)C=C1 LXEJRKJRKIFVNY-UHFFFAOYSA-N 0.000 description 2
- DVVGIUUJYPYENY-UHFFFAOYSA-N 1-methylpyridin-2-one Chemical compound CN1C=CC=CC1=O DVVGIUUJYPYENY-UHFFFAOYSA-N 0.000 description 1
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- PWAXUOGZOSVGBO-UHFFFAOYSA-N adipoyl chloride Chemical compound ClC(=O)CCCCC(Cl)=O PWAXUOGZOSVGBO-UHFFFAOYSA-N 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010797 grey water Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 235000021056 liquid food Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000003961 organosilicon compounds Chemical class 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/56—Polyamides, e.g. polyester-amides
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Description
産業上の利用分野
本発明は耐熱性と機械的強度に優れた分離膜に
関するものである。
さらに詳しくは、芳香族縮合環系のポリアミド
を膜材料の主体とする、耐熱性と機械的強度に優
れた分離膜であつて、湿潤膜は熱流体中での使用
および高圧水蒸気減菌操作を可能とする耐熱性限
外濾過膜を提供するものであり、さらに、乾燥膜
は高温混合気体から特定気体を富化する気体分離
膜、とくに、空気から酸素を優先的に透過させる
等の酸素富化膜に適するものである。
従来の技術
最近、精密濾過膜、限外濾過膜、逆浸透膜、気
体分離膜等の有機高分子を膜素材として利用する
分離技術の進歩発展には著しいものがあり、その
いくつかは工業的規模で実用化されている。例え
ば、工業廃液の処理、ビル排水の中水化、液体状
食品の濃縮には精密濾過膜あるいは限外濾過膜が
用いられ、海水の淡水化には逆浸透膜が用いられ
ている。
しかし、これらの分離膜は耐熱性に乏しく、高
温流体用分離膜は研究段階にとどまり、さらに高
い耐熱性が要求される高圧水蒸気減菌処理を可能
とする分離膜は未だ提唱されていない。気体分離
膜すなわち混合気体から特定の気体を富化する分
離膜に関しては、水素ガスとメタンガス等分子量
が大きく異なる気体の膜分離は実用段階にある
が、酸素濃度が高められた空気を得る酸素富化膜
は医療分野での実用化に限定されている。
酸素富化空気の工業的な用途として必ずしも高
酸素濃度を必要としない分野が多々あり、例えば
高炉あるいは高温ガス炉等燃焼炉送風用としては
25〜30%の酸素を含有する酸素富化空気であれば
その目的は達成されるが、このような用途では、
酸素富化空気の安定かつ大量供給とともに低価格
であることが要求される。
酸素富化空気を気体分離膜で得る際の技術的な
問題点は、膜分離能力を低下させずに膜単位面積
当りの透過流量を増大させることであり、さら
に、分離膜を組み立ててモジユールとして実用に
供されたときのモジユール単位容積当りの膜面積
を増大することである。
また、分離膜の厚さと膜単位当りの透過流量と
は逆比例関係があり、透過流量を増大させるため
には、分離膜の厚さを薄くする必要がある。かか
る酸素富化膜の製膜法としては、従来より分離機
能を有する薄膜と支持多孔質膜との複合化が提唱
されている。例えば、オルガノポリシロキサン・
ポリカーボネート共重合溶液を液状の流延支持体
の表面に滴下することにより0.1μm程度の極めて
薄い気体分離膜を作り(特開昭54−40868号公報
参照)、多孔質支持体と複合化することが試みら
れている。
しかし、このような極めて薄い分離膜を表面に
持つ複合膜をピンホールや亀裂などの欠陥なしに
作ることは困難であり、さらに、モジユール作製
における取り扱いが面倒であるなど問題点が多
い。また、かかるシロキサン系の分離膜は耐熱性
に乏しく、最適分離温度は20℃であり、温度の上
昇とともに分離率が低下して40℃以上においては
酸素富化膜として正常に機能しない欠点がある。
一方、極めて薄い気体分離膜を低温プラズマ重
合法により多孔質支持体上に作製する試みの例と
して、有機ケイ素化合物をプラズマ重合した酸素
富化膜(特開昭59−55309号公報参照)が挙げら
れる。しかしながら、プラズマ重合法は広範な有
機物を膜素材として利用できることと薄膜製造が
原理的に容易であるという利点を持つが、多孔質
支持体の細孔を完全にプラズマ重合膜で埋めるこ
とは極めて困難であり、さらに、プラズマ重合膜
形成には真空装置が必要であるため膜サイズが限
定され、しかも膜形成に数分以上の時間を要する
など酸素富化膜の実用的な製造法とはいい難い。
発明が解決しようとする問題点
本発明の目的は、耐熱性と機械的強度に優れた
分離膜であつて、たとえば熱流体の分離あるいは
高圧水蒸気減菌処理を可能とする限外濾過膜を提
供することであり、さらに、製膜法が簡便であつ
て取り扱いが容易な気体分離膜、とくに、高温条
件でも酸素富化空気の供給を可能とする酸素富化
膜を提供することである。
問題点を解決するための手段
本発明は一般式
(−NH−X−NH−Y)−o
で表されるポリアミド(nは平均重合度)で、X
が式
(但し、RはH、CH3,C2H5のうちのいずれ
かを示す)
で表わされ、Yが式
で表わされる重合体、もしくはYが式(a)と式
−CO−(CH2)4−CO− (b)
の両者からなり、Y成分における式(a)のモル比率
が5%以上である共重合体を膜材料とするポリア
ミド分離膜である。
本発明の分離膜の膜材料とするポリアミドのう
ち、一般式中のXが式(1)であり、Yが式(a)である
ポリアミドは、式
(但し、RはH,CH3,C2H5のうちいずれか
を示す)。
で表わされる9,9−ビス(4−アミノフエニ
ル)フルオレン類と式
で表わされるテレフタル酸クロリド、イソフタル
酸クロリド、あるいはこれらの誘導体の酸クロリ
ドとを、ジメチルアセトアミドまたはN−メチル
ピリドン等の溶媒中で冷却下数時間反応させて得
ることができる。
かかるポリアミドは、本発明の以下の説明にお
いて、一般式、
(但し、RはH,CH3,C2H5のうちいずれか
である)
で表わされる反復単位(A)からなる重合体を指す。
一方、一般式中のXが式(1)であり、Yが式(a)と
式(b)の両者を含む共重合ポリアミドは、前述の
9,9−ビス(4−アミノフエニル)フルオレン
類に、同じく前述のテレフタル酸クロリド、イソ
フタル酸クロリド等と式
ClCO−(CH2)4−COCl
で表わされるアジピン酸クロリドあるいはその誘
導体等とを式(a)のモル比率が5%以上の割り合い
になるように混合し、反復単位(A)から重合体を得
るのと同様の方法で反応させて共重合ポリアミド
を得る。
かかる共重合ポリアミドは、本発明の以下の説
明において、反復単位(A)と一般式
(但し、RはH,CH3,C2H5のうちいずれか
を示す)
で表わされる反復単位(B)とを有する共重合体を指
す。
また、本発明で膜材料とする前述のポリアミド
の空気接触にともなう変色の防止あるいは機械的
強度の耐久性を向上することを目的として、重合
体末端をベンゾイル基等で安定化することが望ま
しい。
本発明のかかるポリアミドはいずれもジメチル
アセトアミド、N−メチルピロリドン、あるいは
クレゾール等の有機溶媒に溶解することができ、
その溶解量は塩化リチウムあるいは塩化カルシウ
ム等の無機塩を加えることにより増大させること
ができる。
本発明の分離膜の膜材料とするポリアミドは、
反復単位(A)単独の重合体もしくは反復単位(A)と反
復単位(B)との共重合体であり、いずれの重合体も
優れた耐熱性と機械的強度を有する。例えば、一
般式(A)における2塩基酸残基がテレフタル酸残基
であつて、RがHである反復単位(A−1)単独
のポリアミドの分解温度とガラス転移点はそれぞ
れ455℃と380℃であり、一般式(B)におけるRがH
である反復単位(B−1)であつて反復単位(A
−1):反復単位(B−1)が10:90のモル比で
ある共重合ポリアミドの分解温度とガラス転移点
はそれぞれ415℃と230℃である。
かかるポリアミドの引張強度はいずれも10〜12
Kg/mm2の範囲にあり、機械的強度にも優れた膜材
料である。
また、一般式(A)における2塩基酸残基がイソフ
タル酸残基であつても、一般式(A)と(B)におけるR
がH,CH3あるいはC2H5であつても耐熱性と機
械的強度に大きな変化はない。
本発明の分離膜は、上述したポリアミドを膜素
材として、たとえば湿式法で製膜されるが、製膜
方法は特に制限はなく、公知の方法により平膜、
管状膜、あるいは中空糸膜に製膜される。
例えば、反復単位(A)単独からなるポリアミドあ
るいは反復単位(A)と反復単位(B)を有する共重合ポ
リアミドを、塩化リチウムを含有する適当な溶剤
に溶解した製膜原液をそのまま平滑なガラス板上
に流延あるいは塗布し、一定時間溶媒の一部を蒸
発させた後に、製膜原液中の溶媒と混合する非溶
剤中に浸せきし、脱溶媒することにより平膜を製
膜する。
また、二重管構造の中空糸紡糸ノズルの環状口
から上述の製膜原液を、円状口から非溶剤を同時
に凝固液中に押出すことにより中空糸膜を成膜す
る。かかる湿式法で製膜されたポリアミド膜は湿
潤膜の状態では限外濾過膜として利用できる。さ
らに共重合ポリアミド中の反復単位(B)のモル比を
多くすることにより、該限外濾過膜の分画分子量
を増大させることができる。しかし、反復単位(B)
単独からなるポリアミド分離膜の湿潤膜は機械的
強度に劣るため、限外濾過膜として実用に適する
ためには反復単位(A)との共重合体とすることが必
要であり、この場合には、共重合体中の反復単位
(A)の割合は5モル%以上とする。すなわち一般式
で表わされるポリアミドY成分における式(a)の割
合を5モル%以上とするものである。
一方、本発明のポリアミド湿潤膜を乾燥するこ
とにより、気体分離膜として好適に用いることが
できる。乾燥法は常法でよく、例えば、室温で風
乾した後真空乾燥あるいは100℃程度で加熱乾燥
する。
本発明のポリアミド膜は耐熱性と機械的強度に
優れた分離膜であり、その湿潤膜は限外濾過膜と
しての性能を有し、高温流体の分離および高圧水
蒸気減菌処理を可能とするものであり、従来の限
外濾過膜には見られない優れた特徴をもち、高温
純水の製造等の工業的高温流体の分離プロセスあ
るいは減菌操作を必要とする医療産業分野の分離
プロセスで広く利用できる。
さらに、本発明の分離膜の乾燥膜は気体分離機
能を有し、製膜法の簡便さ、優れた耐熱性と機械
的強度、および、取り扱い易さを有しており、混
合気体から特定の気体を富化する目的で多くの分
野で使用できるものであり、とくに、燃焼炉に送
風する酸素富化空気を製造する酸素富化膜として
優れた性能を持つている。
実施例
以下に本発明の実施例を挙げるが、本発明はこ
れらに限定されるものではない。
なお、以下の実施例において、純水の透過速度
は操作圧力1.0Kg/cm2、流速1.5cm/秒、温度25〜
83℃の条件にて測定した。
また、平均分子量が7万、4万、および1万の
単分散デキシトラン水溶液のデキシトラン阻止率
を上記と同じ条件で測定し、阻止率50%のデキシ
トラン分子量を当該温度の分画分子量とした。
気体分離膜としての実施例においては、混合気
体のあるいは純粋気体の透過速度を25〜160℃で
加圧法により測定し、透過した混合気体の組成を
ガスクロマトグラフにより定量し、当該温度にお
ける分離率aを透過混合気体組成比/原料混合気
体組成比から求めた。
実施例 1
N,N−ジメチルアセトアミド100重量部に塩
化リチウム5重量部と式
で表される反復単位(A−1)を有するポリアミ
ド20重量部とを溶解して製膜原液とし、公知の中
空糸製造法により外径1.0mm、内径0.65mmの中空
糸膜を得た。得られた湿潤中空糸膜の純水透過速
度、分画分子量、および当該温度における破裂強
度を第1表に示す。ここで、破裂強度は一端が封
止された中空糸の内側に純水を圧入したときの破
裂圧力で表す。
第1表は反復単位(A−1)からなるポリアミ
ド中空糸の湿潤膜の耐熱性が優れ、分画分子量と
破裂強度が83℃と25℃ではほぼ等しいことを示し
ている。また、純水の透過速度が温度とともに増
大するのは水の粘度が低下したことによる。
実施例 2
実施例1と同一の中空糸膜を121℃、約1.2気圧
にて高圧水蒸気減菌処理を施した後、25℃にて測
定された純水透過速度は30/m2・時・Kg・cm
-2、分画分子量は6000、破裂強度は25Kg・cm-2で
あり、実施例1に示した25℃の結果とほぼ等しか
つた。
実施例 3
式
で表わされる反復単位(A−2)単独からなるポ
リアミドを実施例1と同様の方法で中空糸膜に成
膜し、実施例1に同じ方法で測定した25℃の透水
速度は80/m2・時・Kg・cm-2、分画分子量は
8000、破裂強度は24Kg・cm-2であつた。
実施例 4
式
で表わされる反復単位(A−1′)単独からなるポ
リアミド中空糸膜を実施例1と同様の方法で製膜
し、25℃における純水透過速度40/m2・時・
Kg・cm-2、分画分子量7000、破裂強度27Kg・cm-2
を得た。
実施例 5
式
で表わされる反復単位(A−1″)単独からなるポ
リアミド中空糸膜を実施例1と同様の方法で製膜
し、25℃における純水透過速度38/m2・時・
Kg・cm-2、分画分子量は7000、破裂強度は28Kg・
cm-2を得た。
実施例 6
実施例1に示した反復単位(A−1)と式
で表わされる反復単位(B−1)との共重合体で
あつて、反復単位(A−1):反復単位(B−1)
が50:50のモル比である共重合ポリアミドを膜材
料として、実施例1と同様の方法で中空糸膜を得
た。得られた湿潤中空糸膜の当該温度における純
水透過速度、分画分子量、および破裂強度を第2
表に示す。
実施例 7
実施例6において反復単位(A−1):反復単
位(B−1)が10:90および5:95モル比である
共重合ポリアミドを膜材料として、実施例1と同
様の方法で中空糸を得た。得られた湿潤中空糸膜
の当該温度における純水透過速度、分画分子量、
および破裂強度を第3表に示す。
実施例 8
実施例1で得られた湿潤中空糸膜を室温で風乾
後100℃で十分に乾燥して乾燥中空糸膜を得た。
得られた乾燥中空糸膜の一端を封止した後気体分
離膜モジユールに組み立て、窒素79%、酸素21%
である人工空気を用いて透過速度と分離率a
(O/N)を求めた。結果を第4表に示す。また、
純粋の酸素透過速度と窒素透過速度の比は120℃
において2.6であつた。本実施例は反復単位(A
−1)からなるポリアミド中空糸の乾燥膜は従来
酸素富化膜には見られない耐熱性を有することを
示している。
実施例 9
実施例1に同一の製膜原液をガラス板上に流延
した後、凝固液中に浸せきして製膜した湿潤平膜
を実施例7に同一の方法を乾燥して厚さが0.1mm
の乾燥平膜を得た。得られた乾燥平膜を平膜型気
体分離モジユールに組み立て、実施例8と同様の
人工空気を用いて透過速度と分離率a(O/N)
を求めた。また、アルゴン50%と窒素50%の混合
気体の透過速度およびアルゴン/窒素の分離率a
(Ar/N)を求めた。得られた結果を第5表に併
せて示す。
実施例 10
実施例9における製膜原液に含有するポリアミド
を15重量部として製膜した乾燥平膜で得られた人
工空気の透過速度と分離率a(O/N)を第6表
に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a separation membrane with excellent heat resistance and mechanical strength. More specifically, it is a separation membrane with excellent heat resistance and mechanical strength that is mainly made of aromatic condensed ring polyamide.The wet membrane is suitable for use in hot fluids and high pressure steam sterilization. In addition, the dry membrane is a gas separation membrane that enriches a specific gas from a high-temperature gas mixture, and in particular, a dry membrane that enriches a specific gas from a high-temperature gas mixture. It is suitable for film formation. Conventional technology In recent years, there has been remarkable progress in separation technologies that use organic polymers as membrane materials, such as microfiltration membranes, ultrafiltration membranes, reverse osmosis membranes, and gas separation membranes, and some of them have been used industrially. It has been put into practical use on a large scale. For example, precision filtration membranes or ultrafiltration membranes are used to treat industrial wastewater, convert building wastewater into gray water, and concentrate liquid foods, and reverse osmosis membranes are used to desalinate seawater. However, these separation membranes have poor heat resistance, and separation membranes for high-temperature fluids remain at the research stage, and a separation membrane that enables high-pressure steam sterilization treatment, which requires even higher heat resistance, has not yet been proposed. Regarding gas separation membranes, that is, separation membranes that enrich a specific gas from a mixed gas, membrane separation of gases with significantly different molecular weights, such as hydrogen gas and methane gas, is at the practical stage, but Practical use of chemical membranes is limited to the medical field. There are many industrial uses of oxygen-enriched air that do not necessarily require high oxygen concentrations, such as blast furnaces, high-temperature gas furnaces, etc.
Oxygen-enriched air containing 25-30% oxygen will accomplish that purpose, but for such applications,
A stable, large-volume supply of oxygen-enriched air and low cost are required. The technical problem in obtaining oxygen-enriched air using gas separation membranes is to increase the permeation flow rate per unit area of the membrane without reducing the membrane separation capacity. The purpose is to increase the membrane area per module unit volume when put into practical use. Furthermore, there is an inversely proportional relationship between the thickness of the separation membrane and the permeation flow rate per membrane unit, and in order to increase the permeation flow rate, it is necessary to reduce the thickness of the separation membrane. As a method for forming such an oxygen-enriched membrane, a combination of a thin membrane having a separation function and a supporting porous membrane has been proposed. For example, organopolysiloxane
By dropping a polycarbonate copolymer solution onto the surface of a liquid casting support, an extremely thin gas separation membrane of about 0.1 μm is made (see Japanese Patent Application Laid-open No. 1983-40868), and then composited with a porous support. is being attempted. However, it is difficult to produce such a composite membrane with an extremely thin separation membrane on its surface without defects such as pinholes and cracks, and there are also many problems such as the difficulty of handling during module production. In addition, such siloxane-based separation membranes have poor heat resistance, with the optimum separation temperature being 20°C, which has the disadvantage that the separation rate decreases as the temperature rises and does not function properly as an oxygen-enriching membrane at temperatures above 40°C. . On the other hand, an example of an attempt to fabricate an extremely thin gas separation membrane on a porous support by low-temperature plasma polymerization is an oxygen enrichment membrane made by plasma polymerizing an organosilicon compound (see Japanese Patent Laid-Open No. 59-55309). It will be done. However, although the plasma polymerization method has the advantage of being able to use a wide range of organic substances as membrane materials and being easy in principle to produce thin films, it is extremely difficult to completely fill the pores of a porous support with a plasma polymerized membrane. Moreover, since plasma polymerized film formation requires a vacuum device, the film size is limited, and film formation takes several minutes or more, making it difficult to say that it is a practical method for producing oxygen-enriched films. . Problems to be Solved by the Invention An object of the present invention is to provide an ultrafiltration membrane which is a separation membrane with excellent heat resistance and mechanical strength, and which enables, for example, separation of hot fluids or high-pressure steam sterilization treatment. Another object of the present invention is to provide a gas separation membrane that is easy to manufacture and easy to handle, and in particular, an oxygen-enriched membrane that can supply oxygen-enriched air even under high-temperature conditions. Means for Solving the Problems The present invention is a polyamide represented by the general formula (-NH-X-NH-Y) -o (n is the average degree of polymerization),
is the formula (However, R represents either H, CH 3 or C 2 H 5 ), and Y is the formula or Y consists of both formula (a) and formula -CO-(CH 2 ) 4 -CO- (b), and the molar ratio of formula (a) in the Y component is 5% or more This is a polyamide separation membrane whose membrane material is a copolymer. Among the polyamides used as membrane materials for the separation membrane of the present invention, polyamides in which X in the general formula is the formula (1) and Y is the formula (a) are of the formula (However, R represents any one of H, CH 3 and C 2 H 5 ). 9,9-bis(4-aminophenyl)fluorenes represented by the formula It can be obtained by reacting terephthalic acid chloride, isophthalic acid chloride, or an acid chloride of a derivative thereof represented by the following in a solvent such as dimethylacetamide or N-methylpyridone under cooling for several hours. In the following description of the invention, such polyamides have the general formula: (However, R is any one of H, CH 3 and C 2 H 5. ) Refers to a polymer consisting of the repeating unit (A) represented by: On the other hand, a copolyamide in which X in the general formula is formula (1) and Y includes both formula (a) and formula (b) is the above-mentioned 9,9-bis(4-aminophenyl)fluorene. Similarly, the above-mentioned terephthalic acid chloride, isophthalic acid chloride, etc. and adipic acid chloride represented by the formula ClCO-(CH 2 ) 4 -COCl or a derivative thereof, etc. are mixed at a molar ratio of formula (a) of 5% or more. A copolymerized polyamide is obtained by reacting in the same manner as for obtaining a polymer from repeating unit (A). In the following description of the present invention, such copolyamides are defined by the repeating unit (A) and the general formula (However, R represents any one of H, CH 3 and C 2 H 5. ) Refers to a copolymer having a repeating unit (B) represented by: Furthermore, in order to prevent discoloration of the above-mentioned polyamide used as a membrane material in the present invention due to contact with air or to improve the durability of mechanical strength, it is desirable to stabilize the polymer terminal with a benzoyl group or the like. Any such polyamide of the present invention can be dissolved in an organic solvent such as dimethylacetamide, N-methylpyrrolidone, or cresol;
The amount dissolved can be increased by adding inorganic salts such as lithium chloride or calcium chloride. The polyamide used as the membrane material of the separation membrane of the present invention is
It is a polymer of repeating unit (A) alone or a copolymer of repeating unit (A) and repeating unit (B), and both polymers have excellent heat resistance and mechanical strength. For example, the decomposition temperature and glass transition point of a polyamide containing a single repeating unit (A-1) in which the dibasic acid residue in general formula (A) is a terephthalic acid residue and R is H are 455°C and 380°C, respectively. ℃, and R in general formula (B) is H
A repeating unit (B-1) which is a repeating unit (A
-1): The decomposition temperature and glass transition point of the copolyamide in which the repeating unit (B-1) is in a molar ratio of 10:90 are 415°C and 230°C, respectively. The tensile strength of such polyamides is 10 to 12.
It is a membrane material with excellent mechanical strength, in the Kg/mm 2 range. Furthermore, even if the dibasic acid residue in general formula (A) is an isophthalic acid residue, R in general formulas (A) and (B)
Even if it is H, CH 3 or C 2 H 5 , there is no significant change in heat resistance and mechanical strength. The separation membrane of the present invention is formed using the above-mentioned polyamide as a membrane material, for example, by a wet method, but the membrane forming method is not particularly limited.
It is manufactured into tubular membranes or hollow fiber membranes. For example, a film-forming stock solution prepared by dissolving a polyamide consisting of a single repeating unit (A) or a copolymer polyamide having repeating units (A) and repeating units (B) in a suitable solvent containing lithium chloride is used as it is on a smooth glass plate. After a part of the solvent is evaporated for a certain period of time, it is immersed in a non-solvent that mixes with the solvent in the film-forming stock solution, and the solvent is removed to form a flat film. Further, a hollow fiber membrane is formed by simultaneously extruding the above-mentioned membrane-forming stock solution from the annular opening of the double-tube structured hollow fiber spinning nozzle and extruding the non-solvent into the coagulation liquid from the circular opening. A polyamide membrane formed by such a wet method can be used as an ultrafiltration membrane in a wet membrane state. Furthermore, by increasing the molar ratio of the repeating unit (B) in the copolyamide, the molecular weight cutoff of the ultrafiltration membrane can be increased. However, repeating unit (B)
Since the wet membrane of a polyamide separation membrane consisting solely of polyamide has poor mechanical strength, it is necessary to make it into a copolymer with the repeating unit (A) in order to make it suitable for practical use as an ultrafiltration membrane. , a repeating unit in a copolymer
The proportion of (A) shall be 5 mol% or more. That is, the proportion of formula (a) in the polyamide Y component represented by the general formula is 5 mol % or more. On the other hand, by drying the polyamide wet membrane of the present invention, it can be suitably used as a gas separation membrane. The drying method may be a conventional method, for example, air drying at room temperature and then vacuum drying or heating drying at about 100°C. The polyamide membrane of the present invention is a separation membrane with excellent heat resistance and mechanical strength, and its wet membrane has performance as an ultrafiltration membrane and enables separation of high-temperature fluids and high-pressure steam sterilization treatment. It has excellent features not found in conventional ultrafiltration membranes, and is widely used in separation processes of industrial high-temperature fluids such as the production of high-temperature pure water, and separation processes in the medical industry that require sterilization. Available. Furthermore, the dry membrane of the separation membrane of the present invention has a gas separation function, a simple membrane manufacturing method, excellent heat resistance and mechanical strength, and ease of handling. It can be used in many fields for the purpose of enriching gases, and has particularly excellent performance as an oxygen-enriching membrane for producing oxygen-enriched air to be blown into combustion furnaces. Examples Examples of the present invention are shown below, but the present invention is not limited thereto. In addition, in the following examples, the permeation rate of pure water was an operating pressure of 1.0 Kg/cm 2 , a flow rate of 1.5 cm/sec, and a temperature of 25 to
Measurement was performed at 83°C. In addition, the dextran rejection rates of monodisperse dextran aqueous solutions with average molecular weights of 70,000, 40,000, and 10,000 were measured under the same conditions as above, and the dextran molecular weight at which the rejection rate was 50% was defined as the molecular weight cutoff at the temperature. In the example of a gas separation membrane, the permeation rate of a mixed gas or pure gas is measured by a pressurization method at 25 to 160°C, the composition of the permeated mixed gas is determined by a gas chromatograph, and the separation rate a at that temperature is determined. was determined from the permeated mixed gas composition ratio/raw material mixed gas composition ratio. Example 1 100 parts by weight of N,N-dimethylacetamide and 5 parts by weight of lithium chloride A hollow fiber membrane having an outer diameter of 1.0 mm and an inner diameter of 0.65 mm was obtained by a known hollow fiber manufacturing method by dissolving 20 parts by weight of polyamide having the repeating unit (A-1) represented by: Table 1 shows the pure water permeation rate, molecular weight cutoff, and bursting strength at the temperature of the obtained wet hollow fiber membrane. Here, the bursting strength is expressed as the bursting pressure when pure water is pressurized inside a hollow fiber whose one end is sealed. Table 1 shows that the polyamide hollow fiber wet membrane composed of the repeating unit (A-1) has excellent heat resistance, and the molecular weight cutoff and bursting strength are almost the same at 83°C and 25°C. Furthermore, the reason why the permeation rate of pure water increases with temperature is because the viscosity of water decreases. Example 2 The same hollow fiber membrane as in Example 1 was subjected to high-pressure steam sterilization treatment at 121°C and approximately 1.2 atm, and the pure water permeation rate measured at 25°C was 30/m 2 hr. kg・cm
-2 , the molecular weight cut-off was 6000, and the bursting strength was 25 Kg·cm -2 , which were almost the same as the results at 25°C shown in Example 1. Example 3 Formula A polyamide consisting of a single repeating unit (A-2) represented by was formed into a hollow fiber membrane in the same manner as in Example 1, and the water permeation rate at 25°C measured in the same manner as in Example 1 was 80/m 2・hour・Kg・cm -2 , molecular weight cut off is
8000, and the bursting strength was 24Kg・cm -2 . Example 4 Formula A polyamide hollow fiber membrane consisting of a single repeating unit (A-1') represented by was formed in the same manner as in Example 1, and the pure water permeation rate at 25°C was 40/m 2 hr.
Kg・cm -2 , molecular weight cut off 7000, bursting strength 27Kg・cm -2
I got it. Example 5 Formula A polyamide hollow fiber membrane consisting of a single repeating unit (A-1'') represented by was formed in the same manner as in Example 1, and the pure water permeation rate at 25°C was 38/m 2 hr.
Kg・cm -2 , molecular weight cut off is 7000, bursting strength is 28Kg・
cm -2 was obtained. Example 6 Repeating unit (A-1) and formula shown in Example 1 A copolymer with a repeating unit (B-1) represented by repeating unit (A-1): repeating unit (B-1)
A hollow fiber membrane was obtained in the same manner as in Example 1 using a copolymerized polyamide having a molar ratio of 50:50 as the membrane material. The pure water permeation rate, molecular weight cutoff, and bursting strength of the obtained wet hollow fiber membrane at the relevant temperature were determined by the second method.
Shown in the table. Example 7 In Example 6, a copolyamide in which the repeating unit (A-1): repeating unit (B-1) was in a molar ratio of 10:90 and 5:95 was used as a membrane material, and in the same manner as in Example 1. A hollow fiber was obtained. The pure water permeation rate at the temperature of the obtained wet hollow fiber membrane, the molecular weight cut off,
and bursting strength are shown in Table 3. Example 8 The wet hollow fiber membrane obtained in Example 1 was air-dried at room temperature and then sufficiently dried at 100° C. to obtain a dry hollow fiber membrane.
After sealing one end of the obtained dry hollow fiber membrane, it was assembled into a gas separation membrane module, containing 79% nitrogen and 21% oxygen.
The permeation rate and separation rate a using artificial air with
(O/N) was determined. The results are shown in Table 4. Also,
The ratio of pure oxygen permeation rate to nitrogen permeation rate is 120℃
It was 2.6. This example is a repeating unit (A
The dried polyamide hollow fiber membrane made of -1) has been shown to have heat resistance not seen in conventional oxygen enrichment membranes. Example 9 A wet flat membrane was formed by casting the same film-forming stock solution in Example 1 onto a glass plate and then immersing it in a coagulating solution, and then drying it in the same manner as in Example 7 to reduce the thickness. 0.1mm
A dry flat membrane was obtained. The obtained dry flat membrane was assembled into a flat membrane type gas separation module, and the permeation rate and separation rate a (O/N) were measured using the same artificial air as in Example 8.
I asked for In addition, the permeation rate of a mixed gas of 50% argon and 50% nitrogen and the separation rate of argon/nitrogen a
(Ar/N) was determined. The obtained results are also shown in Table 5. Example 10 Table 6 shows the artificial air permeation rate and separation rate a (O/N) obtained with a dry flat membrane formed using 15 parts by weight of polyamide contained in the membrane forming stock solution in Example 9.
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】
発明の効果
有機高分子を素材とする分離膜において、本発
明のポリアミド分離膜は83℃熱流体の分離を可能
にするとともに、121℃、約1.2気圧での高圧蒸気
減菌処理によつても分離性能が維持できる限外濾
過膜を提供するものであり、さらに、本発明のポ
リアミド分離膜の乾燥膜は複合化することを必要
とせずに気体分離機能を有し、耐熱性と機械的強
度に優れ、かつ製膜方法が簡便であつて取り扱い
が容易な実用的な気体分離膜、とくに、酸素富化
膜等に適するものである。[Table] Effects of the invention Among separation membranes made of organic polymers, the polyamide separation membrane of the present invention enables the separation of fluids heated at 83°C, and is also capable of high-pressure steam sterilization at 121°C and approximately 1.2 atm. The purpose of the present invention is to provide an ultrafiltration membrane that can maintain its separation performance even when the membrane is wet.Furthermore, the dry membrane of the polyamide separation membrane of the present invention has a gas separation function without the need for compositing, and has heat resistance and It is suitable for practical gas separation membranes that have excellent mechanical strength, are simple to form, and are easy to handle, particularly oxygen enrichment membranes.
Claims (1)
示す。)を膜材料とするポリアミド分離膜。 ただし、Xは式 (RはH、CH3,C2H5のうちのいずれかを示
す。) で表わされ、 Yは式 で表わされるものとする。 2 式 の2塩基酸残基が、テレフタル酸残基もしくはイ
ソフタル酸残基である特許請求第1項記載のポリ
アミド分離膜。 3 一般式 (−NH−X−NH−Y)−o で表わされるポリアミド(nは繰り返し単位数を
示す。)を膜材料とするポリアミド分離膜。 ただし、Xは式 (RはH、CH3,C2H5のうちいずれかを示
す。) で表され、 Yは式 と式 −CO−(CH2)4−CO− …(b) の両者からなり、Y成分における式(a)の割合が5
モル%以上であるものとする。 4 式 の2塩基酸残基が、テレフタル酸残基もしくはイ
ソフタル酸残基である特許請求の範囲第3項記載
のポリアミド分離膜。[Claims] 1. A polyamide separation membrane using a polyamide represented by the general formula (-NH-X-NH-Y) -o (n indicates the number of repeating units) as a membrane material. However, X is the formula (R represents either H, CH 3 or C 2 H 5. ) Y is the formula Let it be expressed as . 2 formulas The polyamide separation membrane according to claim 1, wherein the dibasic acid residue is a terephthalic acid residue or an isophthalic acid residue. 3. A polyamide separation membrane whose membrane material is polyamide represented by the general formula (-NH-X-NH-Y) -o (n indicates the number of repeating units). However, X is the formula (R represents either H, CH 3 or C 2 H 5. ) Y is the formula and the formula -CO-(CH 2 ) 4 -CO- ...(b), and the proportion of formula (a) in the Y component is 5.
It shall be mol% or more. 4 formula 4. The polyamide separation membrane according to claim 3, wherein the dibasic acid residue is a terephthalic acid residue or an isophthalic acid residue.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1823787A JPS63190607A (en) | 1987-01-30 | 1987-01-30 | polyamide separation membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1823787A JPS63190607A (en) | 1987-01-30 | 1987-01-30 | polyamide separation membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63190607A JPS63190607A (en) | 1988-08-08 |
JPH0331093B2 true JPH0331093B2 (en) | 1991-05-02 |
Family
ID=11966069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1823787A Granted JPS63190607A (en) | 1987-01-30 | 1987-01-30 | polyamide separation membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63190607A (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2221917B (en) * | 1988-05-16 | 1992-10-21 | Nippon Steel Corp | Organic polymer separation membrane having fluorene skeleton and oxygen enrichment device utilizing same |
US5049169A (en) * | 1989-05-23 | 1991-09-17 | Nippon Steel Corporation | Polysulfone separation membrane |
FR2650756B1 (en) * | 1989-08-11 | 1991-10-31 | Inst Francais Du Petrole | GAS SEPARATION MEMBRANE |
FR2650755B1 (en) * | 1989-08-14 | 1991-10-31 | Inst Francais Du Petrole | GAS SEPARATION MEMBRANE |
US5034027A (en) * | 1990-03-30 | 1991-07-23 | Air Products And Chemicals, Inc. | Membranes formed from rigid aromatic polyamides |
US5007945A (en) * | 1990-04-12 | 1991-04-16 | Air Products And Chemicals, Inc. | Membranes formed from aromatic polyarylates |
US5013332A (en) * | 1990-05-03 | 1991-05-07 | Air Products And Chemicals, Inc. | Membranes formed from rigid polyarylates |
US5009679A (en) * | 1990-05-25 | 1991-04-23 | Air Products And Chemicals, Inc. | Membranes formed from rigid aromatic polyimide polymers |
US5061809A (en) * | 1990-05-25 | 1991-10-29 | Air Products And Chemicals, Inc. | 9,9-bis-(3,4-dicarboxyphenyl)fluorene dianhydrides |
US5232471A (en) * | 1992-05-13 | 1993-08-03 | Air Products And Chemicals, Inc. | Membranes formed from nitrated polyarylates |
JP3247953B2 (en) * | 1992-09-30 | 2002-01-21 | 独立行政法人産業技術総合研究所 | Hydrous gel-like gas separation membrane |
US9056285B2 (en) | 2012-11-28 | 2015-06-16 | Central Glass Company, Limited | Gas separation membrane |
US9793483B2 (en) | 2012-11-28 | 2017-10-17 | Central Glass Company, Limited | Hexafluoroisopropanol group-containing diamine, polyimide and polyamide using same, cyclized product thereof, and method for producing same |
US9050566B2 (en) | 2012-11-28 | 2015-06-09 | Central Glass Company, Limited | Gas separation membrane |
-
1987
- 1987-01-30 JP JP1823787A patent/JPS63190607A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS63190607A (en) | 1988-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3925211A (en) | Polyimide membrane and process for making same | |
JPH0331093B2 (en) | ||
JPH07121343B2 (en) | Gas separation hollow fiber membrane and method for producing the same | |
KR0159772B1 (en) | Semipermeable membrane made from a homogeneously miscible polymer blend | |
JPH03106426A (en) | Semipermeable diaphragm formed of polyimide resin and method of separating one component from gas mixture | |
JP2509962B2 (en) | Polyimide separation membrane | |
JPH06335522A (en) | Blood compatible material | |
JPH07114935B2 (en) | Polyarylate separation membrane | |
JPS63278524A (en) | Improvement of characteristic of gas separating membrane | |
US20050069700A1 (en) | Manufacture of polyimide-hollow fibres | |
JPH024429A (en) | Asymmetric hydrophilic membrane of macropore substance, method for its manufacture and method for improving retention ability of the membrane | |
JP7511558B2 (en) | Porous membranes for high pressure filtration | |
JPS5850521B2 (en) | Selective permeable membrane made of polyquinazolone polymer | |
JP3111196B2 (en) | Carbonized membrane for gas separation | |
JP7516382B2 (en) | Porous membranes for high pressure filtration | |
EP0336999B1 (en) | Reactive posttreatment for gas separation membranes | |
JPH04110029A (en) | Aromatic separating membrane | |
JP2794785B2 (en) | Hollow fiber membrane | |
JPS63283705A (en) | Selective semipermeable membrane of polyamideimide | |
US10752716B2 (en) | Copolymers and terpolymers based on chlorotrifluoroethylene and vinyl chloride and uses thereof | |
EP3621997B1 (en) | Copolymers and terpolymers based on chlorotrifluoroethylene and vinyl chloride and uses thereof | |
JP2701357B2 (en) | Casting dope for film formation | |
JPS62168503A (en) | Separation membrane | |
JP2827212B2 (en) | Polyamideimide separation membrane | |
JPS587324B2 (en) | Manufacturing method of selectively permeable membrane |