JPH0329899A - Apparatus for manufacturing radioactive isotope, particularly cobalt 60 - Google Patents
Apparatus for manufacturing radioactive isotope, particularly cobalt 60Info
- Publication number
- JPH0329899A JPH0329899A JP2145250A JP14525090A JPH0329899A JP H0329899 A JPH0329899 A JP H0329899A JP 2145250 A JP2145250 A JP 2145250A JP 14525090 A JP14525090 A JP 14525090A JP H0329899 A JPH0329899 A JP H0329899A
- Authority
- JP
- Japan
- Prior art keywords
- capsule
- central channel
- neutron
- irradiated
- moderator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 230000002285 radioactive effect Effects 0.000 title claims abstract description 6
- GUTLYIVDDKVIGB-OUBTZVSYSA-N Cobalt-60 Chemical compound [60Co] GUTLYIVDDKVIGB-OUBTZVSYSA-N 0.000 title claims description 6
- 239000002775 capsule Substances 0.000 claims abstract description 23
- 239000000463 material Substances 0.000 claims abstract description 12
- 230000001681 protective effect Effects 0.000 claims abstract description 8
- 239000000446 fuel Substances 0.000 claims abstract description 4
- CSDQQAQKBAQLLE-UHFFFAOYSA-N 4-(4-chlorophenyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine Chemical group C1=CC(Cl)=CC=C1C1C(C=CS2)=C2CCN1 CSDQQAQKBAQLLE-UHFFFAOYSA-N 0.000 claims description 4
- 229910001338 liquidmetal Inorganic materials 0.000 claims description 3
- 239000000126 substance Substances 0.000 abstract description 2
- 229910017052 cobalt Inorganic materials 0.000 description 6
- 239000010941 cobalt Substances 0.000 description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 5
- GUTLYIVDDKVIGB-IGMARMGPSA-N cobalt-59 atom Chemical compound [59Co] GUTLYIVDDKVIGB-IGMARMGPSA-N 0.000 description 5
- 230000004907 flux Effects 0.000 description 5
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- VYZAMTAEIAYCRO-BJUDXGSMSA-N Chromium-51 Chemical compound [51Cr] VYZAMTAEIAYCRO-BJUDXGSMSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001868 cobalt Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- UIWYJDYFSGRHKR-AHCXROLUSA-N gadolinium-153 Chemical compound [153Gd] UIWYJDYFSGRHKR-AHCXROLUSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- GKOZUEZYRPOHIO-IGMARMGPSA-N iridium-192 Chemical compound [192Ir] GKOZUEZYRPOHIO-IGMARMGPSA-N 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 229910000047 yttrium hydride Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21G—CONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
- G21G1/00—Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
- G21G1/02—Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes in nuclear reactors
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
- Structure Of Emergency Protection For Nuclear Reactors (AREA)
- Radiation-Therapy Devices (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、照射すべき天然物質の試料を高速中性子炉で
(n,γ)反応によって変換する人工放射性同位体の工
業的製造に係る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the industrial production of artificial radioisotopes in which a sample of natural material to be irradiated is converted by an (n, γ) reaction in a fast neutron reactor.
より詳細には本発明は、特にコバルト59がらコバルト
60を製造することを目的としているが、その範囲は、
例えばイリジウム192、ガドリニウム153、クロム
51のごときその他の放射性同位体の製造にも及ぶ。More specifically, the present invention is particularly aimed at producing cobalt-60 from cobalt-59, but its scope is as follows:
It also extends to the production of other radioactive isotopes, such as iridium-192, gadolinium-153, and chromium-51.
強力なγ放出体であることが周知のコバルl・60は、
医療の分野では腫瘍の治療に使用され、食品産業ではγ
線を利用した食品の滅菌及び保存に多量に使用されるよ
うになったため、その消費量はここ数年来増加している
。Kobal l.60, which is well known to be a strong γ emitter, is
In the medical field, it is used to treat tumors, and in the food industry, γ
Its consumption has increased over the past few years as it has come to be used in large quantities for food sterilization and preservation using wires.
従来の慣用的なコバルト60の工業的製造方法は、天然
コバルト59を出発物質としており、この天然コバルト
59を中性子束の(n,γ)反応によって活性化する。The conventional conventional industrial production method for cobalt-60 uses natural cobalt-59 as a starting material, and activates this natural cobalt-59 by an (n, gamma) reaction of neutron flux.
中性子束としては概して原子炉の中性子束を用いる。天
然コバルトの活性化反応の効率は、該コバルトに作用す
る中性子束と該中性子束を構成する中性子のエネルギと
の双方に依存する。当業者に周知の様々な理由から、液
体金属で冷却される高速中性子炉はこの工業的処理に極
めて適しているが、採算の合うコスト及び妥当な所要時
間でコバルト60を製造するためには、高速中性子を減
速させることによって所望の放射性同位体の産生効率を
かなり改良する必要があることは明らかである。As the neutron flux, the neutron flux of a nuclear reactor is generally used. The efficiency of the activation reaction of natural cobalt depends on both the neutron flux acting on the cobalt and the energy of the neutrons constituting the neutron flux. For various reasons well known to those skilled in the art, liquid metal cooled fast neutron reactors are well suited for this industrial process, but in order to produce cobalt-60 at a profitable cost and in a reasonable turnaround time, It is clear that there is a need to significantly improve the production efficiency of desired radioisotopes by slowing down fast neutrons.
1988年9月にアメリカ合衆国、ワイオミング、ジャ
クソンで開催されたシンポジウムで試験的な工業的製造
方法が提案され、これはIIIHc−S^−0262E
l’として刊行された。しかしながらこの試験は、経済
的にも不利で産業規模で実用化し難い条件のFFTF炉
において行なわれた。この試験では、減速材と照射すべ
き材料棒とを原子炉の炉心の周囲て混合し、この炉心周
囲を照射した。減速材は水素化イットリウムであった。At a symposium held in Jackson, Wyoming, USA in September 1988, an experimental industrial manufacturing method was proposed, which was developed for IIIHc-S^-0262E.
Published as l'. However, this test was conducted in an FFTF furnace under conditions that are economically disadvantageous and difficult to put into practical use on an industrial scale. In this test, the moderator and the material rods to be irradiated were mixed around the reactor core, and the core was irradiated. The moderator was yttrium hydride.
これらの実験条件では、理論的な中性子効率の改良はた
しかに可能であるが、減速材と照射すべき材料棒とのほ
ぼ均質な混合の結果として、その工業利用は全く不可能
ではないまでも困難であることが判明した(コスl〜が
高すぎる)。Under these experimental conditions, an improvement in the theoretical neutron efficiency is certainly possible, but as a result of the almost homogeneous mixing of the moderator and the material rods to be irradiated, its industrial application is difficult, if not entirely impossible. It turned out to be (cost l~ is too high).
本発明の目的は、簡単に使用できる手段を使用し、工業
利用できる経済的な連続方法で放射性同位体の製造をま
さに実現し得る放射性同位体の製造装置を提供すること
である。The object of the present invention is to provide an apparatus for the production of radioisotopes, which makes it possible to produce radioisotopes using easily available means and in an industrially viable and economical continuous process.
本発明装置は、原子炉の容器に収容された液体金属によ
って冷却される高速中性子炉において、照射すべき試料
の(n,γ)反応によって放射性同位体特にコバルト6
0を製造する。前記原子炉の炉心の周囲は外側の燃料親
物質ブランケットと中性子防護アセンブリとによって包
囲されている。本発3
4
明装置の特徴は、装置が、外側ブランケットに沿った防
護アセンブリの外側寸法及ひ形状を有しており該防護ア
センブリに代替して配置されること、及び、装置が、装
置の高さ方向の中央に中性子減速材から成る円筒状スリ
ーブを有しており、前記スリーブは、照射すべき試料を
収容した着脱自在なカプセルを受容すべく設けられた中
央チャネルを備えることである。The device of the present invention is used in a fast neutron reactor cooled by liquid metal contained in a reactor vessel to generate radioactive isotopes, especially cobalt 6, by the (n, γ) reaction of a sample to be irradiated.
Manufacture 0. The core of the nuclear reactor is surrounded by an outer fuel parent material blanket and a neutron protection assembly. The present invention is characterized in that the device has the external dimensions and shape of the protective assembly along the outer blanket and is placed in place of the protective assembly; In the center of the height is a cylindrical sleeve of neutron moderator material, said sleeve having a central channel adapted to receive a removable capsule containing a sample to be irradiated.
その結果、本発明の本質的な特徴が、減速材の幾何学的
形状及び試料入れとして使用されるデバイスの幾何学的
形状にあることは明らかであろう。As a result, it will be clear that the essential feature of the invention lies in the geometry of the moderator and the geometry of the device used as sample holder.
該デバイスは、着脱自在なカプセルの形状で製造装置自
体の中央に挿入される。The device is inserted into the center of the production equipment itself in the form of a removable capsule.
原子炉の炉心の防護アセンブリに一致する外側寸法及び
形状を有する本発明の製造装置は、特に中性子に関する
炉心動作を全く妨害することなく炉心の周囲に極めて容
易に配置され得る。装置の一部分は、減速材を組み込ん
だ円筒状スリーブの形態のホルダとして機能し、照射す
べき材料棒を収容したカプセルを挿入するための中央チ
ャネルが前記スリーブに設けられている。かかるシスデ
ムにおいてカプセルは、各処理の終了毎に交換が必要な
唯一の消耗部分である。これに反して、内面に減速材の
被覆を備えたホルダは再使用可能であり、照射すべき試
料を収容したカプセルを充填するために複数回継続して
使用され得る。The manufacturing device of the invention, having external dimensions and shape matching the protective assembly of the core of a nuclear reactor, can be placed very easily around the core without any disturbance to the core operation, especially with respect to neutrons. A part of the device serves as a holder in the form of a cylindrical sleeve incorporating a moderator, said sleeve being provided with a central channel for inserting a capsule containing a rod of material to be irradiated. In such systems, the capsule is the only consumable part that must be replaced at the end of each process. On the contrary, a holder with a moderator coating on the inside is reusable and can be used several times in succession to fill the capsule containing the sample to be irradiated.
同じく重要な本発明の別の特徴によれば、使用される中
性子減速材が水素化カルシウムLCaから或る。実際、
減速材としての品質は水よりもはるかに劣っているとは
いえ、水素化カルシウムはやはり優良な減速剤であり、
いくつかの利点を有している。挙げられる利点としては
、例えば、材料が廉価である、
使用が容易である、
温度安定性がよい
等がある。According to another feature of the invention which is also important, the neutron moderator used is from calcium hydride LCa. actual,
Although its quality as a moderator is far inferior to water, calcium hydride is still an excellent moderator.
It has several advantages. Advantages that may be cited include, for example, inexpensive materials, ease of use, and good temperature stability.
添イ1の第1図から第3図に示す放射性同位体の製造装
置の実施例に基つく以下の記載より本発明がより十分に
理解されよう。The present invention will be more fully understood from the following description based on the embodiment of the radioisotope production apparatus shown in FIGS. 1 to 3 in Attachment 1.
第1図は、本発明の目的である放射性同位体製造装置の
本体1を示す。前述のごとくこの本体1は、すべての高
速中性子型原子炉で外側の燃料親物質ブランケットと原
子炉の容器との間に配備される防護アセンブリの1つと
同じ外側寸法及び形状を有する。その結果として装置は
、下部プレートに差し込まれる脚部3と試料入れの機能
を果たす着脱自在なカプセル7を所望に応じて集成し出
入操作するための上部開口5とを有する。FIG. 1 shows a main body 1 of a radioisotope production apparatus, which is the object of the present invention. As mentioned above, this body 1 has the same external dimensions and shape as one of the protective assemblies provided in all fast neutron nuclear reactors between the outer fuel parent material blanket and the reactor vessel. As a result, the device has a leg 3 inserted into the lower plate and an upper opening 5 for assembling and accessing a removable capsule 7 serving as a sample holder as desired.
第1図及び第2図では、カプセル7が、放射性同位体製
造装置のホルダの内部に導入された位置で示されている
。より詳細には該ホルダは、減速材として使用される水
素化カルシウムから成る円筒状スリーブ9から成り、該
スリーブは、照射期間中に着脱自在なカプセル7の一時
的受容部を楕成する中央チャネル11を備える。In FIGS. 1 and 2, the capsule 7 is shown in a position where it has been introduced into the interior of a holder of a radioisotope production device. More particularly, the holder consists of a cylindrical sleeve 9 of calcium hydride used as a moderator, which sleeve has a central channel oval forming a temporary receptacle for a detachable capsule 7 during the irradiation period. 11.
第1図に示すように、本発明の目的である装置の作用部
は、該装置の長手方向部分八Bに存在する。As shown in FIG. 1, the active part of the device that is the object of the invention is located in the longitudinal section 8B of the device.
この部分は減速材9が配置された場所と正確に合致し、
着脱自在なカプセル7は、照射すべき材料棒13、この
非限定実施例では天然コバルト59の棒を内蔵している
。これらの棒13は第3図に示すようにいくつかの区分
15.17に分配されている。区分の分割は第1図に示
されている。This part matches exactly where the moderator 9 is placed,
The removable capsule 7 contains a rod 13 of the material to be irradiated, in this non-limiting example a rod of natural cobalt 59. These rods 13 are distributed into several sections 15, 17 as shown in FIG. The division of the sections is shown in FIG.
勿論前述したように、照射終了後のカプセルを抜き出す
ために製造装置を原子炉から取り出したときには、図示
しない把み手段によって放射性同位体製造装置の本体1
から着脱自在なカプセル7を抜き出してもよい。同じ配
置の天然コバルト59の棒が充填された新しいカプセル
を装置1のホルダ部に導入し、チャネルl1の内部に配
置する。このように充填された装置の集合体を高速中性
子炉に再度充填する。装置の集合体は容易に防護アセン
7
ブリに代替して配置される。照射すべき物質及び所与の
時間の所望の比放射能に従ってカプセルの充填を調節し
得る。Of course, as mentioned above, when the production apparatus is taken out from the reactor to extract the capsule after irradiation, the main body 1 of the radioisotope production apparatus is removed by a gripping means (not shown).
The removable capsule 7 may be extracted from the holder. A new capsule filled with rods of natural cobalt 59 of the same arrangement is introduced into the holder part of the device 1 and placed inside the channel l1. The assembly of devices filled in this way is refilled into the fast neutron reactor. The collection of devices can easily be placed in place of the protective assembly. The filling of the capsule can be adjusted according to the substance to be irradiated and the desired specific activity for a given time.
前記のことき本発明装置の工業規模利用の実施例を以下
に示す。カプセル内で照射すべきコバルトの質量を約3
kgとする。2年間の照射後にこのコバルトの平均放射
能は50キュリーhになる。これは、Marcou1e
サイ1〜に設置されたPhenix原子炉型の高速中性
子炉の周囲に十分配置できるこの種のアセンフリによる
総放射能150,000キュリーhに対応する。従って
この種の構造を有する20個のアセンブリによって年間
150万キュリーを製造できる。これはフランスの現在
消費量にほぼ匹敵する。Examples of industrial-scale utilization of the above-mentioned apparatus of the present invention are shown below. The mass of cobalt to be irradiated in the capsule is approximately 3
kg. After 2 years of irradiation, the average activity of this cobalt is 50 Curie h. This is Marcou1e
This corresponds to a total radioactivity of 150,000 Curie-h from an assembly of this kind that can be sufficiently placed around a fast neutron reactor of the Phenix reactor type installed at Sai-1. Twenty assemblies of this kind of construction can therefore produce 1.5 million Curies per year. This is roughly equivalent to France's current consumption.
本発明による放射性同位体の製造装置は勿論すべての型
の高速原子炉に使用できる。装置は炉心の周囲に直接配
置されてもよく、または原子炉がラジアルブランケット
を有する場合にはその周囲8一
に配置されるのがより好ましい。後者の配置は極めて重
要である。何故ならこの場合には炉心と照射装置との間
に中性子相互作用が生じない(運転事故のときにさえ反
応効率に影響がない)。コバルトによって捕獲される中
性子は炉心に戻る確率がほぼ零の漏れ中性子である。The radioisotope production apparatus according to the present invention can of course be used in all types of fast nuclear reactors. The device may be placed directly around the reactor core, or more preferably around the periphery 8 if the reactor has a radial blanket. The latter arrangement is extremely important. This is because in this case no neutron interaction occurs between the reactor core and the irradiation device (the reaction efficiency is not affected even in the event of an operational accident). Neutrons captured by cobalt are leakage neutrons with almost zero probability of returning to the core.
第1図は、照射すべき試料を収容したカプセルを内蔵し
た本発明装置の軸方四断面図、第2図は第1図のXX線
に沿った水平断面図、第3図は試料入れとして機能する
カプセル内の照射すべき材料棒の集合体を示す拡大断面
図である。
1・・・・・・装置本体、7・・・・・・カプセル、9
・・・・・減速制、13・・・・・・材料棒。
特開平3
29899 (4)Figure 1 is a four axial sectional view of the device of the present invention incorporating a capsule containing a sample to be irradiated, Figure 2 is a horizontal sectional view taken along the XX line in Figure 1, and Figure 3 is a sample holder. FIG. 2 is an enlarged cross-sectional view showing a collection of material rods to be irradiated in a functioning capsule; 1... Device body, 7... Capsule, 9
...Deceleration control, 13...Material rod. JP-A-3 29899 (4)
Claims (2)
されその炉心の周囲が外側の燃料親物質ブランケットと
中性子防護アセンブリとによって包囲された高速中性子
炉において、照射された試料の(n、γ)反応によって
放射性同位体特にコバルト60を製造する装置であって
、装置が、外側ブランケットと容器との間の防護アセン
ブリの外側寸法及び形状を有しており該防護アセンブリ
に代替して配置されること、及び、装置が、装置の高さ
方向の中央部分に中性子減速材から成る円筒状スリーブ
を有しており、前記スリーブが、照射すべき試料を収容
した着脱自在なカプセルを受容すべく設けられた中央チ
ャネルを備えることを特徴とする放射性同位体、特にコ
バルト60の製造装置。(1) In a fast neutron reactor cooled by liquid metal contained in the reactor vessel and whose core is surrounded by an outer fuel parent material blanket and a neutron protection assembly, ) Apparatus for producing a radioactive isotope, in particular cobalt-60, by reaction, the apparatus having the external dimensions and shape of, and being placed in place of, a protective assembly between the outer blanket and the container. and the device has a cylindrical sleeve made of a neutron moderator in the central part of the device in the height direction, and the sleeve is arranged to receive a removable capsule containing a sample to be irradiated. Apparatus for the production of radioactive isotopes, in particular cobalt-60, characterized in that it comprises a central channel with a central channel.
ることを特徴とする請求項1に記載の装置。(2) The device according to claim 1, wherein the neutron moderator is calcium hydride H_2Ca.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8907315A FR2647945B1 (en) | 1989-06-02 | 1989-06-02 | DEVICE FOR PRODUCING RADIO-ISOTOPES, ESPECIALLY COBALT 60 |
FR8907315 | 1989-06-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0329899A true JPH0329899A (en) | 1991-02-07 |
Family
ID=9382313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2145250A Pending JPH0329899A (en) | 1989-06-02 | 1990-06-01 | Apparatus for manufacturing radioactive isotope, particularly cobalt 60 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPH0329899A (en) |
FR (1) | FR2647945B1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009133854A (en) * | 2007-11-28 | 2009-06-18 | Ge-Hitachi Nuclear Energy Americas Llc | Isotope system with reduced cross-sectional area |
JP2009271064A (en) * | 2008-05-01 | 2009-11-19 | Ge-Hitachi Nuclear Energy Americas Llc | Irradiation target retention system, fuel assembly having the same, and method of using the same |
JP2011015970A (en) * | 2009-07-10 | 2011-01-27 | Ge-Hitachi Nuclear Energy Americas Llc | Brachytherapy and radiography target holding device |
CN102842348A (en) * | 2012-09-14 | 2012-12-26 | 中国原子能科学研究院 | System and method for performing activation method radiation experiments in sodium-cooled fast reactor |
JP2019522772A (en) * | 2016-06-10 | 2019-08-15 | ジョイント ストック カンパニー“サイエンス アンド イノヴェーションズ” | A method for producing radioisotopes in a fast neutron reactor. |
CN114556491A (en) * | 2019-10-14 | 2022-05-27 | 西屋电气有限责任公司 | Modular radioisotope production package and related methods |
JP2024525000A (en) * | 2021-06-23 | 2024-07-09 | ウェスティングハウス エレクトリック カンパニー エルエルシー | Method and apparatus for controlling the movement of a capsule containing a cobalt material disposed within a container of a non-ferromagnetic material by application of an electromagnetic force |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2784220B1 (en) * | 1998-10-02 | 2000-12-22 | Japan Nuclear Cycle Dev Inst | ASSEMBLY FOR TRANSMUTATION OF LONG LIFE RADIOACTIVE MATERIAL AND REACTOR CORE LOADED WITH SUCH ASSEMBLIES |
RU2239900C1 (en) * | 2003-03-13 | 2004-11-10 | Закрытое акционерное общество "Циклотрон" | Method for producing radioactive isotopes cobalt-57 and cadmium-109 |
US8953731B2 (en) * | 2004-12-03 | 2015-02-10 | General Electric Company | Method of producing isotopes in power nuclear reactors |
US7970095B2 (en) * | 2008-04-03 | 2011-06-28 | GE - Hitachi Nuclear Energy Americas LLC | Radioisotope production structures, fuel assemblies having the same, and methods of using the same |
US9899107B2 (en) | 2010-09-10 | 2018-02-20 | Ge-Hitachi Nuclear Energy Americas Llc | Rod assembly for nuclear reactors |
EP3830841B1 (en) * | 2018-07-31 | 2023-09-27 | Framatome GmbH | Cartridge and use of the cartridge in a method of producing radioisotopes |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3331744A (en) * | 1959-04-21 | 1967-07-18 | Taylor Theodore Brewster | Production of isotopes from thermonuclear explosions |
-
1989
- 1989-06-02 FR FR8907315A patent/FR2647945B1/en not_active Expired - Lifetime
-
1990
- 1990-06-01 JP JP2145250A patent/JPH0329899A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009133854A (en) * | 2007-11-28 | 2009-06-18 | Ge-Hitachi Nuclear Energy Americas Llc | Isotope system with reduced cross-sectional area |
JP2009271064A (en) * | 2008-05-01 | 2009-11-19 | Ge-Hitachi Nuclear Energy Americas Llc | Irradiation target retention system, fuel assembly having the same, and method of using the same |
JP2011015970A (en) * | 2009-07-10 | 2011-01-27 | Ge-Hitachi Nuclear Energy Americas Llc | Brachytherapy and radiography target holding device |
TWI489487B (en) * | 2009-07-10 | 2015-06-21 | Ge Hitachi Nucl Energy America | Brachytherapy and radiography target holding device |
CN102842348A (en) * | 2012-09-14 | 2012-12-26 | 中国原子能科学研究院 | System and method for performing activation method radiation experiments in sodium-cooled fast reactor |
CN102842348B (en) * | 2012-09-14 | 2015-04-29 | 中国原子能科学研究院 | System and method for performing activation method radiation experiments in sodium-cooled fast reactor |
JP2019522772A (en) * | 2016-06-10 | 2019-08-15 | ジョイント ストック カンパニー“サイエンス アンド イノヴェーションズ” | A method for producing radioisotopes in a fast neutron reactor. |
CN114556491A (en) * | 2019-10-14 | 2022-05-27 | 西屋电气有限责任公司 | Modular radioisotope production package and related methods |
JP2022553924A (en) * | 2019-10-14 | 2022-12-27 | ウェスティングハウス エレクトリック カンパニー エルエルシー | Modular Radioisotope Generation Capsule and Related Methods |
JP2024525000A (en) * | 2021-06-23 | 2024-07-09 | ウェスティングハウス エレクトリック カンパニー エルエルシー | Method and apparatus for controlling the movement of a capsule containing a cobalt material disposed within a container of a non-ferromagnetic material by application of an electromagnetic force |
Also Published As
Publication number | Publication date |
---|---|
FR2647945B1 (en) | 1991-08-30 |
FR2647945A1 (en) | 1990-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2104113B1 (en) | Process for producing radioactive molybdenum | |
EP0300067B1 (en) | Process for depositing i-125 onto a substrate | |
JPH0329899A (en) | Apparatus for manufacturing radioactive isotope, particularly cobalt 60 | |
US3940318A (en) | Preparation of a primary target for the production of fission products in a nuclear reactor | |
CA2900685C (en) | Nuclear reactor target assemblies, nuclear reactor configurations, and methods for producing isotopes, modifying materials within target material, and/or characterizing material within a target material | |
SU1702436A1 (en) | Elution-based generator of technetium-99m and method for its producing | |
Richards | A survey of the production at Brookhaven National Laboratory of radioisotopes for medical research | |
US20130336436A1 (en) | Method of Producing Isotopes In A Nuclear Reactor With An Irradiation Target Retention System | |
EP4046172B1 (en) | Modular radioisotope production capsules and related method | |
US3594275A (en) | Method for the production of cobalt-60 sources and elongated hollow coiled wire target therefor | |
JP2006162612A (en) | Isotope producing method | |
AU2011264982A1 (en) | Methods and apparatus for selective gaseous extraction of Molybdenum-99 and other fission product radioisotopes | |
JP2020512545A (en) | Systems and processes for producing and recovering radioisotopes | |
CN107251158B (en) | operating neutron source | |
RU2089952C1 (en) | Container for irradiating fissionable materials | |
Konrad | Facilities for the irradiation of 235-U for the production of 99 Mo at the HFR Petten | |
RU2120669C1 (en) | Container for irradiating fissionable materials | |
RU2035076C1 (en) | Source of gamma radiation provided with active core and method for manufacturing same | |
CN111899906A (en) | Method for producing radioactive isotope based on commercial pressurized water reactor irradiation target | |
JPS62165198A (en) | Hydrothermal solidifying processing method of high-level radioactive waste | |
US3663177A (en) | Radioactive barium-137 | |
Luo | Preparation of radionuclides | |
Knauer et al. | Chemical Technology Division Oak Ridge National Laboratory | |
JP2024543434A (en) | Production of AC-225 using gamma rays | |
Hardy Jr et al. | The Effective Resonance Integral and Doppler Coefficient of Thorium-Oxide Rods |