JPH03297167A - Microlens - Google Patents
MicrolensInfo
- Publication number
- JPH03297167A JPH03297167A JP2100857A JP10085790A JPH03297167A JP H03297167 A JPH03297167 A JP H03297167A JP 2100857 A JP2100857 A JP 2100857A JP 10085790 A JP10085790 A JP 10085790A JP H03297167 A JPH03297167 A JP H03297167A
- Authority
- JP
- Japan
- Prior art keywords
- microlens
- layer
- etching
- photoresist
- unnecessary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 claims abstract description 18
- 238000005530 etching Methods 0.000 claims abstract description 12
- 239000004065 semiconductor Substances 0.000 claims abstract description 5
- 239000000758 substrate Substances 0.000 claims abstract description 4
- 230000015572 biosynthetic process Effects 0.000 abstract description 7
- 239000011147 inorganic material Substances 0.000 abstract description 7
- 229920002120 photoresistant polymer Polymers 0.000 abstract description 7
- 229910010272 inorganic material Inorganic materials 0.000 abstract description 6
- 229920005989 resin Polymers 0.000 abstract description 6
- 239000011347 resin Substances 0.000 abstract description 6
- 239000011368 organic material Substances 0.000 abstract description 5
- 238000001020 plasma etching Methods 0.000 abstract description 5
- 229920000642 polymer Polymers 0.000 abstract description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052710 silicon Inorganic materials 0.000 abstract description 3
- 239000010703 silicon Substances 0.000 abstract description 3
- 230000007261 regionalization Effects 0.000 abstract description 2
- 229920006352 transparent thermoplastic Polymers 0.000 abstract description 2
- 230000003287 optical effect Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000004528 spin coating Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- SYBYTAAJFKOIEJ-UHFFFAOYSA-N 3-Methylbutan-2-one Chemical compound CC(C)C(C)=O SYBYTAAJFKOIEJ-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- ZGHFDIIVVIFNPS-UHFFFAOYSA-N methyl alpha-methylvinyl ketone Natural products CC(=C)C(C)=O ZGHFDIIVVIFNPS-UHFFFAOYSA-N 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229920002189 poly(glycerol 1-O-monomethacrylate) polymer Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Landscapes
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、固体撮像素子の感度向上に関するもので、
その光電変換部前方に配置するマイクロレンズ(微小集
光体)に関するものである。[Detailed Description of the Invention] [Industrial Application Field] This invention relates to improving the sensitivity of solid-state image sensors.
This relates to a microlens (microscopic condenser) placed in front of the photoelectric conversion section.
第2図は例えば、特開昭61−203663号公報に示
された、従来のマイクロレンズの形成工程を示す断面フ
ロー図であり、図において、1はフォトダイオード部、
2はパッド部、23は平坦化層、24はマイクロレンズ
である。FIG. 2 is a cross-sectional flow diagram showing the conventional microlens formation process disclosed in, for example, Japanese Unexamined Patent Publication No. 61-203663. In the figure, 1 is a photodiode section;
2 is a pad portion, 23 is a flattening layer, and 24 is a microlens.
次にその形成フローについて説明する。Next, the formation flow will be explained.
受光部や転送部を有する半導体基板上にネガ型の感光性
透明樹脂1i23aをスピン塗布法により形成しく第2
図(a))、露光、現像してフォトダイオード2上の層
を不溶化し、パッド部2.ダイシングライン部等の不要
部分を除去する(第2図(b))。A negative photosensitive transparent resin 1i23a is formed on a semiconductor substrate having a light receiving part and a transfer part by a spin coating method.
(a), the layer on the photodiode 2 is insolubilized by exposure and development, and the pad portion 2. Unnecessary parts such as dicing lines are removed (FIG. 2(b)).
この工程を繰り返して、半導体表面の段差を平坦化し、
平坦化層23を形成する(第2図(C))。続いて、マ
イクロレンズ母材である感光性を有する熱軟化性透明樹
脂層24aをスピン塗布法により形成しく第2図(d)
)、露光、現像してフォトダイオード部以外の上記樹脂
層を取り除く(第2図(e))。By repeating this process, the steps on the semiconductor surface are flattened,
A planarization layer 23 is formed (FIG. 2(C)). Subsequently, a photosensitive heat-softening transparent resin layer 24a, which is a microlens base material, is formed by spin coating as shown in FIG. 2(d).
), exposure and development to remove the resin layer other than the photodiode portion (FIG. 2(e)).
最後に熱フローさせてマイクロレンズ24を形成する(
第2図(f))。Finally, the microlens 24 is formed by heat flow (
Figure 2(f)).
従来のマイクロレンズは、以上のように形成されており
、平坦化層のパッド部等の不要部分を除去した後、マイ
クロレンズ形成を行うため、マイクロレンズ母材の樹脂
層形成等に塗布むらが発生し、精度のよいマイクロレン
ズ形成ができない。Conventional microlenses are formed as described above, and since microlenses are formed after removing unnecessary parts such as the pad portion of the flattening layer, coating unevenness occurs in the formation of the resin layer of the microlens base material. This occurs, making it impossible to form microlenses with high precision.
また、従来法の平坦化層とマイクロレンズ母材ではエツ
チングの選択比がとれないため、マイクロレンズ形成に
エツチング等の手法がとれず、マイクロレンズ母材の選
択の範囲が限られる等の問題点があった。Furthermore, because the etching selectivity cannot be maintained between the flattening layer and the microlens base material in the conventional method, techniques such as etching cannot be used to form microlenses, and the range of selection of the microlens base material is limited. was there.
この発明は、上記のような問題点を解消するためになさ
れたもので、マイクロレンズパターン形成時にエツチン
グ等の手法を用いることができ、レンズを高精度に形成
できるマイクロレンズを得ることを目的とする。This invention was made in order to solve the above-mentioned problems, and the purpose is to obtain a microlens that can use techniques such as etching when forming a microlens pattern and can form lenses with high precision. do.
この発明に係るマイクロレンズは、平坦化層およびマイ
クロレンズにエツチングに対して選択性を有する材料を
用いたもので、具体的には、平坦化層に無機材料、マイ
クロレンズに有機材料を用いるか、あるいは平坦化層に
有機材料、マイクロレンズに無機材料を用いたものであ
る。The microlens according to the present invention uses a material that is selective to etching for the flattening layer and the microlens. Specifically, it uses an inorganic material for the flattening layer and an organic material for the microlens. Alternatively, an organic material is used for the flattening layer and an inorganic material is used for the microlens.
この発明における平坦化層とマイクロレンズ母材は、マ
イクロレンズパターン形成時には平坦化層がストッパー
となり、またマイクロレンズ形成後にはパッド部等の不
要な平坦化層部分を取り除くことができる。The flattening layer and microlens base material in the present invention allow the flattening layer to act as a stopper during microlens pattern formation, and unnecessary flattening layer portions such as pad portions can be removed after microlens formation.
以下、この発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.
第1図は本発明の一実施例によるマイクロレンズの形成
工程を示す断面フロー図である。図において、3は平坦
化層、4はマイクロレンズ、5゜6はレジストである。FIG. 1 is a cross-sectional flow diagram showing a process for forming a microlens according to an embodiment of the present invention. In the figure, 3 is a flattening layer, 4 is a microlens, and 5°6 is a resist.
次に、本実施例の形成フローについて説明する。Next, the formation flow of this embodiment will be explained.
受光部や転送部を有する半導体基板上に透明な無機材料
、例えばOCD (東京応化■製)、ポリビニルシルセ
スキオチサン(PVSQ)等のシリコンラダーポリマー
3aを、下地の段差を吸収できる厚さ以上にスピン塗布
法を用いて形成する。続いてマイクロレンズ母材である
透明な熱可塑性樹脂層(例えばPMMA、PGMA、P
MIPK等)4a、プラズマエッチ用フォトレジスト層
(例えば、東京応化■製○FPR−800,TSMR−
8900等)5aを積層する(第1図(a))。A transparent inorganic material such as silicon ladder polymer 3a such as OCD (manufactured by Tokyo Ohka Chemical Co., Ltd.) or polyvinyl silsesquiotisane (PVSQ) is placed on the semiconductor substrate that has the light receiving part and the transfer part to a thickness that is thicker than that which can absorb the level difference in the base. It is formed using a spin coating method. Next, a transparent thermoplastic resin layer (for example, PMMA, PGMA, P
MIPK etc.) 4a, photoresist layer for plasma etching (for example, Tokyo Ohka ■○FPR-800, TSMR-
8900 etc.) 5a (FIG. 1(a)).
フォトレジストをバターニング5した後、0゜プラズマ
エッチでマイクロレンズ母材のパターン形成4bを行う
(第1図う))。このときシリコンラダーポリマーから
なる平坦化層3aは、0.プラズマエッチに対してスト
ッパーとなる。フオトレジトを剥離液(エタノール、ア
セトン等)にて除去した後、熱りフローにてマイクロレ
ンズ形成4を行う(第1図(C))。After the photoresist is patterned 5, a pattern 4b of the microlens base material is formed by 0° plasma etching (FIG. 1B)). At this time, the flattening layer 3a made of silicon ladder polymer has a thickness of 0. Acts as a stopper against plasma etching. After removing the photoresist with a stripping solution (ethanol, acetone, etc.), microlens formation 4 is performed using a hot flow (FIG. 1(C)).
最後に再びパッドやダイシングライン2等の平坦化層3
a不要部分を取り除くために、フォトレジスト6を積層
、パターニング(第1図(d))シた後、PVSQの場
合アンソール等の溶剤(OCDの場合はフッ酸等)にて
不要部分をエツチング除去し、レジストをエタノール等
で剥離してマイクロレンズを形成する(第1図(e))
。Finally, the flattening layer 3 for pads, dicing lines 2, etc.
a To remove unnecessary parts, after laminating and patterning the photoresist 6 (Fig. 1 (d)), remove the unnecessary parts by etching with a solvent such as Ansor in the case of PVSQ (hydrofluoric acid, etc. in the case of OCD). Then, remove the resist with ethanol or the like to form a microlens (Fig. 1(e)).
.
このように、本実施例によれば、平坦化層およびマイク
ロレンズ母材として、エツチングに対して選択性を有す
る無機材料および有機材料を用いるようにしたので、平
坦化層をストッパーとしたエツチングを用いてマイクロ
レンズパターンを高精度に形成できるとともに、熱的、
透過特性的に優れた材料を選択でき、マイクロレンズ層
形成後のパッド等不要部の除去が可能となる効果がある
。In this way, according to this example, inorganic and organic materials that are selective to etching are used as the flattening layer and the microlens base material, so etching can be performed using the flattening layer as a stopper. It is possible to form microlens patterns with high precision using
This has the effect that a material with excellent transmission characteristics can be selected, and unnecessary parts such as pads can be removed after the microlens layer is formed.
なお、上記実施例ではマイクロレンズ形成のための熱り
フロー後、不要部除去を行っているが、不要部除去後、
最後に熱りフローを行ってマイクロレンズ形成を行って
もよい。In the above example, unnecessary parts are removed after heat flow for forming microlenses, but after removing unnecessary parts,
Finally, a heat flow may be performed to form microlenses.
また、マイクロレンズ形成工程は、等方性エッチ等を利
用したものでもよく、上記実施例と同様の効果を奏する
。Further, the microlens forming step may utilize isotropic etching, etc., and the same effects as in the above embodiments can be achieved.
また、上記実施例における平坦化層材料とマイクロレン
ズ母材の材料とを入れ換えたものでもよく、上記実施例
と同様の効果を奏する。Further, the material of the flattening layer and the material of the microlens base material in the above embodiment may be replaced, and the same effects as in the above embodiment can be obtained.
〔発明の効果〕 、
以上のように、本発明によれば、平坦化層およびマイク
ロレンズ母材として、エツチングに対して選択性を有す
る材料を用いるようにしたので、平坦化層をストッパー
としたエツチングを用いてマイクロレンズパターンを高
精度に形成できる効果がある。[Effects of the Invention] As described above, according to the present invention, materials that are selective to etching are used as the flattening layer and the microlens base material, so the flattening layer can be used as a stopper. There is an effect that a microlens pattern can be formed with high precision using etching.
第1図はこの発明の一実施例によるマイクロレンズの形
成工程を示す断面フロー図、第2図は従来のマイクロレ
ンズの形成工程を示す断面フロー図である。
図において、3は平坦化層、4はマイクロレンズである
。
なお図中同一符号は同−又は相当部分を示す。FIG. 1 is a cross-sectional flow diagram showing the process of forming a microlens according to an embodiment of the present invention, and FIG. 2 is a cross-sectional flow diagram showing the process of forming a conventional microlens. In the figure, 3 is a flattening layer and 4 is a microlens. Note that the same reference numerals in the figures indicate the same or equivalent parts.
Claims (1)
を平坦化する平坦化層上に形成するマイクロレンズにお
いて、 上記平坦化層およびマイクロレンズ母材にエッチングに
対して選択性を有する材料を用いたことを特徴とするマ
イクロレンズ。(1) In a microlens formed on a flattening layer that flattens steps on a semiconductor substrate having a light receiving section and a signal transfer section, the flattening layer and the microlens base material are made of a material that is selective to etching. A microlens characterized by using.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2100857A JPH03297167A (en) | 1990-04-16 | 1990-04-16 | Microlens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2100857A JPH03297167A (en) | 1990-04-16 | 1990-04-16 | Microlens |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03297167A true JPH03297167A (en) | 1991-12-27 |
Family
ID=14284983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2100857A Pending JPH03297167A (en) | 1990-04-16 | 1990-04-16 | Microlens |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03297167A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5605783A (en) * | 1995-01-06 | 1997-02-25 | Eastman Kodak Company | Pattern transfer techniques for fabrication of lenslet arrays for solid state imagers |
US5723264A (en) * | 1996-03-14 | 1998-03-03 | Eastman Kodak Company | Pattern transfer techniques for fabrication of lenslet arrays using specialized polyesters |
EP0783970A3 (en) * | 1996-01-12 | 1998-10-07 | Canon Kabushiki Kaisha | Process for the production of a liquid jet recording head |
EP0756205A3 (en) * | 1995-07-26 | 1998-10-14 | Eastman Kodak Company | Pattern transfer techniques for fabrication of lenslet arrays using specialized polyesters |
-
1990
- 1990-04-16 JP JP2100857A patent/JPH03297167A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5605783A (en) * | 1995-01-06 | 1997-02-25 | Eastman Kodak Company | Pattern transfer techniques for fabrication of lenslet arrays for solid state imagers |
US5691116A (en) * | 1995-01-06 | 1997-11-25 | Eastman Kodak Company | Pattern transfer techniques for fabrication of lenslet arrays for solid state imagers |
EP0756205A3 (en) * | 1995-07-26 | 1998-10-14 | Eastman Kodak Company | Pattern transfer techniques for fabrication of lenslet arrays using specialized polyesters |
EP0783970A3 (en) * | 1996-01-12 | 1998-10-07 | Canon Kabushiki Kaisha | Process for the production of a liquid jet recording head |
US5723264A (en) * | 1996-03-14 | 1998-03-03 | Eastman Kodak Company | Pattern transfer techniques for fabrication of lenslet arrays using specialized polyesters |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5605783A (en) | Pattern transfer techniques for fabrication of lenslet arrays for solid state imagers | |
US7691696B2 (en) | Hemi-spherical structure and method for fabricating the same | |
KR100233417B1 (en) | Microlens forming method | |
US6524772B1 (en) | Method of manufacturing phase grating image sensor | |
US5286605A (en) | Method for producing solid-state imaging device | |
US20030054295A1 (en) | Microlens formed of negative photoresist | |
JP2776810B2 (en) | Method for manufacturing solid-state imaging device | |
CN100435318C (en) | Method for manufacturing CMOS image sensor | |
KR100873275B1 (en) | Manufacturing Method of Image Sensor | |
US6043001A (en) | Dual mask pattern transfer techniques for fabrication of lenslet arrays | |
JPH03297167A (en) | Microlens | |
JP6532465B2 (en) | Method of forming a deposition pattern on a surface | |
JP2000307090A (en) | Microlens array for solid-state imaging device, solid-state imaging device using the same, and manufacturing method thereof | |
JPH0774331A (en) | Solid-state image sensing device with micro lens and manufacture thereof | |
KR100788596B1 (en) | Manufacturing Method of Image Device | |
TWI227037B (en) | Method of forming planar color filters in an image sensor | |
JPH03173472A (en) | Method of forming microlens | |
JPH06302794A (en) | Manufacture of solid-state image sensing element | |
JP3845634B2 (en) | Manufacturing method of CMOS image sensor | |
JPH03190166A (en) | Manufacture of solid-state image sensing element microlens | |
CN110379828B (en) | Method for forming image sensor | |
JP4551922B2 (en) | Gray scale mask using SmartCut substrate bonding process and manufacturing method thereof | |
JPS61203663A (en) | Manufacture of solid-state image pick-up device | |
JP2829066B2 (en) | SOLID-STATE IMAGING ELEMENT WITH MICRO LENS AND METHOD OF MANUFACTURING THE SAME | |
JP4568076B2 (en) | Microlens manufacturing method |