JPH03296242A - Wafer support device - Google Patents
Wafer support deviceInfo
- Publication number
- JPH03296242A JPH03296242A JP2098783A JP9878390A JPH03296242A JP H03296242 A JPH03296242 A JP H03296242A JP 2098783 A JP2098783 A JP 2098783A JP 9878390 A JP9878390 A JP 9878390A JP H03296242 A JPH03296242 A JP H03296242A
- Authority
- JP
- Japan
- Prior art keywords
- wafer
- metal plate
- thinned
- memory alloy
- shape memory
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052751 metal Inorganic materials 0.000 claims abstract description 18
- 239000002184 metal Substances 0.000 claims abstract description 18
- 229910001285 shape-memory alloy Inorganic materials 0.000 claims abstract description 13
- 238000012360 testing method Methods 0.000 abstract description 10
- 238000000034 method Methods 0.000 abstract description 8
- 238000001816 cooling Methods 0.000 abstract description 7
- 238000005259 measurement Methods 0.000 abstract description 4
- 230000002093 peripheral effect Effects 0.000 abstract 1
- 230000000644 propagated effect Effects 0.000 abstract 1
- 235000012431 wafers Nutrition 0.000 description 62
- 239000010949 copper Substances 0.000 description 6
- 239000011521 glass Substances 0.000 description 5
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 241000257465 Echinoidea Species 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
Landscapes
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は 200μm以下に薄板化されたGaAsウ
ェハのハンドリング及び、DC・RFオンウェハテスト
の自動化に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to the handling of GaAs wafers thinned to 200 μm or less and the automation of DC/RF on-wafer testing.
第5図は従来の薄板化ウェハを示す平面図、第6図は第
5図の薄板化ウェハをハンドリングする状態を示す断面
図、第7図は平置きケース(6枚用)を示す斜視図、第
8図は平置きケース(1枚用)を示す斜視図、第9図は
ウェハを薄板化するためにガラス板に貼り合わせた状態
を示す断面図、第10図は第9図の状態のウェハを研削
して薄板化加工した状態を示す断面図である。図におい
て(10)はG、aAsの薄板化ウェハ、(1])はス
テンレス製のピンセット、(12)は平置きケース(6
枚用)、(13)は平置きケース(1枚用、(14)は
厚さ 600μmのGaAsのウェハ、(15)はワッ
クス、(16)はガラス板又はセラミック板である。Fig. 5 is a plan view showing a conventional thinned wafer, Fig. 6 is a sectional view showing a state in which the thinned wafer of Fig. 5 is handled, and Fig. 7 is a perspective view showing a flat case (for 6 wafers). , Fig. 8 is a perspective view showing a flat case (for one wafer), Fig. 9 is a sectional view showing a state where the wafer is bonded to a glass plate to make it thin, and Fig. 10 is a state shown in Fig. 9. FIG. 2 is a cross-sectional view showing a state in which a wafer has been ground and processed into a thin plate. In the figure, (10) is a thinned G, aAs wafer, (1]) is a stainless steel tweezers, and (12) is a flat case (6
(13) is a flat case (for one sheet), (14) is a GaAs wafer with a thickness of 600 μm, (15) is wax, and (16) is a glass plate or ceramic plate.
次に動作について説明する。ウェハ(14)表面にFE
T、抵抗、配線、キャパシター等を形成した後、保護膜
を形成してガラス板又はセラミック板(16)にウェハ
(14)の裏面を上にして第9図のごとく貼り合わせる
。次に研削、ポリッシュによりウェハ(14)を第10
図のごとく薄板化加工する。加工後の薄板化ウェハ(l
O)の厚さは機種によって異なるが、20μm〜200
μmである。次にガラス板又はセラミック板(16)か
ら薄板化ウェハ(JO)をはがし、保護膜や接着剤等を
除去・洗浄してウェハプロセスは終了する。ここで薄板
(1)
(2)
化ウェハ(10)の周辺部をビンセット(11)により
つまみ、専用の平置きケース(6枚用)(12) 、平
置きケース(1枚用> (13)などに収納しテスト
・アセンブリ工程へと進む。テスト工程ではやはりピン
セット(11)により薄板化ウェハ(10)の周辺部を
つまみ、測定ステージに載せる。テスト終了後ビンセッ
ト(II)により薄板化ウェハ(10)の周辺部をつま
み、測定ステージから上記の平置きケース(6枚用)(
12)、平置きケース(1枚用)(1,3)などに収納
し保管する。Next, the operation will be explained. FE on the wafer (14) surface
After forming T, resistors, wiring, capacitors, etc., a protective film is formed and the wafer (14) is bonded to a glass plate or ceramic plate (16) with the back side facing up as shown in FIG. Next, the wafer (14) is polished and polished.
Process to make the plate thinner as shown in the figure. Thinned wafer after processing (l
The thickness of O) varies depending on the model, but is between 20 μm and 200 μm.
It is μm. Next, the thinned wafer (JO) is peeled off from the glass plate or ceramic plate (16), and the protective film, adhesive, etc. are removed and cleaned, and the wafer process is completed. Here, pinch the periphery of the thin plate (1) (2)-treated wafer (10) with the bin set (11), and place a special flat case (for 6 wafers) (12) and a flat case (for 1 wafer) (13). ), etc., and proceed to the test assembly process.In the test process, the periphery of the thinned wafer (10) is also pinched with tweezers (11) and placed on the measurement stage.After the test is completed, the thinned wafer (10) is thinned using the bin set (II). Pinch the periphery of the wafer (10) and lift it from the measurement stage to the flat case (for 6 wafers) (
12) Store it in a flat case (for 1 sheet) (1, 3), etc.
従来の薄板化ウェハのハンドリングは以上のように行な
っていたために、作業時に熟練と慎重さが必要であった
。その理由は通常ウェハの厚みは600μm以下である
ために問題にならないが、厚さ20〜200μmの薄板
化ウェハは非常にもろいので少しでも無理な力が加わっ
たりすると、たちまち割れてしまうからである。この様
に熟練した作業者が慎重に薄板化ウェハを扱わなければ
ならないので能率が悪く薄板化ウェハの割り率が非常に
多いという問題点があった。さらにそのためにテスト工
程の自動化が困難てあった。Conventional handling of thinned wafers was carried out as described above, requiring skill and caution during the work. The reason for this is that normally the thickness of a wafer is less than 600 μm, so this is not a problem, but thinned wafers with a thickness of 20 to 200 μm are extremely brittle, and if even the slightest amount of force is applied, they will break immediately. . As described above, since skilled workers must carefully handle the thinned wafers, there is a problem in that efficiency is low and the percentage of thinned wafers is extremely large. Furthermore, this made it difficult to automate the testing process.
この発明は上記のような問題点を解消するためになされ
たもので、薄板化されたウェハのハンドリングが通常の
ウェハ同様に扱えるようにできるウェハ支持装置を得る
事を目的とする。The present invention was made to solve the above-mentioned problems, and an object of the present invention is to provide a wafer support device that can handle a thinned wafer in the same way as a normal wafer.
この発明に係るウェハ支持装置は、直径150μm以下
の微細な貫通孔を多数有する金属板(直径4インチ)上
に薄板化されたウェハ(直径3インチ)をのせ、形状記
憶合金により作られた形状記憶合金リングによりウニ八
周辺部を押さえたものである。The wafer support device according to the present invention places a thinned wafer (3 inches in diameter) on a metal plate (4 inches in diameter) having a large number of fine through holes with a diameter of 150 μm or less, and forms a shape made of a shape memory alloy. The area around the sea urchin is held down by a memory alloy ring.
この発明における形状記憶合金リングは、冷却時におい
てはウェハとの間にすきまを有し、室温時においてはウ
ェハとの間にすきまがなくなる様に変形するのて、冷却
時に脱着、室温時にウェハを固定する役目を持つ。又、
直径150μm以下の微細な貫通孔は、ブローバなどの
ウェハステージ(3)
(4)
にのせた際、真空吸着されるが、その真空をウェハに伝
えるためのものである。又、金属板は、ウェハテスト中
の発熱を発散させる経路にもなる。The shape memory alloy ring in this invention has a gap between it and the wafer when it is cooled, and deforms so that there is no gap between it and the wafer at room temperature. It has the role of fixing. or,
The fine through-holes with a diameter of 150 μm or less are used to convey vacuum to the wafer, which is vacuum-adsorbed when placed on a wafer stage (3) (4) such as a blower. The metal plate also serves as a path for dissipating heat generated during wafer testing.
以下、この発明の一実施例を図について説明する。第1
図はウェハ支持装置の平面図、第2図及び第3図は第1
図に示すA−Aにおける断面図で、第2図は室温状態の
形状を、第3図は低温(0°〜10℃)状態の形状をそ
れぞれ示す。図において、(1)は100μm以下に薄
板化加工された直径3インチのGaAsのウェハ、(2
)は厚さ0.5〜3mm程度の金属板で材質はCu、’
AI、 CuとSnの合金などで、表面にAuメツキ
を施す。この形状は、直径4インチでSiウェハと同様
のオリエンテーションフラットを設けである。(3)は
形状記憶合金リングで、その一部は金属板(2)に固定
されると共に、直径は、外径が10cm以下、(通常9
cm以下)、内径が7.5 cm以下(通常6.8cm
程度)である。又、材質はニッケル、チタン合金あるい
は銅、アルミ、亜鉛合金から成り、厚みは0.5〜1.
0mmである。(4)は金属板(2)の中心から半径3
.5cmより中心側に複数個設けた貫通孔で直径は15
0μm以下である。An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a plan view of the wafer support device, and Figures 2 and 3 are the 1st
2 shows the shape at room temperature, and FIG. 3 shows the shape at low temperature (0° to 10° C.). In the figure, (1) is a GaAs wafer with a diameter of 3 inches that has been thinned to 100 μm or less, (2)
) is a metal plate with a thickness of about 0.5 to 3 mm, and the material is Cu.
The surface is plated with Au using AI, an alloy of Cu and Sn, etc. This shape is 4 inches in diameter and has an orientation flat similar to a Si wafer. (3) is a shape memory alloy ring, a part of which is fixed to the metal plate (2), and whose outer diameter is 10 cm or less (usually 9 cm).
cm or less), the inner diameter is 7.5 cm or less (usually 6.8 cm)
degree). The material is nickel, titanium alloy, copper, aluminum, or zinc alloy, and the thickness is 0.5 to 1.
It is 0mm. (4) is a radius of 3 from the center of metal plate (2)
.. Multiple through holes are provided on the center side from 5cm, and the diameter is 15cm.
It is 0 μm or less.
次に動7作について説明する。第2図においてウェハ支
持装置に装着されたウェハ(1)は室温において形状記
憶合金リング(3)に押さえられて金属板(2)に固定
されているため、ピンセットでのハンドリングが可能に
なる。さらにカセットに収納して、運搬したり自動テス
ターにセットする事もできる。Next, the seventh operation will be explained. In FIG. 2, the wafer (1) mounted on the wafer support device is held down by the shape memory alloy ring (3) and fixed to the metal plate (2) at room temperature, so that it can be handled with tweezers. Furthermore, it can be stored in a cassette and transported or set in an automatic tester.
エアービンセットでハンドリングする時、又は自動テス
ターのウェハチャックでは、貫通孔(4)を通してウェ
ハ(1)に真空が伝えられる。テスターにて測定中はウ
ェハ(1)表面のデバイスから発生した熱は金属板(2
)に伝わり、さらにウェハチャックに伝わる。自動テス
トが終わり、アセンブリ工程に移る際に、0℃〜−10
℃に冷却する事により形状記憶合金リング(3)が第3
図の様に変形してウェハ(1)はフリーになるので、ピ
ンセット等ではずす事ができる。When handling in an air bottle set or in a wafer chuck of an automatic tester, vacuum is applied to the wafer (1) through the through hole (4). During measurement with the tester, the heat generated from the devices on the surface of the wafer (1) is transferred to the metal plate (2).
) and then to the wafer chuck. After the automatic test, when moving on to the assembly process, the
By cooling to ℃, the shape memory alloy ring (3) becomes the third
The wafer (1) deforms as shown in the figure and becomes free, so it can be removed with tweezers or the like.
(5)
(6)
なお、上記実施例では金属板(2)として、直径150
μm以下の貫通孔(4)を持つCu等の板を用いたが、
CuとSnの合金微粒子を焼結してできた多孔質の金属
板でも良い。ただしこの際にCuとSnの合金微粒子が
作るすき間は150μmより小さくする必要がある。(5) (6) In the above embodiment, the metal plate (2) has a diameter of 150 mm.
A plate made of Cu or the like with through holes (4) of μm or less was used;
A porous metal plate made by sintering fine alloy particles of Cu and Sn may also be used. However, in this case, the gap created by the fine alloy particles of Cu and Sn needs to be smaller than 150 μm.
又、上記実施例のウェハ支持装置にウェハ(1)を脱着
する際には、第4図の様な脱着装置を使用する事によっ
て自動脱着が可能となる。第4図において、(1)〜(
4)は第1図及び第2図に示したものと同等である。(
5)は下部チャックでその内部には埋め込んだ冷却素子
(6)、及び真空吸着孔(7)がある。(8)は上部チ
ャック、(9)は真空吸着孔である。動作は、下部チャ
ック(5)に金属板(2)をセットし、真空吸着孔(7
)を通して吸着する。次に冷却素子(6)により下部チ
ャック(5)全体を0℃〜−10℃に冷却、すると、形
状記憶合金リング(3)は図のように変形する。一方、
上部チャック(8)によりウェハ(1)を吸着し、縦横
にスライドさせて金属板(2)の中央部にのせる。次に
冷却素子(6)による冷却を終了させると全体的に室温
に戻り、形状記憶合金リング(3)かウェハ(1)外周
部を固定する。この状態で上部チャック(8)及び下部
チャック(5)の真空を切り、上部チャック(8)を移
動させる事によってウェハ支持装置に固定されたウェハ
(1)のハンドリングが可能になる。Furthermore, when the wafer (1) is to be attached or detached from the wafer support device of the above embodiment, automatic attachment or detachment is possible by using a detachment device as shown in FIG. In Figure 4, (1) to (
4) is equivalent to that shown in FIGS. 1 and 2. (
5) is a lower chuck in which a cooling element (6) and a vacuum suction hole (7) are embedded. (8) is an upper chuck, and (9) is a vacuum suction hole. The operation is performed by setting the metal plate (2) on the lower chuck (5) and opening the vacuum suction hole (7).
). Next, the entire lower chuck (5) is cooled to 0°C to -10°C by the cooling element (6), and the shape memory alloy ring (3) is deformed as shown in the figure. on the other hand,
The wafer (1) is adsorbed by the upper chuck (8) and placed on the center of the metal plate (2) by sliding it vertically and horizontally. Next, when cooling by the cooling element (6) is finished, the temperature returns to room temperature as a whole, and either the shape memory alloy ring (3) or the outer circumference of the wafer (1) is fixed. In this state, the vacuum of the upper chuck (8) and lower chuck (5) is turned off and the upper chuck (8) is moved, thereby making it possible to handle the wafer (1) fixed to the wafer support device.
以上の様にこの発明によれば、通常ではハンドリンクが
困難な薄板化加工されたウェハを金属板上に固定したの
で、ピンセット等によるハンドリンク・カセットに入れ
ての運搬、自動テスト機への適用が可能になり、テスト
工程の大幅な自動化が可能になる。上記の自動化を行う
事により、これまで多発していたウェハ割れが減少し、
歩留りが向上する。その結果低コスト化にもつながる効
果がある。As described above, according to the present invention, a thinned wafer, which is normally difficult to link by hand, is fixed on a metal plate, so it can be transported by hand in a cassette using tweezers, or transferred to an automatic test machine. application, allowing for significant automation of the testing process. By implementing the above automation, wafer cracking, which had occurred frequently in the past, has been reduced.
Yield is improved. As a result, there is an effect that leads to cost reduction.
第1図はこの発明の一実施例によるウェハ支持(7)
(8)
装置を示す平面図で、第2図及び第3図は第1図に示す
A−Aにおける断面図で、第2図は室温状態の形状を、
第3図は低温状態の形状をそれぞれ示す。第4図は上記
実施例を応用したウェハ脱着装置の構成を示す断面図で
ある。第5図は従来の薄板化ウェハを示す平面図、第6
図は第5図の薄板化ウェハをハンドリングする状態を示
す断面図、第7図は平置きケース(6枚用)を示す斜視
図、第8図は平置きケース(1枚用を示す斜視図、第9
図はウェハを薄板化するためにガラス板に貼り合わせた
状態を示す断面図、第10図は第9図の状態のウェハを
研削して薄板化加工した状態を示す断面図である。
図中で、(1)はウェハ、(′2)は金属板、(3)は
形状記憶合金リング、(4)は貫通孔、(5)は下部チ
ャック、(6)は冷却素子、(7)、(9)は真空吸着
孔、(8)は上部チャックである。
なお、図中、同一符号は同一、又は相当部分を示す。
代理人 大 岩 増 雄第1図
第2図
(9)
第3図
第4図
工をI3+ヤンク
第6図
第7図
(13父用)FIG. 1 is a plan view showing a wafer support (7) (8) device according to an embodiment of the present invention, FIGS. 2 and 3 are cross-sectional views taken along line A-A shown in FIG. 1, and FIG. is the shape at room temperature,
FIG. 3 shows the shapes in the low temperature state. FIG. 4 is a cross-sectional view showing the configuration of a wafer desorption device to which the above embodiment is applied. Figure 5 is a plan view showing a conventional thinned wafer;
The figure is a cross-sectional view showing a state in which the thinned wafer shown in FIG. , No. 9
The figure is a cross-sectional view showing a state in which the wafer is bonded to a glass plate in order to make it thin, and FIG. 10 is a cross-sectional view showing the state in which the wafer in the state shown in FIG. 9 has been ground and processed to be thin. In the figure, (1) is a wafer, ('2) is a metal plate, (3) is a shape memory alloy ring, (4) is a through hole, (5) is a lower chuck, (6) is a cooling element, and (7) is a through hole. ), (9) is a vacuum suction hole, and (8) is an upper chuck. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.
Agent Masuo Oiwa Figure 1 Figure 2 (9) Figure 3 Figure 4 I3 + Yank Figure 6 Figure 7 (for father of 13)
Claims (1)
5mm〜3mmの金属板と、上記金属板の片面上に一部
を固着されたリング状の形状記憶合金とを備えた事を特
徴とするウェハ支持装置。Thickness: 0.0mm with multiple through holes of 150μm or less in diameter.
A wafer support device comprising a metal plate of 5 mm to 3 mm and a ring-shaped shape memory alloy partially fixed to one side of the metal plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2098783A JPH03296242A (en) | 1990-04-13 | 1990-04-13 | Wafer support device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2098783A JPH03296242A (en) | 1990-04-13 | 1990-04-13 | Wafer support device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03296242A true JPH03296242A (en) | 1991-12-26 |
Family
ID=14228967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2098783A Pending JPH03296242A (en) | 1990-04-13 | 1990-04-13 | Wafer support device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03296242A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2783970A1 (en) * | 1998-09-25 | 2000-03-31 | Commissariat Energie Atomique | DEVICE AUTHORIZING THE PROCESSING OF A SUBSTRATE IN A MACHINE PROVIDED FOR PROCESSING LARGER SUBSTRATES AND SYSTEM FOR MOUNTING A SUBSTRATE IN THIS DEVICE |
JP2001063822A (en) * | 1999-08-30 | 2001-03-13 | Watanabe Shoko:Kk | Levitation conveying method |
KR20010058812A (en) * | 1999-12-30 | 2001-07-06 | 박종섭 | Wafer bake apparatus for semiconductor bake system |
WO2005101459A2 (en) * | 2004-04-15 | 2005-10-27 | Infineon Technologies Ag | Method for machining a workpiece on a workpiece support |
-
1990
- 1990-04-13 JP JP2098783A patent/JPH03296242A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2783970A1 (en) * | 1998-09-25 | 2000-03-31 | Commissariat Energie Atomique | DEVICE AUTHORIZING THE PROCESSING OF A SUBSTRATE IN A MACHINE PROVIDED FOR PROCESSING LARGER SUBSTRATES AND SYSTEM FOR MOUNTING A SUBSTRATE IN THIS DEVICE |
EP0993026A1 (en) * | 1998-09-25 | 2000-04-12 | Commissariat A L'energie Atomique | Device for the treatment of a substrate in a machine aimed at processing substrates having a larger size and system for mounting said substrate in said device |
JP2001063822A (en) * | 1999-08-30 | 2001-03-13 | Watanabe Shoko:Kk | Levitation conveying method |
KR20010058812A (en) * | 1999-12-30 | 2001-07-06 | 박종섭 | Wafer bake apparatus for semiconductor bake system |
WO2005101459A2 (en) * | 2004-04-15 | 2005-10-27 | Infineon Technologies Ag | Method for machining a workpiece on a workpiece support |
WO2005101459A3 (en) * | 2004-04-15 | 2006-04-13 | Infineon Technologies Ag | Method for machining a workpiece on a workpiece support |
US7892947B2 (en) | 2004-04-15 | 2011-02-22 | Infineon Technologies Ag | Method for machining a workpiece on a workpiece support |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4138304A (en) | Wafer sawing technique | |
KR100396014B1 (en) | Substrate processing apparatus, substrate support apparatus, substrate processing method, and substrate fabrication method | |
JPH07509351A (en) | Method and apparatus for separating circuit dice from wafers | |
JP5663126B2 (en) | Work conveying method and apparatus having work delivery mechanism | |
JP2000208447A (en) | Semiconductor manufacturing apparatus and manufacture of semiconductor device | |
TW201810601A (en) | Method and apparatus for stacking devices in an integrated circuit assembly | |
JP2002520860A (en) | Wafer carrier and method for handling wafers with minimal contact | |
JPH05259276A (en) | Method and apparatus for attaching tape to semiconductor wafer | |
JPH07136885A (en) | Vacuum chuck | |
JP2002059363A (en) | Wafer base material | |
TWI270160B (en) | Semiconductor wafer protection unit and semiconductor wafer processing method | |
JPH03296242A (en) | Wafer support device | |
JP2002299406A (en) | Substrate transportation and substrate processor using the same | |
JP2001068541A (en) | Processed substrate tray | |
US6248201B1 (en) | Apparatus and method for chip processing | |
JPH07283174A (en) | Dicing device | |
US6123800A (en) | Method and apparatus for handling element on an adhesive film | |
JPH06151550A (en) | Wafer fork | |
JPH05343506A (en) | Chuck for wafer use | |
JP2002353296A (en) | Equipment for peeling wafer protective tape and wafer mounting equipment | |
JP2002033378A (en) | Wafer-handling device | |
JPH042146A (en) | Wafer holder | |
JP2003059862A (en) | Peeling device | |
CN113795911B (en) | Substrate handling device for wafers | |
TWI246149B (en) | Thin wafer carrying device and the method thereof |