JPH03296202A - Magnetic film - Google Patents
Magnetic filmInfo
- Publication number
- JPH03296202A JPH03296202A JP9756690A JP9756690A JPH03296202A JP H03296202 A JPH03296202 A JP H03296202A JP 9756690 A JP9756690 A JP 9756690A JP 9756690 A JP9756690 A JP 9756690A JP H03296202 A JPH03296202 A JP H03296202A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- substance
- film
- transparent
- rotation angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 56
- 239000000696 magnetic material Substances 0.000 claims abstract description 13
- 230000000694 effects Effects 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 claims description 19
- 230000001747 exhibiting effect Effects 0.000 claims description 2
- 239000000126 substance Substances 0.000 abstract description 22
- 239000000758 substrate Substances 0.000 abstract description 8
- SZVJSHCCFOBDDC-UHFFFAOYSA-N ferrosoferric oxide Chemical compound O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 abstract description 4
- 239000002245 particle Substances 0.000 abstract description 3
- 230000005389 magnetism Effects 0.000 abstract description 2
- 230000005540 biological transmission Effects 0.000 abstract 1
- 239000010408 film Substances 0.000 description 44
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 13
- 239000010410 layer Substances 0.000 description 13
- 239000010419 fine particle Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 238000002834 transmittance Methods 0.000 description 6
- 150000002222 fluorine compounds Chemical class 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 239000012780 transparent material Substances 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 229910001337 iron nitride Inorganic materials 0.000 description 4
- 230000005415 magnetization Effects 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000005374 Kerr effect Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- QXYJCZRRLLQGCR-UHFFFAOYSA-N dioxomolybdenum Chemical compound O=[Mo]=O QXYJCZRRLLQGCR-UHFFFAOYSA-N 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 239000002223 garnet Substances 0.000 description 2
- 238000001659 ion-beam spectroscopy Methods 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- -1 rare earth transition metal Chemical class 0.000 description 2
- 239000013077 target material Substances 0.000 description 2
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000823 artificial membrane Substances 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000001093 holography Methods 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- FZGIHSNZYGFUGM-UHFFFAOYSA-L iron(ii) fluoride Chemical compound [F-].[F-].[Fe+2] FZGIHSNZYGFUGM-UHFFFAOYSA-L 0.000 description 1
- SHXXPRJOPFJRHA-UHFFFAOYSA-K iron(iii) fluoride Chemical compound F[Fe](F)F SHXXPRJOPFJRHA-UHFFFAOYSA-K 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- ITRNXVSDJBHYNJ-UHFFFAOYSA-N tungsten disulfide Chemical compound S=[W]=S ITRNXVSDJBHYNJ-UHFFFAOYSA-N 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Landscapes
- Thin Magnetic Films (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は磁気記録媒体に関し、特に光磁気記録媒体に関
する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic recording medium, and particularly to a magneto-optical recording medium.
この記録媒体は、レーザー光を利用しないで記録・再生
を行う磁気記録方式や、その他書換可能なホログラフィ
−用メモリーとしても用いられる磁気記録媒体に関する
。This recording medium relates to a magnetic recording method that performs recording and reproduction without using laser light, and a magnetic recording medium that is also used as a rewritable holography memory.
[従来の技術]
従来、光磁気記録媒体に用いる磁性膜、特に膜中を光が
透過することによって可視光の偏光面が回転して磁気光
学効果(ファラデー回転)が生ずるという磁性膜はBi
置換鉄ガーネット、MnB1、Baフェライト等であり
多くはない。[Prior Art] Conventionally, magnetic films used in magneto-optical recording media, particularly magnetic films in which the plane of polarization of visible light rotates when light passes through the film, producing a magneto-optic effect (Faraday rotation), are made of Bi.
These include substituted iron garnet, MnB1, Ba ferrite, etc., and there are not many of them.
従来、°これ等の磁性膜はいずれも結晶質の単−相から
なるものであり、結晶自体の光透過性が良好なものであ
った。これは一方では磁性膜に利用する物質によって磁
性膜の特性が決定され、任意の特性の磁性膜を作製する
ことはできないといえる。Conventionally, all of these magnetic films have been made of a single crystalline phase, and the crystal itself has good light transmittance. On the one hand, this means that the characteristics of the magnetic film are determined by the substance used in the magnetic film, and it is not possible to create a magnetic film with arbitrary characteristics.
光磁気記録媒体に利用する磁気光学効果(カー効果)の
大きな膜、例えばTbFe、TbFeCo等アモルファ
ス希土類遷移金属薄膜は透明性が低く、膜の表面で光を
反射させて用いた。Films with a large magneto-optical effect (Kerr effect) used in magneto-optical recording media, such as amorphous rare earth transition metal thin films such as TbFe and TbFeCo, have low transparency and were used by reflecting light on the surface of the film.
光磁気記録媒体としては、言うまでもなく垂直磁化膜で
あることが必要である。Needless to say, the magneto-optical recording medium must be a perpendicularly magnetized film.
バルクのF e SCo SN iはファラデー回転角
は大きいが、不透明で、内面磁化膜であり、又、耐食性
が劣る。Bulk Fe SCo SN i has a large Faraday rotation angle, but is opaque, an internally magnetized film, and has poor corrosion resistance.
カー効果を利用する光磁気記録媒体は、光を反射させる
ために多重記録(多層膜記録)に適さない。又、磁性膜
に用いる物質によって回転角が決ってしまう。Magneto-optical recording media that utilize the Kerr effect are not suitable for multiplex recording (multilayer recording) because they reflect light. Furthermore, the rotation angle is determined by the material used for the magnetic film.
これに対して、ファラデー効果を利用する場合は光の透
過性を向上させれば、膜厚を大きくして回転角を任意に
大きくできる(S/Nが向上する)。又、多重記録も可
能になるというような利点かある。On the other hand, when using the Faraday effect, if the light transmittance is improved, the rotation angle can be arbitrarily increased by increasing the film thickness (S/N is improved). Another advantage is that multiplex recording becomes possible.
従来はすでに提案したように(例えば特願平1−135
575号)、柱状構造を可視光が透過する物質(透明性
物質)と強磁性体、例えばFe’、C01Niの微粒子
(数10〜500人)で構成する膜とした。微粒子であ
るため、バルクより大巾に透明性が向上している。又、
Fe5Co、Niの微粒子は柱の中で縦につながってい
る。As previously proposed (for example, Japanese Patent Application No. 1-135
No. 575), the columnar structure was made into a film composed of a material through which visible light passes (transparent material) and fine particles (several 10 to 500 particles) of a ferromagnetic material, such as Fe' or C01Ni. Because it is a fine particle, its transparency is much improved compared to bulk. or,
Fine particles of Fe5Co and Ni are connected vertically within the column.
縦長になるので形状異方性が生じ、膜面に垂直に磁気異
方性が生じ垂直磁化膜になる。この場合の膜への記録方
法は垂直磁気ヘッドを用いる場合は特に問題ないが、レ
ーザー光で膜を加熱し記録する光磁気記録方法に用いる
場合には次のような条件を必要とする。Since the film is elongated vertically, shape anisotropy occurs, and magnetic anisotropy occurs perpendicular to the film surface, resulting in a perpendicularly magnetized film. In this case, there is no particular problem in the recording method on the film when a perpendicular magnetic head is used, but when it is used in a magneto-optical recording method in which recording is performed by heating the film with laser light, the following conditions are required.
すなわち、Fe、Co、Niの磁化が消失する温度(キ
ュリー温度)はNiが最も低く、358℃である。Fe
、、coはそれ以上であり、高速で書込、消去するには
もっと低温である方が好ましい。常温で消失しないため
には1.50〜250℃が好ましい。しかし、上記材料
では加熱すると、例えば350°C位でFeの場合でも
抗磁力は低下し、記録し易くはなるが、角型が1ではな
いため十分ではなかった。That is, the temperature at which the magnetization of Fe, Co, and Ni disappears (Curie temperature) is the lowest for Ni, which is 358°C. Fe
,,co is higher than that, and a lower temperature is preferable for high-speed writing and erasing. In order not to disappear at room temperature, the temperature is preferably 1.50 to 250°C. However, when the above materials are heated, the coercive force decreases even in the case of Fe at, for example, about 350° C., and although it becomes easier to record, it is not sufficient because the square shape is not 1.
[発明が解決しようとする課題]
本発明は、垂直磁気異方性を有し、透明で、ファラデー
回転角か大きく、化学的に安定で、その磁気特性(垂直
異方性や抗磁力等)をある程度任意に変更できる人工膜
を提供しようとするものである。[Problems to be solved by the invention] The present invention has perpendicular magnetic anisotropy, is transparent, has a large Faraday rotation angle, is chemically stable, and has magnetic properties (perpendicular anisotropy, coercive force, etc.) The aim is to provide an artificial membrane that can be changed arbitrarily to some extent.
[課題を解決するだめの手段]
上記課題を解決するための本発明の構成は、柱と柱の間
が非磁性物質で隔離された柱状構造を有し、この柱造構
造内部は可視光を透過し易い物質、及び、ファラデー効
果を示し、キュリ温度が400℃以下である磁性体を含
有する磁性膜である。[Means for Solving the Problems] The configuration of the present invention for solving the above problems has a columnar structure in which the columns are separated by a non-magnetic material, and the inside of this columnar structure is transparent to visible light. This is a magnetic film containing a permeable substance and a magnetic substance that exhibits the Faraday effect and has a Curie temperature of 400° C. or lower.
本発明の磁性膜の構造を図面によって、具体的に説明す
ると、基板1の上に形成された磁性膜2は柱3と非磁性
物質4からなるものである。To explain the structure of the magnetic film of the present invention in detail with reference to the drawings, a magnetic film 2 formed on a substrate 1 is composed of pillars 3 and a nonmagnetic material 4. As shown in FIG.
磁性膜2の厚さは500〜〜5000人が好ましい。The thickness of the magnetic film 2 is preferably 500 to 5,000.
柱の直径は100〜500人が好ましく、この柱を構成
する透明物質と磁性体は柱の直径より小さい粒子状とな
り縦に連なっている。The diameter of the pillar is preferably 100 to 500 people, and the transparent material and magnetic material constituting the pillar are in the form of particles smaller than the diameter of the pillar and are arranged vertically.
本発明は光透過率の高い物質を柱の構成成分として用い
ることは同じであるが、光磁気記録材料として記録感度
を高め、消去し易くするものである。Although the present invention uses a material with high light transmittance as a constituent component of the pillars, it is used as a magneto-optical recording material to improve recording sensitivity and facilitate erasing.
すなわち、Fe、Co、Niの代わりにキュリー温度の
低い材料(400℃以下)(補償温度記録をする材料で
記録温度の低い材料を用いてもよい)を用いる。That is, instead of Fe, Co, and Ni, a material with a low Curie temperature (400° C. or less) is used (a material that performs compensation temperature recording and has a low recording temperature may also be used).
更に膜に垂直磁気異方性をもたせるために、非磁性物質
で隔離された柱状構造を有する膜とした。Furthermore, in order to provide the film with perpendicular magnetic anisotropy, the film was made to have a columnar structure separated by non-magnetic material.
柱の直径を変化させることで膜の磁気特性を変化させる
ことができる。By changing the diameter of the pillars, the magnetic properties of the film can be changed.
ついでこの柱を構成する物質は透明性のある物質を用い
る。ついでファラデー回転角の大きな磁性体の微粒子を
用いる。この透明物質と磁性体の含有比を変えることに
よって透明性とファラデー回転角を調節することができ
る。Next, a transparent material is used to construct this pillar. Next, fine particles of a magnetic material having a large Faraday rotation angle are used. Transparency and Faraday rotation angle can be adjusted by changing the content ratio of the transparent substance and the magnetic substance.
キュリー温度が400℃以下で、光磁気材料として適す
るものには下記の材料があるTbFe。TbFe has a Curie temperature of 400°C or lower and is suitable as a magneto-optical material, including the following materials.
G d T b F e 、 M n A I G e
SM n Cu B i 。G d T b F e , M n A I G e
SM n Cu B i .
PtCo5TbDyFe、GdFeB1゜TbCo等が
ある。Examples include PtCo5TbDyFe and GdFeB1°TbCo.
補償温度記録をする材料にはGdCo、GdF e、G
d I G (Gd鉄ガーネット)等がある。これ等の
材料は薄膜にすると光を透過しないが、酸化物、フッ化
物として透明性を向上させて用いるか、又は微粒子状に
して用いる。Materials for compensating temperature recording include GdCo, GdFe, G
There are d I G (Gd iron garnet), etc. When these materials are formed into a thin film, they do not transmit light, but they are used as oxides or fluorides to improve transparency, or they are used in the form of fine particles.
上記柱状構造の中に上記磁性体の外に、膜面に垂直にC
軸配向させたε相窒化鉄を含めると垂直磁気異方性が向
上する。Inside the columnar structure, outside the magnetic material, there is a carbon perpendicular to the film surface.
Inclusion of axially oriented ε-phase iron nitride improves perpendicular magnetic anisotropy.
ε相窒化鉄はh c p構造を有し、Fe):N(2<
X≦3)と表わされ、C軸方向に磁化容易軸を有するた
めに垂直磁気異方性が向上すると考えられる。ε相窒化
鉄の結晶子サイズは50〜200人(X線回折法)であ
る。含有量は特に限定されないが50wt%以下か好ま
しい。ε-phase iron nitride has a h c p structure, with Fe):N(2<
X≦3), and it is considered that the perpendicular magnetic anisotropy is improved because the easy axis of magnetization is in the C-axis direction. The crystallite size of ε-phase iron nitride is 50 to 200 (X-ray diffraction method). Although the content is not particularly limited, it is preferably 50 wt% or less.
透明性のある物質は上記磁性体の磁性に影響しないよう
な非磁性体が好ましい。この透明物質を具体的に例示す
ると酸化物、窒化物、炭化物、フッ化物等又はこれらの
アモルファス状物(微粒子結晶を含む)でもよく、これ
らは磁性体を包み込んで耐食性を向上させる。The transparent material is preferably a non-magnetic material that does not affect the magnetism of the magnetic material. Specific examples of this transparent material include oxides, nitrides, carbides, fluorides, etc., or amorphous materials thereof (including fine particle crystals), which envelop the magnetic material and improve corrosion resistance.
透明性のある物質としては前に述べた酸化物、窒化物、
フッ化物、炭化物等であり、酸化物としてはFe3O4
、Fe2O3、Fe01Co Os CO203、N
10 % N t 203等がある。しかし、酸化物に
なっていなくてもFe01Co−0、Ni−0で表わさ
れるような弱い結合を有するものでもよい。従ってこれ
らのアモルファス状物質でもよい。又、微粒子状になっ
ており、光を透過するがX線回折法で調べると回折ピー
クが観察されないようなものでもよい。このような場合
、特に光透過率が高い場合がある。Transparent substances include the oxides, nitrides, and
Fluorides, carbides, etc., and oxides include Fe3O4
, Fe2O3, Fe01Co Os CO203, N
10% Nt 203 etc. However, even if it is not an oxide, it may have weak bonds such as those represented by Fe01Co-0 and Ni-0. Therefore, these amorphous substances may be used. Alternatively, the material may be in the form of fine particles that transmit light, but no diffraction peak is observed when examined by X-ray diffraction. In such cases, the light transmittance may be particularly high.
ZnO1A I N、 B e O,A 1203等や
T1、Zr5Mgなどhcp構造を呈する物質であれば
透明であり、かつ、柱状構造を取り易い。Substances exhibiting an hcp structure, such as ZnO1A I N, B e O, A 1203, T1, and Zr5Mg, are transparent and easily form a columnar structure.
窒化物としてはCo 2 N SCO3N %F e
4 N、 F ex N(2<x≦3)、N t
3 N 。As a nitride, Co 2 N SCO3N %Fe
4 N, F ex N (2<x≦3), N t
3N.
フッ化物としてはNlF2、FeF2、FeF3、CO
F2、C0F3゜
炭化物としては、Fe3 C5Fe2 C。Fluorides include NlF2, FeF2, FeF3, CO
The F2, C0F3° carbide is Fe3 C5Fe2 C.
Fe5C2等かある。There is something like Fe5C2.
これらはそれ自体柱状構造をとり易いものもあるが薄膜
として作製する場合は比較的容易に柱状構造が作製され
る。柱状構造は膜形成中の自己陰影効果によることをB
、A、MOVCllanとAV。Some of these materials themselves tend to have a columnar structure, but when produced as a thin film, a columnar structure can be produced relatively easily. B that the columnar structure is due to the self-shading effect during film formation.
, A. MOVCllan and A.V.
Demchishinが示している。ガス圧力や基板温
度によっである程度調節できる。酸化物、窒化物、フッ
化物等は混合物でもよい。磁性体を微粒子状にして膜中
に含有させるには各種の薄膜作製法に於て、N(窒素)
やO(酸素)との組成比や、成膜条件によって可能であ
る。Demchishin shows. It can be adjusted to some extent by gas pressure and substrate temperature. Mixtures of oxides, nitrides, fluorides, etc. may be used. In order to incorporate the magnetic material into fine particles in the film, N (nitrogen) is used in various thin film manufacturing methods.
This is possible depending on the composition ratio with O (oxygen) and film forming conditions.
柱状構造を作り易くするために、下地層をあらかしめ作
製しておいてもよい。又、必要に応じて磁性層の上に保
護層、反射層、潤滑層、誘電体層などが設けられていて
もよい。磁性層やこれらの各層は真空蒸着法、イオンブ
レーティング法、スパッタリング法、CVD法等の薄膜
形成法により作製される。本発明の磁性層を作製するに
は、イオンビームスパッタ法が好ましい。In order to facilitate the formation of a columnar structure, the base layer may be prepared in advance. Further, a protective layer, a reflective layer, a lubricating layer, a dielectric layer, etc. may be provided on the magnetic layer as necessary. The magnetic layer and each of these layers are produced by a thin film forming method such as a vacuum evaporation method, an ion blasting method, a sputtering method, or a CVD method. Ion beam sputtering is preferred for producing the magnetic layer of the present invention.
各層の厚さは1μm以下が好ましく 、0.05〜0.
5μmぐらいが適当である。The thickness of each layer is preferably 1 μm or less, and 0.05 to 0.05 μm.
Approximately 5 μm is appropriate.
なお、透明度が調節できるということは、レザー光の吸
収率を調節できるというであり、光磁気記録媒体として
有用である。Note that the fact that the transparency can be adjusted means that the absorption rate of laser light can be adjusted, making it useful as a magneto-optical recording medium.
磁気記録媒体及び光磁気記録媒体に共通して用いられる
支持体としてはプラスチックフィルム、セラミック、金
属、ガラスなど適宜の非磁性材料が用いられる。ここで
の支持体用プラスチックスとしては、ポリイミド、ポリ
アミド、ポリエニテルサルホン等の耐熱性プラスチック
は勿論のこと、ポリエチレンテレフタレート、ポリ塩化
ビニル、三酢酸セルロース、ポリカーボネート、ポリメ
チルメタクリレートのごときプラスチックも使用できる
。又、支持体の形状としては、シート状、カード状、デ
ィスク状、ドラム状、長尺テープ状等の任意の形状をと
ることができる。As a support commonly used for magnetic recording media and magneto-optical recording media, appropriate non-magnetic materials such as plastic films, ceramics, metals, and glass are used. The plastics used here include not only heat-resistant plastics such as polyimide, polyamide, and polyenitersulfone, but also plastics such as polyethylene terephthalate, polyvinyl chloride, cellulose triacetate, polycarbonate, and polymethyl methacrylate. can. Further, the shape of the support may be any shape such as a sheet, a card, a disk, a drum, or a long tape.
又、前記の誘電体層としては5102、TlO2、窒化
シリコン、窒化アルミニウム、アモルファス81などを
あげることができ、潤滑層としてはカーボン層、二酸化
モリブデン、二硫化タングステン、α−オレフィン重合
物、常温で液体の不飽和炭化水素(n−オレフィン二重
結合が末端の炭素に結合した化合物;炭素数約20)、
炭素数12〜20の一塩基性脂肪酸と炭素数3〜12の
一価アルコールよりなる脂肪酸工]0
ステル類などを挙げることができる。The dielectric layer may include 5102, TlO2, silicon nitride, aluminum nitride, amorphous 81, etc., and the lubricant layer may include carbon layer, molybdenum dioxide, tungsten disulfide, α-olefin polymer, etc. Liquid unsaturated hydrocarbon (compound in which an n-olefin double bond is bonded to the terminal carbon; approximately 20 carbon atoms),
Fatty acids consisting of a monobasic fatty acid having 12 to 20 carbon atoms and a monohydric alcohol having 3 to 12 carbon atoms] Examples include stellates and the like.
反射層の材料としてはAu5Al、Ag。The material for the reflective layer is Au5Al and Ag.
Pt、Cr5Nd、Ge、、Rh、CuXTiNなどが
用いられる。Pt, Cr5Nd, Ge, Rh, CuXTiN, etc. are used.
[実施例コ 以下、実施例によって本発明を具体的に説明する。[Example code] Hereinafter, the present invention will be specifically explained with reference to Examples.
実施例1
イオンビームスパッタ装置によって、ディスク状ガラス
基板上に、基板回転速度2RPMとして下記の条件で厚
さ4500 Xの透明磁性膜を作製した。Example 1 A transparent magnetic film with a thickness of 4500× was produced on a disk-shaped glass substrate using an ion beam sputtering apparatus under the following conditions at a substrate rotation speed of 2 RPM.
ターゲット材料 TbPe (Tb10wt%)ガ
ラス基板温度 100℃
真空槽内ベース圧 8X 1O−7Torrイオン化
ガス Ar75%、N225%イオン銃電圧
9kV
イオン銃電流 2mA
イオン入射角 30゜
導入ガス 酸素
] 1
酸素ガス圧 0.8X 10’ Torrター
ゲット基板間距離 17mm
この条件で作製した磁性膜をX線回折法で調べたところ
、回折ピークは存在しなかった。Target material TbPe (Tb10wt%) Glass substrate temperature 100℃ Base pressure in vacuum chamber 8X 1O-7Torr Ionization gas Ar75%, N225% Ion gun voltage
9kV Ion gun current 2mA Ion incident angle 30°Introduced gas Oxygen] 1 Oxygen gas pressure 0.8X 10' Torr Distance between target substrates 17mm When the magnetic film produced under these conditions was examined by X-ray diffraction, a diffraction peak was found. I didn't.
断面をTEM法で調べたところ、直径約300Åの柱状
構造が観察された。When the cross section was examined using a TEM method, a columnar structure with a diameter of about 300 Å was observed.
膜の組成をXPSで調べたところ、F e 47at%
、T b L2a1%、038at%、N’ 3at%
であった。When the composition of the film was examined by XPS, it was found to be Fe 47at%
, T b L2a1%, 038at%, N' 3at%
Met.
光透過率は44%(λ= 780nm)であった。The light transmittance was 44% (λ=780 nm).
VSMで調べた磁気特性は下記のとおりの垂直磁化膜で
あった。The magnetic properties examined by VSM were as follows for a perpendicularly magnetized film.
Hcl(抗磁力) 4900eHo (抗
磁力) i300eMs(飽和磁化)
350emu/ccSql (角型比>
0.2]HK(垂直磁気異方性磁界) 4.
7kOeキユリ一温度(消磁温度)160℃
次にこの磁性膜に最大12KOeの磁界を印加しながら
半導体レーザー(波長780nm)を用いてファラデー
回転角θ、を測定した。θFは2.9cleg 2
7μmであった。Hcl (coercive force) 4900eHo (coercive force) i300eMs (saturation magnetization)
350emu/ccSql (square ratio>
0.2] HK (perpendicular magnetic anisotropy field) 4.
7 kOe temperature (demagnetization temperature): 160° C. Next, while applying a maximum magnetic field of 12 KOe to this magnetic film, the Faraday rotation angle θ was measured using a semiconductor laser (wavelength: 780 nm). θF was 2.9cleg 2 7μm.
この測定値は成膜後2ケ月しても変化はなかった。This measured value did not change even after two months after film formation.
比較例
ターゲット材料としてFeを用いた以外は実施例1と全
く同様にして透明磁性膜を作製した。Comparative Example A transparent magnetic film was produced in exactly the same manner as in Example 1 except that Fe was used as the target material.
この磁性膜をX線回折法で調べたところ、ε相窒化鉄の
(002) 、(004)面の回折ピークのみが観察さ
れた。When this magnetic film was examined by X-ray diffraction, only the diffraction peaks of the (002) and (004) planes of ε-phase iron nitride were observed.
断面をTEMで調べたところ直径約300人の柱状構造
が観察された。When the cross section was examined using TEM, a columnar structure with a diameter of about 300 people was observed.
光透過率は45%(λ= 780nm)であった。The light transmittance was 45% (λ=780 nm).
VSMで調べた磁気特性は下記のとおりの垂直磁化膜で
あった。The magnetic properties examined by VSM were as follows for a perpendicularly magnetized film.
HC土 420
0eHc 2200e
M 5480emu/cc
S、10.29
HK 4.7KOe
しかし、キュリー温度(磁化消失温度)は400°C以
下では出現しなかった。HC soil 420
0eHc 2200e M 5480emu/cc S, 10.29 HK 4.7KOe However, the Curie temperature (magnetization loss temperature) did not appear below 400°C.
実施例と同様にして測定したθPは2.2deg/μm
であった。θP measured in the same manner as in the example is 2.2 deg/μm
Met.
[発明の効果]
以上説明したように本発明の磁性膜は大きい垂直磁気異
方性と良好な化学的安定性を有する垂直磁化膜であり、
透明性やファラデー回転角及び磁気特性をある程度任意
に調節でき、又それぞれの値が大きくて、光磁気記録材
料として好ましい。勿論その他の記録方式、例えば垂直
ヘッドで書込む垂直磁化膜としても用いることができる
。[Effects of the Invention] As explained above, the magnetic film of the present invention is a perpendicularly magnetized film having large perpendicular magnetic anisotropy and good chemical stability.
It is preferable as a magneto-optical recording material because its transparency, Faraday rotation angle, and magnetic properties can be adjusted arbitrarily to some extent, and each value is large. Of course, it can also be used in other recording methods, for example, as a perpendicularly magnetized film written with a perpendicular head.
第1図は本発明の磁性膜の構造を示す断面の模式図であ
る。
■・・・基板、2・・・磁性膜、訃・・柱、4・・・非
磁性物質。
3
4FIG. 1 is a schematic cross-sectional view showing the structure of the magnetic film of the present invention. ■...Substrate, 2...Magnetic film, Pillar...4...Nonmagnetic material. 3 4
Claims (1)
、この柱状構造内部は可視光を透過し易い物質、及び、
ファラデー効果を示し、キュリー温度が400℃以下で
ある磁性体を含有することを特徴とする磁性膜。It has a columnar structure in which the columns are separated by a non-magnetic material, and the inside of this columnar structure is made of a material that easily transmits visible light, and
A magnetic film characterized by containing a magnetic material exhibiting a Faraday effect and having a Curie temperature of 400°C or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9756690A JPH03296202A (en) | 1990-04-16 | 1990-04-16 | Magnetic film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9756690A JPH03296202A (en) | 1990-04-16 | 1990-04-16 | Magnetic film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03296202A true JPH03296202A (en) | 1991-12-26 |
Family
ID=14195784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9756690A Pending JPH03296202A (en) | 1990-04-16 | 1990-04-16 | Magnetic film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03296202A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05282504A (en) * | 1992-04-01 | 1993-10-29 | Nhk Spring Co Ltd | Information storage card and its information reader |
WO2001027689A1 (en) * | 1999-10-15 | 2001-04-19 | Hitachi, Ltd. | Optically functional element and production method and application therefor |
US6844092B2 (en) | 2002-08-22 | 2005-01-18 | Hitachi, Ltd. | Optically functional element and production method and application therefor |
JP2021056047A (en) * | 2019-09-27 | 2021-04-08 | シチズンファインデバイス株式会社 | Magnetic field sensor element and magnetic field sensor device |
JP2022057406A (en) * | 2020-09-30 | 2022-04-11 | シチズンファインデバイス株式会社 | Magnetic thin film |
CN116685707A (en) * | 2021-01-13 | 2023-09-01 | 公益财团法人电磁材料研究所 | Magneto-optical material and method for manufacturing the same |
-
1990
- 1990-04-16 JP JP9756690A patent/JPH03296202A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05282504A (en) * | 1992-04-01 | 1993-10-29 | Nhk Spring Co Ltd | Information storage card and its information reader |
WO2001027689A1 (en) * | 1999-10-15 | 2001-04-19 | Hitachi, Ltd. | Optically functional element and production method and application therefor |
US6790502B1 (en) | 1999-10-15 | 2004-09-14 | Hitachi, Ltd. | Optically functional element and production method and application therefor |
US6844092B2 (en) | 2002-08-22 | 2005-01-18 | Hitachi, Ltd. | Optically functional element and production method and application therefor |
JP2021056047A (en) * | 2019-09-27 | 2021-04-08 | シチズンファインデバイス株式会社 | Magnetic field sensor element and magnetic field sensor device |
JP2022057406A (en) * | 2020-09-30 | 2022-04-11 | シチズンファインデバイス株式会社 | Magnetic thin film |
CN116685707A (en) * | 2021-01-13 | 2023-09-01 | 公益财团法人电磁材料研究所 | Magneto-optical material and method for manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4645722A (en) | Photo-thermo-magnetic recording medium and method of preparing same | |
Zeper et al. | Hysteresis, microstructure, and magneto‐optical recording in Co/Pt and Co/Pd multilayers | |
JPS605443A (en) | Magneto-optical recording medium | |
US5112701A (en) | Magneto-optic recording media and process for producing the same | |
US5666346A (en) | Super-resolution magnetooptical recording medium using magnetic phase transition material, and method for reproducing information from the medium | |
JPH03296202A (en) | Magnetic film | |
Greidanus et al. | Magneto‐Optical Recording and Data Storage Materials | |
JPS63107008A (en) | Thin film with high rotation angle and method for producing the same | |
JPH02172044A (en) | Magnetooptical recording element | |
JPS63179435A (en) | Thin film magnetic recording medium | |
JPS595450A (en) | Optical magnetic recording medium | |
US5529854A (en) | Magneto-optic recording systems | |
JP2777594B2 (en) | Magnetic film | |
JPH0432209A (en) | Magnetic film | |
JPH02267754A (en) | Magneto-optical recording medium | |
JP2738733B2 (en) | Magnetic film | |
JP2824998B2 (en) | Magnetic film | |
JP2876062B2 (en) | Magnetic film | |
JPH0423412A (en) | Magnetic film | |
JPH04336404A (en) | Magnetic film | |
JP2829321B2 (en) | Magneto-optical recording medium | |
JPS63148447A (en) | Thermomagneto-optical recording medium | |
JPH05303780A (en) | Magnetic film | |
JPS59132434A (en) | Magneto-optic storage element | |
JPS6122451A (en) | Photomagnetic recording medium |