[go: up one dir, main page]

JPH03295409A - Non-contact thickness measurement method for metal pipe surface coatings - Google Patents

Non-contact thickness measurement method for metal pipe surface coatings

Info

Publication number
JPH03295409A
JPH03295409A JP9733990A JP9733990A JPH03295409A JP H03295409 A JPH03295409 A JP H03295409A JP 9733990 A JP9733990 A JP 9733990A JP 9733990 A JP9733990 A JP 9733990A JP H03295409 A JPH03295409 A JP H03295409A
Authority
JP
Japan
Prior art keywords
coating
thickness
coating film
distance
eddy current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9733990A
Other languages
Japanese (ja)
Inventor
Hidekazu Endo
英一 遠藤
Masami Ishida
雅巳 石田
Hiroshi Yoshida
浩 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9733990A priority Critical patent/JPH03295409A/en
Publication of JPH03295409A publication Critical patent/JPH03295409A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/08Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness for measuring thickness

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、金属管表面の塗膜厚みをオンラインで自動的
に非接触式に測定する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for automatically and non-contactly measuring the coating thickness on the surface of a metal tube online.

〔従来の技術〕[Conventional technology]

プラスチック被覆を施す金属管は、主にガス。 Metal pipes coated with plastic are mainly used for gas.

原油等の流体輸送用パイプラインや海洋構造物として使
用され,それらの用途の多くは、過酷な腐食環境条件下
で40〜50年にわたる長期間の耐久性を要求される。
It is used as pipelines for transporting fluids such as crude oil and offshore structures, and many of these applications require long-term durability of 40 to 50 years under harsh corrosive environmental conditions.

その為、被覆材料としてのプラスチックは化学的安定性
の優れたものでなければならない。一方、パイプライン
の埋設や海洋構造物の施工においては、金属管への土砂
や岩石等による衝撃は不可避であり、その衝撃によって
発生した金属面まで達する塗膜の貫通疵部から周囲の腐
食因子や防食電流の影響によって塗膜剥離が進行し、金
属管の寿命を短縮させる。従って,金属管表面の塗膜は
機械的にも優れた強度を有する必要がある。
Therefore, the plastic used as the coating material must have excellent chemical stability. On the other hand, when burying pipelines or constructing offshore structures, it is unavoidable that metal pipes will be impacted by earth, sand, rocks, etc., and corrosion factors in the surrounding area will be exposed to corrosion factors from the penetrating flaws in the coating that reach the metal surface caused by this impact. The coating film peels off due to the effects of corrosion protection and anticorrosion current, shortening the life of the metal pipe. Therefore, the coating film on the surface of the metal tube must have excellent mechanical strength.

以上のことから、被覆材料としてはポリエチレンやエポ
キシ樹脂が一般であり、それらによって成る塗膜の厚み
はポリエチレンで2〜6 Wn,エポキシ樹脂で300
〜1000μである。しかも、これらの被覆材料にはカ
ーボンブラックや金属酸化物が添加されている。
From the above, polyethylene and epoxy resin are generally used as coating materials, and the thickness of the coating film made of them is 2 to 6 Wn for polyethylene and 300 Wn for epoxy resin.
~1000μ. Moreover, carbon black and metal oxides are added to these coating materials.

ところで、塗膜厚みは被覆金属管の需要家に対して保証
すべき必須項目であり、金属管被覆の製造ラインでは全
製品について該塗膜厚みを電磁式膜厚測定器やマグネチ
ック・ゲージ等の計器を用いてオフラインで接触方式に
よって測定する場合が多い。品質保証の立場からすれば
この要領で良いが、品質管理の立場からすれば塗膜厚み
の経時的な変化を的確に捉え、その情報を前工程にフィ
ードバックしてリアルタイムに塗膜厚みを制御するには
タイムラグが長く、必ずしも十分な管理体制とはいえな
い。厳格な塗膜厚み管理を実現するには、塗膜厚みをオ
ンラインで且つ被覆直後に連続的に測定できることが望
ましい。
By the way, the coating thickness is an essential item that must be guaranteed to the customers of coated metal pipes, and in the metal pipe coating manufacturing line, the coating thickness of all products is measured using an electromagnetic film thickness measuring device, magnetic gauge, etc. It is often measured offline using a contact method using a meter. From a quality assurance standpoint, this procedure is fine, but from a quality control standpoint, it is necessary to accurately capture changes in paint film thickness over time and feed that information back to the previous process to control paint film thickness in real time. There is a long time lag, and the management system is not necessarily adequate. In order to achieve strict coating thickness control, it is desirable to be able to continuously measure coating thickness online and immediately after coating.

以下、従来のオンライン塗膜厚み測定技術を列記する。Below, conventional online coating thickness measurement techniques are listed.

■特開昭60−144603号公報、特開昭63−85
11号公報に記載されたように、金属管に接触したガイ
ドロールで塗膜厚み測定センサーをサポー1−すること
によって塗膜厚み測定センサーと塗膜面とを既知の基準
距離に固定し、該塗膜厚み測定センサーによって該塗膜
厚み測定センサー自身と金属面との距離を測定して、こ
の検出距離と前記基準距離との差をとって塗膜厚みを測
定する。
■JP-A-60-144603, JP-A-63-85
As described in Publication No. 11, by supporting the coating film thickness measurement sensor with a guide roll in contact with a metal tube, the coating film thickness measurement sensor and the coating surface are fixed at a known reference distance, and the coating film thickness measurement sensor and the coating surface are fixed at a known reference distance. The distance between the coating film thickness measurement sensor itself and the metal surface is measured by the coating film thickness measurement sensor, and the difference between this detected distance and the reference distance is calculated to measure the coating film thickness.

■特開昭58−18109号公報、実開昭61−163
915号公報に記載されたように被測定塗膜に照射され
た赤外線が塗膜内を透過し金属面で反射して再び塗膜内
を透過して戻ってきたときに、その反射光強度を検出し
て塗膜の赤外線吸収量を測定すれば、赤外線吸収量は塗
膜厚みよって一義的に決まる量であることを利用して、
容易に塗膜厚みを求めることができる。
■Unexamined Japanese Patent Publication No. 58-18109, Utility Model Application No. 61-163
As described in Publication No. 915, when the infrared rays irradiated on the coating film to be measured are transmitted through the coating film, reflected on the metal surface, and returned again after passing through the coating film, the intensity of the reflected light is measured. If you detect it and measure the amount of infrared absorption of the paint film, you can use the fact that the amount of infrared absorption is uniquely determined by the thickness of the paint film.
The coating thickness can be easily determined.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

次に、従来のオンライン塗膜厚み測定技術の問題点を下
記■〜■に列記する。
Next, problems with conventional online coating film thickness measurement techniques are listed below.

■前記特開昭60−144603号公報、特開昭63−
8511号公報に記載の方法は、ガイドロールが塗膜面
に接触する為に塗膜が半溶融の柔らかい状態では塗膜に
疵を付けることは明らかである。
■The above-mentioned JP-A-60-144603, JP-A-63-
It is clear that the method described in Japanese Patent No. 8511 causes scratches on the coating film when the coating film is semi-molten and soft because the guide roll comes into contact with the coating surface.

■上述問題点■を避ける為に、塗膜を十分に同化または
硬化させた後、前記特開昭60−14/!603号公報
、特開昭63−8511号公報に記載の方法を適用しよ
うとすれば、塗膜の同化または硬化の間にも金属管の被
覆は引き続き行われるので、塗膜厚み測定情報のフィー
ドバックによるリアルタイムの制御を少ないタイムラグ
で実現するという本来の目的には適さない。
■In order to avoid the above-mentioned problem (■), after sufficiently assimilating or curing the coating film, the above-mentioned JP-A-60-14/! If we try to apply the method described in JP-A No. 603 and JP-A-63-8511, the coating of the metal tube will continue even during the assimilation or curing of the coating, so the feedback of the coating thickness measurement information will not be possible. It is not suitable for the original purpose of realizing real-time control with a small time lag.

■よしんば上述問題点■に目をつむったとしても、ガイ
ドロールによる塗膜への疵付きを防ぐ為には、ガイドロ
ールは塗膜よりも柔らかい材質のものでなければならな
いので、ガイドロールが摩耗して測定値が不正確になる
■YoshibaEven if we ignore the above-mentioned problem■, in order to prevent the guide roll from scratching the paint film, the guide roll must be made of a softer material than the paint film, so the guide roll will wear out. This will result in inaccurate measurements.

■前記特開昭58−18109号公報、実開昭61−1
63915号公報に記載の方法は、100μ以下の薄膜
の厚み測定に適し、また赤外線の波長を適当に選べば透
明塗膜で1m程度まで、顔料を含まない白色塗膜では多
少ばらつきは増すが500μ程度までは測定できる。し
かし、カーボンブラックや金属酸化物を添加したポリエ
チレンやエポキシ樹脂では測定可能な塗膜厚み限界40
0μであり、これを超える厚みの塗膜には適用できない
■The above-mentioned Japanese Unexamined Patent Publication No. 18109/1983, Utility Model Application No. 61-1
The method described in Publication No. 63915 is suitable for measuring the thickness of thin films of 100μ or less, and if the wavelength of infrared rays is selected appropriately, it can measure up to about 1m for transparent coatings, and 500μ for white coatings that do not contain pigments, although there is some variation. It can be measured to a certain degree. However, with polyethylene or epoxy resins containing carbon black or metal oxides, the measurable coating thickness limit is 40.
0μ, and cannot be applied to coatings with a thickness exceeding this.

本発明は、従来の技術における上述の問題点に注目して
、着色添加物を含み、厚みが300μ〜6mの範囲のポ
リエチレンやエポキシ樹脂から成る塗膜の厚みを、オン
ラインにおいて完全な非接触式で自動的に高精度で測定
できる方法を提供するものである。
The present invention focuses on the above-mentioned problems in the conventional technology, and provides an online, non-contact method for measuring the thickness of a coating film made of polyethylene or epoxy resin containing coloring additives and having a thickness ranging from 300 μm to 6 m. This provides a method that can automatically measure with high accuracy.

〔課題を解決するための手段〕[Means to solve the problem]

塗膜厚みをオンラインにおいて完全な非接触式で自動的
に高精度で測定する2本発明の方法は、下記3点から構
成される。
The method of the present invention for automatically and highly accurately measuring coating film thickness online in a completely non-contact manner consists of the following three points.

■渦電流センサーを用いて金属管の表面の位置を検出す
る。
■Detect the position of the surface of the metal tube using an eddy current sensor.

■光学式センサーを用いて塗膜表面の位置を検出する。■Detect the position of the coating surface using an optical sensor.

■金属管の表面の位置と塗膜表面の位置との差をとって
塗膜厚みとする、 〔作用及び実施例〕 以下、本発明の塗膜厚み測定方法について図に示す実施
例に基づいて詳細に説明する。
■The difference between the position of the surface of the metal tube and the position of the paint film surface is taken as the paint film thickness. [Function and Examples] Hereinafter, the method for measuring the paint film thickness of the present invention will be explained based on the example shown in the figure. Explain in detail.

第1図は、本発明の方法を実施するための装置構成の概
要を示すブロック図である。第1図において、渦電流セ
ンサー1及び11 が光学式センサー2の近傍に配設さ
れており、渦電流センサー1及び1′ によって金属面
7の位置を検出して、金属面位置演算部4によって金属
面位置に応じた電気信号を距離に変換して、渦電流セン
サー1及び1′の距離信号の平均値が金属面の位置とし
て出力される。一方、光学式センサー2によって塗膜面
6の位置を検出して、塗膜面位置演算部3によって塗膜
面位置に応じた電気信号を距離に変換して出力する。金
属面距離演算部4によって出力された距離信号と塗膜面
演算部3によって出力された距離信号は、更に膜厚演算
部5に送信されそこで塗膜厚みが演算される。
FIG. 1 is a block diagram showing an outline of an apparatus configuration for implementing the method of the present invention. In FIG. 1, eddy current sensors 1 and 11 are arranged near an optical sensor 2, and the eddy current sensors 1 and 1' detect the position of a metal surface 7, and the metal surface position calculation section 4 detects the position of a metal surface 7. The electrical signal corresponding to the metal surface position is converted into a distance, and the average value of the distance signals from the eddy current sensors 1 and 1' is output as the metal surface position. On the other hand, the optical sensor 2 detects the position of the coating surface 6, and the coating surface position calculating section 3 converts an electric signal corresponding to the coating surface position into a distance and outputs the converted signal. The distance signal output by the metal surface distance calculation section 4 and the distance signal output by the paint film surface calculation section 3 are further transmitted to the film thickness calculation section 5, where the coating film thickness is calculated.

第2図は、第1図の方法における考え方を示したもので
ある。第2図に示すように、渦電流センサー1によって
金属管までの距離L1を測定し、渦電流センサー1′ 
によって金属管までの距離L2を測定し、光学式センサ
ー2によって塗膜までの距離Hを測定すれば、渦電流セ
ンサー1と光学式センサー2とのギャップa1と渦電流
センサー1’  と光学式センサー2とのギャップa2
は既知の量とすることができるので下記(1)式からの
塗膜厚みtが計算できる。
FIG. 2 shows the concept behind the method of FIG. 1. As shown in FIG. 2, the distance L1 to the metal tube is measured by the eddy current sensor 1, and the eddy current sensor 1'
If the distance L2 to the metal tube is measured by and the distance H to the coating film is measured by the optical sensor 2, the gap a1 between the eddy current sensor 1 and the optical sensor 2, the eddy current sensor 1' and the optical sensor Gap a2 with 2
Since can be taken as a known quantity, the coating film thickness t can be calculated from the following equation (1).

Ll +L2 +a1 +a2 t=            −H・・・(1)次に、
第3図及び第4図に、本発明の方法によって塗膜厚みを
測定した結果の1例を示す。
Ll +L2 +a1 +a2 t= -H...(1) Next,
FIG. 3 and FIG. 4 show an example of the results of measuring the coating film thickness by the method of the present invention.

第3図は、所定量の金属酸化物を含んだ粉体エポキシ樹
脂を130〜700μの塗膜厚みに塗装したものを測定
用サンプルとして供し、センサー2は光学式センサーと
して可視光を光源とする最大10Wlの距離まで測定可
能な市販のセンサーを用い、また渦電流センサー1.I
L として最大5IIffilの距離まで測定可能な市
販のセンサーを用いた結果である。実際の厚みに対して
、測定された厚みはy=Xの直線上に分布し、±50μ
程度の精度が得られた。
In Figure 3, a sample coated with powdered epoxy resin containing a predetermined amount of metal oxide to a coating thickness of 130 to 700μ is used as a measurement sample, and sensor 2 is an optical sensor that uses visible light as a light source. A commercially available sensor that can measure up to a distance of 10 Wl was used, and an eddy current sensor 1. I
These are the results using a commercially available sensor that can measure up to a distance of 5Iffil as L. Relative to the actual thickness, the measured thickness is distributed on the straight line y=X, ±50μ
A certain degree of accuracy was obtained.

第4図は、所定量のカーボンブラックを含んだポリエチ
レンを2.3〜6.4■の塗膜厚みに被覆したものを測
定用サンプルとして供し、センサー2は光学式センサー
として第3図の測定と同じセンサーを用い、また渦電流
センサー1,1′ として最大10wnの距離まで測定
可能な市販のセンサーを用いた結果である。実際の厚み
に対して、測定された厚みはy=xの直線上に分布し、
±100μ以内の精度が得られた。
In Figure 4, a sample coated with polyethylene containing a predetermined amount of carbon black to a coating thickness of 2.3 to 6.4 cm was used as a measurement sample, and sensor 2 was used as an optical sensor for the measurements shown in Figure 3. The results are obtained by using the same sensor as eddy current sensor 1, 1', and using a commercially available sensor capable of measuring up to a distance of 10 wn. Relative to the actual thickness, the measured thickness is distributed on the straight line y=x,
Accuracy within ±100μ was obtained.

また、光学式センサー2の光源にレーザー光を用いると
可視光源を用いた場合に比べ2割程度測定精度は低下す
るが、やはりy=xの直線上に分布した。
Furthermore, when a laser beam is used as the light source of the optical sensor 2, the measurement accuracy is reduced by about 20% compared to when a visible light source is used, but the measurement accuracy is still distributed on the straight line of y=x.

〔発明の効果〕〔Effect of the invention〕

以上述べた本発明の方法によって、厚みが300μ〜6
■の着色塗膜であってもオンラインで完全な非接触式に
よって測定できることから塗膜が柔らかいうちに塗膜厚
みが測定でき、塗膜厚み測定情報のフィードバックによ
るリアルタイムの制御を少ないタイムラグで実現できる
By the method of the present invention described above, the thickness can be reduced from 300 μm to 6 μm.
Even colored paint films can be measured online using a completely non-contact method, so the thickness of the paint film can be measured while the film is still soft, and real-time control can be achieved with less time lag by feedback of paint film thickness measurement information. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を一態様で実施する装置構成を示
すブロック図である。 第2図は、第1図に示すセンサと塗膜面および金属面と
の距離関係を示す説明図である。 第3図及び第4図は、第1図の装置を使用して本発明に
より測定した結果を示すグラフである。 1及び1゛:渦電流センサー 2:光学式センサー    3:塗膜位置演算部4:金
属面位置演算部   5:塗膜厚み演算部6:塗膜面 
       7:金属面L1:渦電流センサー1と金
属面との距離L2:渦電流センサー1′ と金属面との
距離a1:渦電流センサー1と光学式センサー2とのギ
ャップa2:渦電流センサー11  と光学式センサー
2とのギャップH:光学式センサー2と塗膜面との距離
t:塗膜厚み 第2図
FIG. 1 is a block diagram showing the configuration of an apparatus for carrying out one embodiment of the method of the present invention. FIG. 2 is an explanatory diagram showing the distance relationship between the sensor shown in FIG. 1 and a coating surface and a metal surface. 3 and 4 are graphs showing the results of measurements according to the present invention using the apparatus of FIG. 1. 1 and 1゛: Eddy current sensor 2: Optical sensor 3: Paint film position calculation section 4: Metal surface position calculation section 5: Paint film thickness calculation section 6: Paint film surface
7: Metal surface L1: Distance between eddy current sensor 1 and metal surface L2: Distance a1 between eddy current sensor 1' and metal surface: Gap between eddy current sensor 1 and optical sensor 2 A2: Eddy current sensor 11 and Gap H with optical sensor 2: Distance t between optical sensor 2 and coating surface: Coating film thickness Fig. 2

Claims (2)

【特許請求の範囲】[Claims] (1)管軸方向に移動中の金属管の外表面に施された塗
覆膜厚みを測定する方法において、渦電流センサーと光
学式センサーの位置関係を一定に保持し、前記渦電流セ
ンサーによって金属管までの距離を測定し、光学式セン
サーによって塗膜までの距離を測定することによって、
これらの測定値と前記センサー間の位置関係とから塗膜
厚みを測定することを特徴とする金属管表面塗膜の非接
触式厚み測定方法。
(1) In a method for measuring the thickness of a coating film applied to the outer surface of a metal tube that is moving in the tube axis direction, the positional relationship between an eddy current sensor and an optical sensor is maintained constant, and the eddy current sensor is By measuring the distance to the metal pipe and the distance to the coating film using an optical sensor,
A non-contact method for measuring the thickness of a coating film on the surface of a metal pipe, characterized in that the coating thickness is measured from these measured values and the positional relationship between the sensors.
(2)渦電流センサーを、光学式センサーを挟んで両側
に1台ずつ設けることを特徴とする前記特許請求の範囲
第(1)項記載の金属管表面塗膜の非接触式厚み測定方
法。
(2) A non-contact thickness measuring method for a metal tube surface coating film according to claim (1), characterized in that one eddy current sensor is provided on both sides of the optical sensor.
JP9733990A 1990-04-12 1990-04-12 Non-contact thickness measurement method for metal pipe surface coatings Pending JPH03295409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9733990A JPH03295409A (en) 1990-04-12 1990-04-12 Non-contact thickness measurement method for metal pipe surface coatings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9733990A JPH03295409A (en) 1990-04-12 1990-04-12 Non-contact thickness measurement method for metal pipe surface coatings

Publications (1)

Publication Number Publication Date
JPH03295409A true JPH03295409A (en) 1991-12-26

Family

ID=14189725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9733990A Pending JPH03295409A (en) 1990-04-12 1990-04-12 Non-contact thickness measurement method for metal pipe surface coatings

Country Status (1)

Country Link
JP (1) JPH03295409A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148012A (en) * 2000-11-08 2002-05-22 Ulvac Japan Ltd Apparatus and method for measurement of film thickness
US6966816B2 (en) 2001-05-02 2005-11-22 Applied Materials, Inc. Integrated endpoint detection system with optical and eddy current monitoring
US7042558B1 (en) * 2001-03-19 2006-05-09 Applied Materials Eddy-optic sensor for object inspection
US7101254B2 (en) 2001-12-28 2006-09-05 Applied Materials, Inc. System and method for in-line metal profile measurement
JP2007212278A (en) * 2006-02-09 2007-08-23 Bridgestone Corp Old rubber gauge measuring apparatus
JP2008304471A (en) * 2000-03-28 2008-12-18 Toshiba Corp Film thickness measuring device, film thickness measuring method, and recording medium
JP2011043406A (en) * 2009-08-21 2011-03-03 Jfe Steel Corp Pipe end joint position detection apparatus of resin-coated pipe and method
CN103712588A (en) * 2013-12-13 2014-04-09 天津大学 Deposition mass simulation measurement system and method for thickness of oil film absorbed by internal wall surface of engine cylinder
JP2018105849A (en) * 2016-11-11 2018-07-05 フルークコーポレイションFluke Corporation Non-contact current measurement system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0158110B2 (en) * 1981-07-09 1989-12-08 Hoechst Celanese Corp

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0158110B2 (en) * 1981-07-09 1989-12-08 Hoechst Celanese Corp

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304471A (en) * 2000-03-28 2008-12-18 Toshiba Corp Film thickness measuring device, film thickness measuring method, and recording medium
JP2002148012A (en) * 2000-11-08 2002-05-22 Ulvac Japan Ltd Apparatus and method for measurement of film thickness
US7042558B1 (en) * 2001-03-19 2006-05-09 Applied Materials Eddy-optic sensor for object inspection
US6966816B2 (en) 2001-05-02 2005-11-22 Applied Materials, Inc. Integrated endpoint detection system with optical and eddy current monitoring
US7195536B2 (en) 2001-05-02 2007-03-27 Applied Materials, Inc. Integrated endpoint detection system with optical and eddy current monitoring
US7682221B2 (en) 2001-05-02 2010-03-23 Applied Materials, Inc. Integrated endpoint detection system with optical and eddy current monitoring
US7101254B2 (en) 2001-12-28 2006-09-05 Applied Materials, Inc. System and method for in-line metal profile measurement
JP2007212278A (en) * 2006-02-09 2007-08-23 Bridgestone Corp Old rubber gauge measuring apparatus
JP2011043406A (en) * 2009-08-21 2011-03-03 Jfe Steel Corp Pipe end joint position detection apparatus of resin-coated pipe and method
CN103712588A (en) * 2013-12-13 2014-04-09 天津大学 Deposition mass simulation measurement system and method for thickness of oil film absorbed by internal wall surface of engine cylinder
JP2018105849A (en) * 2016-11-11 2018-07-05 フルークコーポレイションFluke Corporation Non-contact current measurement system
US11237192B2 (en) 2016-11-11 2022-02-01 Fluke Corporation Non-contact current measurement system

Similar Documents

Publication Publication Date Title
CA1059752A (en) Gauging surfaces by remotely tracking multiple images
US20150211934A1 (en) Sensor System And Method For Characterizing A Coated Body
JPH03295409A (en) Non-contact thickness measurement method for metal pipe surface coatings
CA2594335A1 (en) Anodizing system with a coating thickness monitor and an anodized product
Jolic et al. Non-contact, optically based measurement of surface roughness of ceramics
JPS5780510A (en) Vehicle for measuring shape of road surface
CH658312A5 (en) NON-CONTACT ASTIGMATIC OPTICAL PROBE.
EP0534002A1 (en) Method for determining the position and the configuration of an object under observation
Qiao et al. Thin Fe-C alloy solid film based fiber optic corrosion sensor
US6253014B1 (en) Embedded fiber optic sensor
Park et al. A Study on Coating Film Thickness Measurement in vehicle Using Eddy Current Coil Sensor
Draper et al. Effect of Steel Surface roughness on FBE Coating Performance
Vilitis et al. Determining the refractive index of liquids using a cylindrical cuvette
JPH0820421B2 (en) Flaw detection method and flaw detection device
KR920011038B1 (en) Method of non-contact on-line determination of thickness and composition of phosphate layer of phosphate film surface
CN114689494B (en) Sensing system for detecting initial corrosion of metal pipeline and sensor manufacturing method
JPH01124703A (en) Method and device for noncontact measurement of film characteristic
JP2001116520A (en) Instrument and method for measuring thickness of coating film
ITMI930092A1 (en) METHOD AND APPARATUS INCLUDING TWO MAGNETIC SENSORS AND A LASER METER TO MEASURE THE THICKNESS OF A FILM
Zimmermann et al. Modeling of signal detection by using the photothermal probe beam deflection technique
JPH04371393A (en) Detection of packing ratio of flux in welding wire including flux
Toedter et al. A simple laser-based distance measuring device
JPH0319484B2 (en)
HRP20220534A1 (en) Radar distance measuring device with micrometer accuracy
JPH04248408A (en) Measuring method for thickness of coating film