[go: up one dir, main page]

JPH03294681A - Scroll compressor - Google Patents

Scroll compressor

Info

Publication number
JPH03294681A
JPH03294681A JP9361190A JP9361190A JPH03294681A JP H03294681 A JPH03294681 A JP H03294681A JP 9361190 A JP9361190 A JP 9361190A JP 9361190 A JP9361190 A JP 9361190A JP H03294681 A JPH03294681 A JP H03294681A
Authority
JP
Japan
Prior art keywords
shaft
bearing
eccentric
spring
scroll compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9361190A
Other languages
Japanese (ja)
Inventor
Tatsuhisa Taguchi
辰久 田口
Tadayuki Onoda
斧田 忠幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9361190A priority Critical patent/JPH03294681A/en
Publication of JPH03294681A publication Critical patent/JPH03294681A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rotary Pumps (AREA)

Abstract

PURPOSE:To maintain the friction coefficient of a radial bearing at a low value even in a high speed rotation area by providing recesses whose mean depth is 10 times or more of the radius clearance at the side surface center, on the reverse side of the load of an eccentric shaft and an eccentric bearing of a shaft. CONSTITUTION:A recess 5a is formed at the center of the right half of the larger shaft 5 of a shaft used in a scroll compressor. And a recess 6a is formed at the center of the right half inside a rotary bearing 6 in the same manner. The mean depth of the recesses 5a and 6a is made about 10 times or more of the radius clearance of the bearing 6. As a result, a loss by the viscosity resistance of the oil flowing in the clearance on the surface at the reverse side where almost no function is necessary as a bearing is reduced. Consequently, the friction coefficient of the radial bearing can be maintained at a low value even in a high speed rotation area.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は空調用冷暖房機等に供されるスクロールコンプ
レッサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a scroll compressor used in air conditioners and the like.

従来の技術 近年、ルームエアコンをはじめとする空調機に使用され
るコンプレッサは、快適な住環境を追求するニーズから
低振動、低騒音に代表される静粛性が強(求められてき
ている。更には年間を通してのエネルギ効率の向上と共
に、より快適な温度調節機能の追求から広範囲の回転可
変幅の実現に向けて改良がなされてきている。このよう
な社会背景の中で、スクロール式コンプレッサは機構上
低振動、低騒音に特徴を有し、3〜5Kwレベルの大能
力域では従来のレシプロ式やロータリ式に比べ10%以
上の高効率が得られることから最近ては急速にスクロー
ル式に置換わりっつある。しかしながらスクロール式コ
ンプレッサは一般的に低速回転域では圧縮漏れにより、
効率が劣下しやすい。また、高速回転域では軸受部での
損失の増加により効率が劣下する傾向にあった。これら
の課題に対しハネ間のシール技術、ハネ加工精度の向上
により低速域での効率劣下は大きく改善されてきている
が、高速回転域では充分な改良がなされでいない。
Conventional technology In recent years, compressors used in air conditioners such as room air conditioners have been required to be extremely quiet, as represented by low vibration and low noise, due to the need for a comfortable living environment. In addition to improving energy efficiency throughout the year, improvements have been made to achieve more comfortable temperature control functions and to realize a wide range of variable rotation.Within this social background, scroll compressors It is characterized by low vibration and low noise, and in the large capacity range of 3 to 5Kw, it is rapidly replacing the scroll type as it has a high efficiency of more than 10% compared to the conventional reciprocating type and rotary type. However, scroll type compressors generally suffer from compression leakage in the low speed range.
Efficiency tends to decrease. Furthermore, in the high-speed rotation range, efficiency tends to decrease due to increased loss in the bearing section. In response to these issues, improvements in the sealing technology between the blades and the accuracy of blade machining have greatly improved the efficiency degradation in the low speed range, but sufficient improvements have not been made in the high speed rotation range.

発明か解決しようとする課題 スクロールコンプレッサの高速回転域における効率改善
のポイントの1つはラジアル軸受、とりわけ第6,7図
に示す従来例の構造においてシャフト4の上部の大軸部
5及び動ハネの旋回軸9の損失低減にある。損失トルク
ΔTrは △Tr−F−r−fJ F・軸受負荷、r、軸半径、fj:摩擦係数で表わされ
るか、特に半径r、負荷Fは変えないで摩擦係数fjを
下げることが重要な課題である。
Problem to be Solved by the Invention One of the points for improving the efficiency of a scroll compressor in the high-speed rotation range is the radial bearing, especially the large shaft portion 5 at the upper part of the shaft 4 and the dynamic spring in the conventional structure shown in FIGS. 6 and 7. The aim is to reduce the loss of the pivot axis 9. The loss torque ΔTr is expressed as ΔTr-F-r-fJ F・Bearing load, r, shaft radius, fj: It is important to lower the friction coefficient fj without changing the radius r and load F. This is a challenge.

課題を解決するだめの手段 本発明は、渦巻状のハネを有する定ハネと、前記定ハネ
と対をなすハネを有し、偏心軸ないし偏心軸受をもつシ
ャフトにより駆動力を受1jると共に回転防止機構によ
り回転防止され、旋回運動を行う動ハネと、前記シャフ
トをラジアル方向に軸受すると共に、前記定ハネと締結
された軸受ブロックからなるスクロールコンプレッサに
おいて、前記シャツi・及びシャフトの偏心軸部ないし
シャフトの偏心軸受部の反負荷側の側面の中央部に、平
均深さhが 11≧1QxCC軸と軸受の半径隙間 の凹部を設けたことを特徴とするスクロールコンプレッ
サてあり、この構成により、前記課題を解決した。
Means for Solving the Problems The present invention has a fixed spring having a spiral spring and a spring paired with the fixed spring, and receives a driving force from a shaft having an eccentric shaft or an eccentric bearing, and rotates while receiving a driving force. A scroll compressor comprising a dynamic spring that is prevented from rotating by a prevention mechanism and performs a rotating motion, and a bearing block that bears the shaft in a radial direction and is fastened to the fixed spring, and the eccentric shaft portion of the shaft. A scroll compressor is characterized in that a recess with an average depth h of 11≧1QxCC and a radius gap between the shaft and the bearing is provided in the center of the side surface on the opposite load side of the eccentric bearing portion of the shaft, and with this configuration, The above problem was solved.

作   用 本発明のスクロールコンプレッサては、従来の軸受構成
と比較すると、負荷側の軸部ては従来同様の油膜分布か
形成されるため、負荷能力は同しであるが、反負荷側に
おいては、従来に比へ凹部の形成部分て流体の粘性によ
る抵抗が減少するため、その分摩擦係数が減少する。こ
の傾向は高速回転機はと顕著であり、広い範囲で裔効率
のスクロールコンプレッサが実現される。
Function: Compared with the conventional bearing configuration, the scroll compressor of the present invention has the same oil film distribution on the shaft on the load side as before, so the load capacity is the same, but the load capacity is the same on the non-load side. Compared to the conventional method, the resistance due to the viscosity of the fluid is reduced in the area where the recesses are formed, so the coefficient of friction is reduced accordingly. This tendency is particularly noticeable in high-speed rotating machines, and scroll compressors with high efficiency can be realized over a wide range of applications.

実施例 以下に本発明の一実施例を説明する。第1図は本発明の
要素を具現化したスクロールコンプレッサの414造を
示す部分断面図である。1.2は各々駆動用モータのス
テータ、ロータでステータ1はシェル3に圧入されてい
る。ロータ2はシャフト4に焼きばめされロータ2の駆
動力をシャフト4に伝達する。シャフト4は上部に太く
なった太軸5を持ち、そして太軸5と並列な位置にシャ
フト4の軸と偏心した偏心軸受6を有している。7は軸
受ブロックで前記シャフト4を軸受している。
EXAMPLE An example of the present invention will be described below. FIG. 1 is a partial cross-sectional view showing the structure of a scroll compressor embodying elements of the present invention. Reference numerals 1 and 2 denote a stator and a rotor of a drive motor, respectively, and the stator 1 is press-fitted into the shell 3. The rotor 2 is shrink-fitted to the shaft 4 and transmits the driving force of the rotor 2 to the shaft 4. The shaft 4 has a thick shaft 5 at the top, and an eccentric bearing 6 that is eccentric to the axis of the shaft 4 in a position parallel to the thick shaft 5. A bearing block 7 bears the shaft 4.

8は動ハネで、渦巻状のハネ8aと、前記偏心軸受6内
に挿入された旋回軸9を持つ。定ハネ10は前記動ハネ
と対になった渦巻状のハネ10aを持ち、前記動ハネ8
と噛み合い圧縮室を形成ずろ。
Reference numeral 8 denotes a dynamic spring, which has a spiral spring 8a and a pivot shaft 9 inserted into the eccentric bearing 6. The fixed spring 10 has a spiral spring 10a paired with the dynamic spring 8.
and mesh to form a compression chamber.

11はスラストリングて動ハネの軸方向荷重を支える。A thrust ring 11 supports the axial load of the dynamic spring.

12は回転防止機構のオルダムリングて前記軸受ブロッ
ク7に設けられた溝部を滑動し、動ハネ8の回転運動を
防止する。13はザイドブレ−1・て前記定ハネ10と
軸受ブロック7に挟まれボルトにて締結されると共に、
動ハネ8のハネ高さ方向の隙間を調節している。
Reference numeral 12 denotes an Oldham ring of a rotation prevention mechanism that slides in a groove provided in the bearing block 7 and prevents the rotational movement of the dynamic spring 8. 13 is a Zydo brake 1 which is sandwiched between the fixed spring 10 and the bearing block 7 and fastened with bolts,
The gap in the height direction of the moving spring 8 is adjusted.

冷媒ガスは吸入管]4から吸込まれ、シェル3の中に入
った後、吸入孔15から圧縮室に吸引される。シャフト
4が回転すると動ハネ8は旋回運動を行ない、定ハネ1
0と動ハネ8で囲まれた空間は徐々に容積が減少してゆ
くため、冷媒カスは吐出室1Gから、吐出弁17を押上
げ吐出マフラー18に吐出される。そして最後に吐出管
19より流出される。下シエル20内に溜った冷凍機油
21はオイルカバー22を介しシャツl−4の中に設け
られた斜め長孔23を遠心力により上部に上がってゆき
、旋回軸9.スラストリング11大軸5を潤滑した後、
オイル叶111孔24から再びシー1ル内に戻る。
Refrigerant gas is sucked in through the suction pipe]4, enters the shell 3, and is then sucked into the compression chamber through the suction hole 15. When the shaft 4 rotates, the dynamic spring 8 performs a turning motion, and the constant spring 1
Since the volume of the space surrounded by 0 and the dynamic spring 8 gradually decreases, the refrigerant scum is discharged from the discharge chamber 1G by pushing up the discharge valve 17 and into the discharge muffler 18. Finally, it is discharged from the discharge pipe 19. The refrigerating machine oil 21 accumulated in the lower shell 20 flows upward through the oil cover 22 through the diagonal elongated hole 23 provided in the shirt l-4 due to centrifugal force, and reaches the upper part of the pivot shaft 9. After lubricating the thrust ring 11 large shaft 5,
The oil leaf 111 returns to the inside of the seal 1 through the hole 24.

第2図は本発明のスクロールコンプレッサに使われてい
るシャフト4の詳細を示す立体図である。
FIG. 2 is a three-dimensional view showing details of the shaft 4 used in the scroll compressor of the present invention.

シャフト4の太軸5の右半分の中央部には四部5aが形
成されている。また旋回軸受6の内側の右半分にも同様
に、中央部に凹部6aが形成されている。
A four part 5a is formed in the center of the right half of the thick shaft 5 of the shaft 4. Similarly, a recess 6a is formed in the center of the inner right half of the swing bearing 6.

第3図は太軸5にかかる力の方向と軸受において発生ず
る反力である油膜圧力分布を示している。
FIG. 3 shows the direction of the force applied to the thick shaft 5 and the oil film pressure distribution, which is the reaction force generated in the bearing.

スクロールコンプレッサては、太軸の回転方向が時計回
りの場合、図に示すような圧縮カスによる負荷(F)が
左向き(偏心方向に対し)に作用する。シャフト4−が
回転しても負荷Fの方向は常に偏心方向に対し左向きに
90”すれた方向で変化しない。逆に軸受ブロック側の
軸受ては、一回転中負荷方向ら同しく一回転変化する。
In a scroll compressor, when the rotation direction of the thick shaft is clockwise, the load (F) due to compressed scum acts to the left (with respect to the eccentric direction) as shown in the figure. Even when the shaft 4- rotates, the direction of the load F always remains 90" to the left with respect to the eccentric direction and does not change. Conversely, the bearing on the bearing block side changes the load direction the same way during one rotation. do.

旋回軸9ては逆に偏心軸受6が常に同し方向に負荷を受
ける。即ち、旋回軸9の負荷側は変化する。
Conversely, the eccentric bearing 6 of the pivot shaft 9 always receives a load in the same direction. That is, the load side of the pivot shaft 9 changes.

このスクロールコンプレッサ特有の負荷の発生状態ゆえ
に、本発明の反負荷側に凹部を設けることの有効性か存
在する。即ち、太軸5ては、第3図に示すごとく、負荷
Fが作用する例の面のみに油膜圧力か発生ずるのであっ
て、反負荷側の面にはほとんど軸受としての機能が必要
ない。ゆえに、反負荷側の面では、むしろ軸と軸受の隙
間内を流れる油の粘性抵抗による損失、即ち摩擦係数を
下げる差の工夫が出来る。本発明の凹部5aはその一実
施例であり、加工性を考慮した偏心加工により三日月状
に形成されている。両端を残し中央部のみにしたのは、
組立性を劣下させないためである。
Because of the load generation condition unique to scroll compressors, it is effective to provide a concave portion on the opposite load side of the present invention. That is, as shown in FIG. 3, in the thick shaft 5, oil film pressure is generated only on the surface on which the load F acts, and the surface on the opposite side to the load hardly needs to function as a bearing. Therefore, on the anti-load side, it is possible to devise ways to reduce the loss caused by the viscous resistance of the oil flowing in the gap between the shaft and the bearing, that is, to reduce the coefficient of friction. The recessed portion 5a of the present invention is one example thereof, and is formed into a crescent shape by eccentric processing in consideration of workability. I left both ends and only the center part,
This is to avoid deteriorating the ease of assembly.

この凹部の平均深さ11は実験的に検討した結果、軸と
軸受の半径隙間Cの約10倍以上必要という結果であっ
た。
As a result of experimental studies, it was determined that the average depth 11 of this recess is approximately 10 times or more the radial clearance C between the shaft and the bearing.

第4図は本発明のいわゆる部分円弧軸と、従来例に示ず
ら線溝付真円軸受の摩擦係数を実験的に求め比較した図
である。横軸は軸受の流体潤滑の程度を示す無次元数で
あるシンマーフェルト指数Sて、その定義は μ:油滑油の粘性係数、N1回転数、D、軸直径L:軸
受長さ、2C:軸と軸受の直径隙間、F:負荷荷重であ
る。この実験結果から、5=10−2では両者とも摩擦
係数fjは10−3であるが、シンマーフェルト数Sの
上昇と共にその差は拡大し、S=1では本発明の構成は
従来に比べ約1/3の値を示すことが実証された。
FIG. 4 is a diagram comparing the friction coefficients of the so-called partially circular arc shaft of the present invention and a conventional perfect circular bearing with an offset line groove. The horizontal axis is the Simmerfeld index S, which is a dimensionless number that indicates the degree of fluid lubrication of the bearing, and its definition is μ: viscosity coefficient of lubricating oil, N1 rotation speed, D, shaft diameter L: bearing length, 2C: Diameter clearance between shaft and bearing, F: Load load. From this experimental result, when 5=10-2, the friction coefficient fj of both is 10-3, but as the Simmerfeld number S increases, the difference increases, and when S=1, the structure of the present invention is better than the conventional one. It was demonstrated that the value is about 1/3.

第5図はスクロールコンプレッサの効率を比較した図で
あるが、本発明のスクロールコンプレッサては高速回転
域でも従来例に比べ効率劣下の少ない勝れた特性を示し
ていることが判る。
FIG. 5 is a diagram comparing the efficiency of scroll compressors, and it can be seen that the scroll compressor of the present invention exhibits superior characteristics with less deterioration in efficiency than the conventional example even in a high speed rotation range.

本実施例では、シャフト4に偏心軸受6を設けた例を示
したが、偏心軸を設けた構成においては、この偏心軸に
実施例で述べた太軸5の凹部5aと同様な凹部を設置す
れば良い。
In this embodiment, an example is shown in which an eccentric bearing 6 is provided on the shaft 4, but in a configuration in which an eccentric shaft is provided, a recess similar to the recess 5a of the thick shaft 5 described in the embodiment is installed in this eccentric shaft. Just do it.

発明の効果 本発明のスクロールコンプレッサは、上述したような構
成により、高速回転域でもラジアル軸受部の摩擦係数を
低い値に保つことがてきるため、広い回転数範囲て高い
コンプレッザ効率にすることが実現できた。
Effects of the Invention The scroll compressor of the present invention, with the above-described configuration, can maintain the friction coefficient of the radial bearing portion at a low value even in the high-speed rotation range, so it is possible to achieve high compressor efficiency over a wide rotation speed range. I was able to make it happen.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のスクロールコンプレッサの全体構造を
示す部分断面図、第2図は第1図におけるシャフトの詳
細を示す立体図、第3図は太軸における負荷のかかり方
と発生ずる油膜圧力分布を示す概念図、第4図は本発明
と従来の摩擦係数シンマーフェルト数特性図、第5図は
本発明と従来のコンブレッザー効率特性図、第6図は従
来のスクロールコンプレッサの構成図、第7図は第6図
の要部分解斜視図である。 4・・・・・・シャフト、5・・・・・・太軸、5a、
6a・・・・・・凹部、6・・・・・・偏心軸受、9・
・・・・・旋回軸。
Figure 1 is a partial sectional view showing the overall structure of the scroll compressor of the present invention, Figure 2 is a three-dimensional view showing details of the shaft in Figure 1, and Figure 3 is how the load is applied to the thick shaft and the oil film pressure generated. A conceptual diagram showing the distribution, Fig. 4 is a friction coefficient Simmerfeld number characteristic diagram of the present invention and the conventional one, Fig. 5 is a compressor efficiency characteristic diagram of the present invention and the conventional compressor, and Fig. 6 is a configuration diagram of a conventional scroll compressor. FIG. 7 is an exploded perspective view of the main part of FIG. 6. 4...Shaft, 5...Thick shaft, 5a,
6a... recess, 6... eccentric bearing, 9...
...Rotating axis.

Claims (1)

【特許請求の範囲】[Claims]  渦巻状のハネを有する定ハネと、前記定ハネと対をな
すハネを有し、偏心軸ないし偏心軸受を持つシャフトに
より駆動力を受けると共に、回転防止防止機構により回
転防止され旋回運動を行なう動ハネと、前記シャフトを
ラジアル方向に軸受すると共に、前記定ハネと締結され
た軸受ブロックからなるスクロールコンプレッサにおい
て、前記シャフト及びシャフトの偏心軸部ないしシャフ
トの偏心軸受部の反負荷側の側面の中央部に平均深さh
がh≧1×CC:軸と軸受の半径隙間の凹部を設けたこ
とを特徴とするスクロールコンプレッサ。
A motion having a fixed spring having a spiral spring and a spring forming a pair with the fixed spring, which receives a driving force from a shaft having an eccentric shaft or an eccentric bearing, and is prevented from rotating by an anti-rotation mechanism and performs a turning motion. A scroll compressor comprising a spring and a bearing block that bears the shaft in the radial direction and is fastened to the constant spring, the center of the shaft and the eccentric shaft portion of the shaft or the opposite-load side side of the eccentric bearing portion of the shaft. average depth h
h≧1×CC: A scroll compressor characterized in that a concave portion is provided for a radial gap between the shaft and the bearing.
JP9361190A 1990-04-09 1990-04-09 Scroll compressor Pending JPH03294681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9361190A JPH03294681A (en) 1990-04-09 1990-04-09 Scroll compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9361190A JPH03294681A (en) 1990-04-09 1990-04-09 Scroll compressor

Publications (1)

Publication Number Publication Date
JPH03294681A true JPH03294681A (en) 1991-12-25

Family

ID=14087125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9361190A Pending JPH03294681A (en) 1990-04-09 1990-04-09 Scroll compressor

Country Status (1)

Country Link
JP (1) JPH03294681A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6280165B1 (en) * 1998-12-04 2001-08-28 Hitachi, Ltd. Scroll type fluid machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6280165B1 (en) * 1998-12-04 2001-08-28 Hitachi, Ltd. Scroll type fluid machine

Similar Documents

Publication Publication Date Title
US7435065B2 (en) Rotary fluid machine having a swinging bushing with a swing center disposed radially inwardly of an annular midline of an annular piston
CN201574931U (en) Scroll compressor having a plurality of scroll members
JP6903826B2 (en) Dynamic radial compliance in scroll compressors
US3513476A (en) Rotary compressors
KR100607321B1 (en) Vane vacuum pump
JP2000320475A (en) Positive displacement fluid machine
WO1999056020A1 (en) Fluid pump
JPH03294681A (en) Scroll compressor
JP2019002313A (en) Scroll compressor
JP2770732B2 (en) Lubrication-free vacuum pump
JP3356460B2 (en) Hermetic compressor
JP3553145B2 (en) Hermetic compressor
JPH06207590A (en) Fluid compressor
JP3976070B2 (en) Scroll type fluid machinery
JP4013992B2 (en) Scroll type fluid machinery
WO2020230230A1 (en) Rotary compressor
JP3874018B2 (en) Scroll type fluid machinery
JPH09137785A (en) Rotary compressor
JPH0343476B2 (en)
JPS6278499A (en) rotary compressor
JP3976081B2 (en) Scroll type fluid machinery
KR20230080885A (en) Reciprocating compressor
JPS61205385A (en) Fluid compressor
JPS6241988A (en) Rotary compressor
JPH0683977U (en) Vane type fluid machinery