JPH03293086A - Method for obtaining water rich in dissolved oxygen, method and apparatus for reducing ozone in water - Google Patents
Method for obtaining water rich in dissolved oxygen, method and apparatus for reducing ozone in waterInfo
- Publication number
- JPH03293086A JPH03293086A JP4919889A JP4919889A JPH03293086A JP H03293086 A JPH03293086 A JP H03293086A JP 4919889 A JP4919889 A JP 4919889A JP 4919889 A JP4919889 A JP 4919889A JP H03293086 A JPH03293086 A JP H03293086A
- Authority
- JP
- Japan
- Prior art keywords
- water
- ozone
- dissolved oxygen
- ultraviolet rays
- container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Physical Water Treatments (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
養魚場、或は水耕栽培等に於て、生物に供給する水の溶
存酸素濃度を高め、且大量に供給し得る装置であって、
生物の生長速度を増大させ、同時に水の滅菌、脱色、脱
オゾン、脱味、脱臭等の水処理装置として有効な手段を
提供せんとするものである。[Detailed Description of the Invention] [Industrial Application Field] A device that can increase the dissolved oxygen concentration of water supplied to living organisms and supply a large amount of water in fish farms, hydroponic cultivation, etc.
The present invention aims to increase the growth rate of living organisms and at the same time provide an effective means for water treatment such as water sterilization, decolorization, deozonation, flavoring, and deodorization.
従来は水中に酸素或はオゾンを溶けこませるのに、単に
エゼクタ−或は散気管等を用いて水中に吹きこむもので
あった。Conventionally, in order to dissolve oxygen or ozone into water, an ejector or a diffuser pipe or the like was simply used to blow it into the water.
水中に溶解し難い酸素、或はオゾンを、従来よりも、は
るかに高能率で水中に溶解させる事。Oxygen or ozone, which is difficult to dissolve in water, can be dissolved in water with much higher efficiency than before.
水とオゾンを注入する容器内に、紫外線照射を行ない、
オゾンが紫外線により分解して酸素に変る現象を利用す
るもので、酸素を直接に噴射注入するよりもオゾン注入
、紫外線分解による酸素発生を目的としこの生成した酸
素は発生機の酸素、所謂活性化された酸素となる。The container into which water and ozone are injected is irradiated with ultraviolet light.
This method utilizes the phenomenon in which ozone is decomposed by ultraviolet rays and turned into oxygen.Rather than injecting oxygen directly, the purpose is to inject ozone and generate oxygen through ultraviolet decomposition.The generated oxygen is used as oxygen in the generator, so-called activation. becomes oxygen.
第6図に示す様な容器(10)に、注入口(8)から水
(12)を入れ、先端に散気筒(2)を備えたオゾン注
入管(3)と、紫外線ランプ(1)を挿入し、散気筒(
2)から水中にオゾンを分散噴出させる。Fill a container (10) as shown in Figure 6 with water (12) from the inlet (8), and attach an ozone injection tube (3) with a diffuser tube (2) at the tip and an ultraviolet lamp (1). Insert the aeration cylinder (
2) Disperse and eject ozone into the water.
紫外線ランプ(1)を点灯せずにオゾンだけを噴出させ
て、水中のオゾン濃度を測定した時間的経過を示したの
が、第1図、
オゾンを噴出させ乍ら、水中で紫外線ランプを点灯した
場合の水中のオゾン濃度の時間的経過を示したのが第2
図である。Figure 1 shows the time course of measuring the ozone concentration in water by spouting only ozone without turning on the ultraviolet lamp (1). The second part shows the time course of ozone concentration in water when
It is a diagram.
第1図と第2図を較べると紫外線光のない場合は紫外線
光のある場合の20倍の水中オゾン濃度を持って飽和す
ることが判る。Comparing Figures 1 and 2, it can be seen that in the absence of ultraviolet light, the water ozone concentration is 20 times higher than in the case of ultraviolet light, and reaches saturation.
第1図に於て、オゾン注入後に、水中オゾン濃度はCP
”)点に於て約0.35ppmであるが、ここでオゾン
注入を止めると、曲線(S)部に示される様に、オゾン
が自然分解して酸素に変り、オゾン濃度はゆるやかに低
下し始める。In Figure 1, after ozone injection, the ozone concentration in water is CP
”), but if ozone injection is stopped at this point, as shown in the curve (S), ozone naturally decomposes and turns into oxygen, and the ozone concentration gradually decreases. start.
然しくP)点で紫外線ランプを点灯すると、オゾン濃度
は曲線(M)で示される様に急激に低下し、酸素に分解
する。即ち、水中のオゾン濃度の半減期は純水中では約
20分であったが、紫外線照射下では約20秒であり、
著しく短縮されることが観測された。However, when the ultraviolet lamp is turned on at point P), the ozone concentration rapidly decreases as shown by the curve (M) and decomposes into oxygen. That is, the half-life of ozone concentration in water was about 20 minutes in pure water, but it was about 20 seconds under ultraviolet irradiation.
A significant shortening was observed.
オゾンは、比較的、水中へ溶解し難いが、第1図で見る
と、水中濃度がQJppm位に達する迄は割合早く濃度
が上昇しあとは飽和状態にゆるやかに近づいてゆく。Ozone is relatively difficult to dissolve in water, but as shown in Figure 1, the concentration in water increases relatively quickly until it reaches about QJppm, and then slowly approaches the saturated state.
オゾン濃度を高めるには、一般に時間がかかることは第
1図で示したが、紫外線照射により、水中のオゾンを分
解して酸素に変えてゆけば、水中のオゾン濃度の低い状
態、即ち、第1図の(X)点の溶解速度は大きい状態を
保ち乍ら、オゾンを酸素に変換し、オゾン溶解度は酸素
溶解度よりも大きいから、酸素を直接水中に吹きこむよ
りも、はるかに酸素濃度の高い水を迅速に変換すること
が出来る。As shown in Figure 1, it generally takes time to increase the ozone concentration, but if the ozone in the water is decomposed and converted to oxygen by ultraviolet irradiation, the ozone concentration in the water will be low, that is, the ozone concentration will be low. While the dissolution rate at point (X) in Figure 1 remains high, ozone is converted to oxygen, and the solubility of ozone is greater than the solubility of oxygen. High water can be converted quickly.
第2図はその実験結果を示したもので、第1図の場合よ
りも濃度の高いオゾンを水中に噴出させ乍ら、紫外線に
より次々とオゾンを分解させて酸素に変換させたもので
ある。Figure 2 shows the results of this experiment, in which ozone with a higher concentration than in Figure 1 was ejected into the water, and the ozone was successively decomposed by ultraviolet rays and converted into oxygen.
即ち水中のオゾン濃度は、飽和値0.3ppmよりもは
るかに低い値にとどまり乍ら、大量の酸素に転換してい
る。That is, while the ozone concentration in water remains at a value far lower than the saturation value of 0.3 ppm, it is converted into a large amount of oxygen.
この場合も(Q)点でオゾン供給をとめ、自然分解させ
れば(R)部の様にゆるやかな濃度低下を始めるが、紫
外線照射下では、(N)部の様に急激に濃度が低下する
。In this case as well, if the ozone supply is stopped at point (Q) and natural decomposition occurs, the concentration will start to gradually decrease as in part (R), but under ultraviolet irradiation, the concentration will drop rapidly as in part (N). do.
本発明は之等の現象を装置として、溶存酸素量の大きい
水を大量に簡単に供給しようとするものである。The present invention attempts to easily supply a large amount of water with a large amount of dissolved oxygen by utilizing such a phenomenon as a device.
オゾンは化学反応、酸化作用が強い為にオゾン濃度の高
い水は稚魚を死滅させ、或は植物をいためる。特に遊離
した気体状のオゾンの作用は激しいから、オゾンを水中
に吹きこんだ時に発生する気泡を、生物に有害でな(な
る程度に迄、除去する必要がある。Because ozone has a strong chemical reaction and oxidizing effect, water with high ozone concentration kills young fish and damages plants. In particular, the action of free gaseous ozone is intense, so it is necessary to remove the bubbles that are generated when ozone is blown into water to the extent that they are not harmful to living things.
波長253.7nm (ナノメートル)の紫外線は、オ
ゾンを分解して酸素に変化させるが、同時に殺菌作用も
強く、水中のバクテリア・ウィルス等を秒単位で殺す力
があり、之は紫外線照射と細菌除去率の関係として、充
分の資料が示されている。Ultraviolet light with a wavelength of 253.7 nm (nanometers) decomposes ozone and turns it into oxygen, but it also has a strong sterilizing effect and has the power to kill bacteria and viruses in water in seconds. Sufficient data has been shown regarding the relationship between removal rates.
本発明は、容器中にオゾン注入機構と紫外線ランプを収
納し、容器上部より注水し、容器下部から水を取り出す
様に構成したもので、必要に応じて撹拌機構、気泡分離
機構を備えるもので、注入したオゾンを連続的に迅速に
分解して酸素に変換し取り出す水の中のオゾン濃度を所
望の低い値に保たせるものである。紫外線は容器外側か
ら照射してもよい。The present invention is configured such that an ozone injection mechanism and an ultraviolet lamp are housed in a container, water is injected from the top of the container, and water is taken out from the bottom of the container, and a stirring mechanism and a bubble separation mechanism are provided as necessary. , the injected ozone is continuously and rapidly decomposed and converted into oxygen to maintain the ozone concentration in the water taken out at a desired low value. Ultraviolet light may be irradiated from outside the container.
〔作 用]
容器内に流入する水自身の流速酸は強制的な撹拌機構に
より、内部の水は撹拌され、この水中に散気筒より放出
されたオゾン、或はオゾン含有気泡は、紫外線により急
速に分解し続けて酸素にかわる。[Function] The flow rate of the water itself flowing into the container causes the internal water to be stirred by the forced stirring mechanism, and the ozone or ozone-containing bubbles released from the aeration tube into this water are rapidly exposed to ultraviolet light. It continues to decompose into oxygen.
比較的大きな気泡は、容器内の下向きの流れに抗して上
昇し容器上部より放出されるが、例えばかろうじて肉眼
で識別できる程度の微細気泡よりも大きく、稚魚等に有
害な大きさの気泡は全部上昇して除去され、容器下部か
らとり出される水は、溶存酸素を多量に含み、気泡を含
まず、且殺菌された水となりオゾン濃度も極めて低くコ
ントロール出来る。Relatively large bubbles rise against the downward flow within the container and are released from the top of the container, but for example, bubbles that are larger than microscopic bubbles that can be barely discerned with the naked eye and that are harmful to fry, etc. The water that is all raised and removed and taken out from the bottom of the container contains a large amount of dissolved oxygen, does not contain air bubbles, is sterilized water, and the ozone concentration can be controlled to be extremely low.
本発明は溶存酸素濃度の大きい水を、簡単、迅速、大量
に供給することが出来る為に、水産養殖、水耕栽培等に
於て生物の生長速度を増大させ、又水中の病原菌即ち有
害微生物、ウィルス、バクテリア等を殺して無菌水を得
る為の装置として有効である。又水中オゾン濃度を迅速
に低下させ、オゾンを全く含まぬ、或は極めて希薄な水
を得ることが出来る。The present invention can supply water with a high dissolved oxygen concentration easily, quickly, and in large quantities, thereby increasing the growth rate of organisms in aquaculture, hydroponics, etc. It is effective as a device for obtaining sterile water by killing viruses, bacteria, etc. In addition, the ozone concentration in water can be rapidly lowered, and water containing no ozone or extremely diluted ozone can be obtained.
第3図、第4図、第5図、第6図にその実施例を示す。 Examples thereof are shown in FIG. 3, FIG. 4, FIG. 5, and FIG. 6.
容器(10)に、オゾン注入管(3)、散気筒(2)等
よりなる気体分散注入機構、紫外線ランプ(1)を収納
し、容器(10)の上端部に水の注入口(8)を設ける
。容器(10)の底部付近に、排出口(9)に接続する
下部吐出口(4)を設ける。下部吐出口(4)は第5図
に示す様に、直ちに排出口(9)に違ってもよいが、第
3図、第4図、第6図の様に上昇管(6)を介して排出
口(9)に連結してもよい。容器(10)を密閉型にし
た時は、容器(10)の最上端部にエアベンド(7)を
設け、気体のみを排出可能にしてもよい。下部吐出口(
4)は気泡(11)が入って来ない所に設ける。散気筒
(2)は容器底部においてもよいが、中央付近でもよく
、又注入口(8)に入る以前のパイプライン中に設けて
も差支えない。何れにせよ、気泡状或は水に溶けた状態
のオゾンを含む水が紫外線ランプ(1)の周辺を流れる
様に構成する。A gas dispersion injection mechanism consisting of an ozone injection pipe (3), an aeration tube (2), etc., and an ultraviolet lamp (1) are housed in the container (10), and a water injection port (8) is provided at the upper end of the container (10). will be established. A lower outlet (4) connected to the outlet (9) is provided near the bottom of the container (10). The lower discharge port (4) may be directly connected to the discharge port (9) as shown in FIG. 5, or it may be connected directly to the discharge port (9) as shown in FIGS. It may be connected to the outlet (9). When the container (10) is of a closed type, an air bend (7) may be provided at the top end of the container (10) so that only gas can be discharged. Lower outlet (
4) is provided in a place where air bubbles (11) cannot enter. The aeration pipe (2) may be located at the bottom of the container, or may be located near the center, or may be provided in the pipeline before entering the inlet (8). In any case, the structure is such that water containing ozone in the form of bubbles or dissolved in water flows around the ultraviolet lamp (1).
水の流れは上昇流でも充分の紫外線強度と紫外線に対す
る暴露時間が得られる条件であれば差支えないが、一般
に下向流にした方が、気泡分離の点からも有利である。Although an upward flow of water may be used as long as sufficient ultraviolet intensity and exposure time to the ultraviolet rays can be obtained, a downward flow is generally more advantageous in terms of bubble separation.
注入口(8)から流入する水は、ゆっくりと紫外線ラン
プ(1)の周を下降して紫外線にさらされる。散気筒(
2)から放出されたオゾンの気泡(11)は水中に溶解
し溶解しきれない大きな気泡は下降流に逆って上昇して
容器(10)の上端部の開放口、或はエアベンド(7)
から放出される。Water flowing in through the inlet (8) slowly moves down around the UV lamp (1) and is exposed to UV radiation. Diffusion cylinder (
The ozone bubbles (11) released from 2) dissolve in the water, and large bubbles that are not completely dissolved rise against the downward flow and reach the open opening at the top of the container (10) or the air bend (7).
released from.
水に溶けたオゾンは極めて短時間に紫外線により酸素に
なる。水(12)は下降中に紫外線にさらされて、水中
の病原菌ウィルス等は死滅し、又、奥、色等を構成する
物質も、酸化分解される。Ozone dissolved in water becomes oxygen in a very short time when exposed to ultraviolet light. The water (12) is exposed to ultraviolet rays while descending, and pathogenic bacteria and viruses in the water are killed, and the substances that make up the depth, color, etc. are also oxidized and decomposed.
下部吐出口に達した水は、殆ど気泡を含まず、溶存酸素
は多く含まれ、且殺菌されている。The water that has reached the lower discharge port contains almost no bubbles, contains a large amount of dissolved oxygen, and is sterilized.
水中で紫外線にさらされたオゾンが変換して発生する酸
素は活性の大きい発生機の酸素であり、酸化作用も大き
い。The oxygen generated by the conversion of ozone exposed to ultraviolet light in water is highly active generator oxygen and has a strong oxidizing effect.
オゾンがオゾンとして存在する時間も極めて短かく水中
のオゾン濃度も又極めて低い値、或はゼロにできる。The time that ozone exists as ozone is extremely short, and the ozone concentration in water can also be reduced to an extremely low value or zero.
第1′図は、紫外線、照射なしの場合の、オゾンの水中
への溶解特性を示す実験結果を示す第2図は、紫外線を
照射しながらの、オゾンの水中への溶解特性を示す実験
結果を示し、以上の2例についてオゾン注入の停止と同
時に紫外線がオゾンの分解を急速に行う状態を図示した
。
第3図、第4図、第5図、第6図は何れも本発明の実施
例を示したもので、注水口(8)、容器(10)、オゾ
ン注入管(3)、散気筒(2)、紫外線ランプ(1)、
下部吐出口(4)、排出口(9)を例示した。Figure 1' shows the experimental results showing the solubility characteristics of ozone in water with and without UV irradiation. Figure 2 shows the experimental results showing the solubility characteristics of ozone in water with UV irradiation. , and illustrates a state in which ozone is rapidly decomposed by ultraviolet rays at the same time as ozone injection is stopped for the above two examples. Figures 3, 4, 5, and 6 all show embodiments of the present invention, including a water inlet (8), a container (10), an ozone injection pipe (3), and an aeration tube ( 2), ultraviolet lamp (1),
The lower discharge port (4) and the discharge port (9) are illustrated.
Claims (1)
メートル)の紫外線を照射し、水中のオゾン濃度を減少
させる事を特徴とする、水中のオゾンを減少させる方法
並びに装置。 2、オゾンを水に溶解し乍ら、波長約253.7nmの
紫外線を照射し、水中のオゾン濃度を減少させる事を特
徴とする、水中のオゾンを減少させる方法並びに装置。 3、オゾンを溶解した水に波長約253.7nmの紫外
線を照射し溶存酸素量の多い水を得る事を特徴とする、
溶存酸素の多い水を得る方法並びに装置。 4、オゾンを水に溶解し乍ら、波長約253.7nmの
紫外線を照射し、溶存酸素の多い水を得る事を特徴とす
る、溶存酸素の多い水を得る方法並びに装置。 5、前記特許請求の範囲第1乃至第4項に於て、紫外線
の波長範囲が200〜300nmである。 溶存酸素の多い水を得る方法と、水中のオゾンを減少さ
せる方法並びに装置。 6、水中のオゾンが流れ出る流路に於て、この流路を、
オゾンがオゾンの状態で流過し得ない状態にするに足る
量の紫外線を照射を行う機構を設けてある、水中のオゾ
ンを減少させる方法並びに装置。 7、紫外線ランプ及びオゾン供給機構を収納する容器の
上端部に水の注入口を設け、該容器の低部付近に於てオ
ゾン気泡の存在範囲外の位置から水をとり出す吐出口を
設けてなる、特許請求の範囲第1項乃至第5項に記載の
、溶存酸素の多い水を得る方法と、水中のオゾンを減少
させる方法並びに装置。 8、前記容器の外側から容器内部の、オゾンを溶解した
水に、紫外線を照射する機構を有する、特許請求の範囲
第1項乃至第6項に記載の、溶存酸素の多い水を得る方
法と、水中のオゾンを減少させる方法並びに装置。 9、水中のオゾンが流れ出る流路に於て、この流路をオ
ゾンが実質的に酸素に変換した状態となるに足る量の紫
外線照射を行う機構を設けてある溶存酸素の多い水を得
る方法並びに装置。 10、オゾンを水に溶解させる位置が、紫外線に照射さ
れる構成を有する、特許請求の範囲第1項乃至第6項に
記載の、溶存酸素の多い水を得る方法と、水中のオゾン
を減少させる方法並びに装置。[Claims] 1. A method for reducing ozone in water, which comprises irradiating water in which ozone is dissolved with ultraviolet rays with a wavelength of about 253.7 nm (nanometers) to reduce the ozone concentration in water; Device. 2. A method and device for reducing ozone in water, which comprises dissolving ozone in water and irradiating ultraviolet light with a wavelength of approximately 253.7 nm to reduce the ozone concentration in water. 3. It is characterized by irradiating ultraviolet rays with a wavelength of approximately 253.7 nm to water in which ozone has been dissolved to obtain water with a high amount of dissolved oxygen.
A method and apparatus for obtaining water with a high dissolved oxygen content. 4. A method and apparatus for obtaining water rich in dissolved oxygen, which comprises dissolving ozone in water and irradiating the same with ultraviolet rays having a wavelength of about 253.7 nm to obtain water rich in dissolved oxygen. 5. In claims 1 to 4, the wavelength range of ultraviolet rays is 200 to 300 nm. A method for obtaining water with a high dissolved oxygen content, and a method and apparatus for reducing ozone in water. 6. In the flow path where ozone in water flows out, this flow path is
A method and device for reducing ozone in water, which is equipped with a mechanism for irradiating ultraviolet rays in an amount sufficient to prevent ozone from passing through in the ozone state. 7. A water inlet is provided at the upper end of the container that houses the ultraviolet lamp and the ozone supply mechanism, and a discharge port is provided near the bottom of the container to take out water from a position outside the range where ozone bubbles exist. A method for obtaining water with a large amount of dissolved oxygen, and a method and apparatus for reducing ozone in water, as set forth in claims 1 to 5. 8. A method for obtaining water with a large amount of dissolved oxygen according to claims 1 to 6, which has a mechanism for irradiating ultraviolet rays from the outside of the container to the water in which ozone is dissolved inside the container. , a method and apparatus for reducing ozone in water. 9. A method for obtaining water with a high dissolved oxygen content, in which a mechanism is installed in the channel through which ozone in the water flows out, to irradiate the channel with sufficient amount of ultraviolet rays to bring the ozone into a state where the ozone is substantially converted to oxygen. and equipment. 10. A method for obtaining water with a large amount of dissolved oxygen, and reducing ozone in water, as set forth in claims 1 to 6, wherein the position where ozone is dissolved in water is irradiated with ultraviolet rays. method and apparatus for
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4919889A JPH03293086A (en) | 1989-03-01 | 1989-03-01 | Method for obtaining water rich in dissolved oxygen, method and apparatus for reducing ozone in water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4919889A JPH03293086A (en) | 1989-03-01 | 1989-03-01 | Method for obtaining water rich in dissolved oxygen, method and apparatus for reducing ozone in water |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03293086A true JPH03293086A (en) | 1991-12-24 |
Family
ID=12824306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4919889A Pending JPH03293086A (en) | 1989-03-01 | 1989-03-01 | Method for obtaining water rich in dissolved oxygen, method and apparatus for reducing ozone in water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03293086A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6128395A (en) * | 1984-01-13 | 1986-02-08 | ザ オンタリオ キヤンサ− インステイテユ−ト | Nucleic acid |
JPS61185386A (en) * | 1985-02-13 | 1986-08-19 | Mitsubishi Electric Corp | Apparatus for purifying drinking water |
-
1989
- 1989-03-01 JP JP4919889A patent/JPH03293086A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6128395A (en) * | 1984-01-13 | 1986-02-08 | ザ オンタリオ キヤンサ− インステイテユ−ト | Nucleic acid |
JPS61185386A (en) * | 1985-02-13 | 1986-08-19 | Mitsubishi Electric Corp | Apparatus for purifying drinking water |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6817541B2 (en) | Ozone systems and methods for agricultural applications | |
JP4754512B2 (en) | Sanitizable hydroponics apparatus and hydroponics method | |
RU2003130647A (en) | SYSTEM AND METHOD OF PERIPHYTON FILTRATION BEFORE AND AFTER PURIFICATION OF WATER | |
JPH09108312A (en) | Apparatus and method for treating material and instrument and removing contamination | |
JP2018094541A (en) | Function liquid manufacturing device and function liquid manufacturing method | |
KR100480859B1 (en) | APPARATUS FOR DISINFECTING AGRICULTURAL PRODUCTS USING OZONE AND TiO2 PHOTOCATALYST | |
JPH03293086A (en) | Method for obtaining water rich in dissolved oxygen, method and apparatus for reducing ozone in water | |
KR100984304B1 (en) | Apparatus for making sterilized water and oxygen water | |
KR101017272B1 (en) | Waste nutrient processing device and nutrient solution cultivation device using the same | |
JP2981828B2 (en) | Control Method of Oxidation Reduction Potential and Dissolved Gas of Combined Acoustic Generated Jet Water | |
JP3388465B2 (en) | Pressurized tank system Water dissolved gas (gas) automatic control method | |
JPS61185386A (en) | Apparatus for purifying drinking water | |
CN209853915U (en) | Drinking water purification type livestock and poultry green breeding instrument | |
GB1583394A (en) | Method and apparatus for sterilizing liquids | |
JPH1142486A (en) | Promoted oxidation device by ozone contact means | |
KR20120002364A (en) | Waste nutrient processing device and nutrient solution cultivation device using the same | |
KR102758054B1 (en) | Chlorine dioxide water manufacturing kit | |
CN205061614U (en) | Ultraviolet ray - ozone advanced oxidation disinfects jar | |
CN209974494U (en) | Advanced oxidation device for water disinfection of swimming pool | |
JP2001314851A (en) | Water circulating and sterilizing apparatus | |
JPH02144191A (en) | Method for purifying water circulating in cooling tower | |
JPH07236884A (en) | Water purifying and sterilizing treatment apparatus | |
KR20020088538A (en) | Water-cleaning apparatus and method using uv and ozone | |
Vestergård | Establishing and maintaining specific pathogen free (SPF) conditions in aqueous solutions using ozone | |
JPH10337582A (en) | Method for sterilization and purification of intake water |