JPH0329299Y2 - - Google Patents
Info
- Publication number
- JPH0329299Y2 JPH0329299Y2 JP1985182528U JP18252885U JPH0329299Y2 JP H0329299 Y2 JPH0329299 Y2 JP H0329299Y2 JP 1985182528 U JP1985182528 U JP 1985182528U JP 18252885 U JP18252885 U JP 18252885U JP H0329299 Y2 JPH0329299 Y2 JP H0329299Y2
- Authority
- JP
- Japan
- Prior art keywords
- metal member
- ceramic member
- ceramic
- metal
- joint
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Insertion Pins And Rivets (AREA)
- Ceramic Products (AREA)
Description
〔産業上の利用分野〕
本考案はターボローターを成すセラミツク部材
と回転軸を成す金属部材とを嵌合しロウ材のみを
充填することにより締結した結合体に関するもの
である。
〔従来の技術〕
近年、各種の産業機械装置における高温雰囲気
下で使用される機構部品には、機械的強度、耐熱
性、耐摩耗性に優れ、比重の小さいセラミツク部
材、とりわけジルコニア、炭化珪素、サイアロン
窒化珪素等の焼結体が適しているが、加工性に難
点があり、上記セラミツク部材のみで機構部品と
して使用することが難しく、高荷重が作用する、
例えばターボチヤージヤーやガスタービンエン
ジン等の回転軸には高強度で加工性の優れた金属
部材で構成するとともに、上記セラミツク部材と
を組み合わせた複合構造体とすることが注目さ
れ、従来よりロウ付によるセラミツク部材と金属
部材の接合体が研究され提案されてきた。
従来、セラミツク部材と金属部材とを接合する
場合は、先ず、セラミツク部材接合部に金属メツ
キもしくはメタライジングを施してから、該セラ
ミツク部材と金属部材とをロウ付にて接合する方
法が多く採用されていた。とりわけ、セラミツク
部材と金属部材とを軸継手する場合は、概してセ
ラミツク部材と金属部材には高精度の同軸度が要
求されることから、一般的にセラミツク部材の接
合部は研磨仕上げされている。
(考案が解決しようとする問題点)
しかしながら、このような従来のセラミツク部
材と金属部材のロウ付結合体にあつてはセラミツ
ク部材の接合部を研磨仕上げした後、該接合部に
メタライジング層を形成したセラミツク部材と金
属部材とをロウ付により軸継手を構成した場合、
例えばセラミツク製ターボローターと金属製回転
軸とを軸継手により接合した場合、軸径、直角
度、真円度等のバラツキは極めて小さく成り、そ
の結果セラミツク部材と金属部材の隙間のバラツ
キも小さくなるが、セラミツク部材の接合部全域
にわたつて均一な厚さでメタライジングを施すこ
とが困難であることから、該メタライジング層の
薄い部分ではロウ付時、該メタライジング層が食
われて消失し、ロウ材の濡れ性が劣化し、巣など
の欠陥を生じ易く、その結果、接合強度の低下を
引き起こしていた。また、研磨されたセラミツク
部材の接合部とメタライジング層との密着強度は
焼成上り面より低く、セラミツク部材と金属部材
とのロウ付強度は小さくて不安定なものとなると
いう欠点があつた
なお、焼成上り面のままの状態でメタライジン
グ層を形成し、セラミツク部材と金属部材とをロ
ウ付によつて軸継手を構成した場合には軸径、直
角度、真円度等のバラツキが大となり、金属部材
の孔径を大きく加工しなければならず、個々のセ
ラミツク部材と金属部材の隙間のバラツキが大き
くなつて、接合強度が低く不安定なものとなり、
セラミツク部材と金属部材の接合が信頼性に劣る
ものとなる。
〔問題点を解決するための手段〕
本考案は前記欠点に鑑み種々の実験の結果案出
されたもので、セラミツク部材と金属部材との軸
継手において該両者の同軸度、軸径、直角度、真
円度等の精度を損なわぬ様、前記両者の隙間を最
大150μmの範囲内に研磨仕上げすることにより、
該セラミツク部材の接合部に金属層を形成しなく
とも該セラミツク部材を前記金属部材に嵌入した
部分にロウ材が均一に充填されること、その結
果、セラミツク部材に金属層を設けてロウ付する
従来例と接合強度において何んら遜色のないこと
を見出した。従つて本考案においては、回転軸を
成す金属部材に形成した孔に対して20〜110μmの
隙間を有するように研磨仕上げしたターボロータ
ーを成すセラミツク部材の部位を、前記孔中に挿
入し、該挿入部におけるセラミツク部材表面と金
属部材表面間にロウ材のみを充填してセラミツク
部材を金属部材で締結したことを特徴とするるセ
ラミツク部材と金属部材の結合体が提供される。
〔実施例〕
以下、本考案を実施例によつて具体的に詳述す
る。
第1図は、本考案の結合体の一実施例を示す断
面図である。1はターボローターを成すセラミツ
ク部材、2は回転軸を成す金属部材であり、金属
部材2の内側には孔が形成されている。このセラ
ミツク部材1の外表面は研磨仕上げされ、その部
位と金属部材2はロウ材3のみを充填して締結し
た構造をなしている。このような構造を得るに際
し、まず第2図に示すような径約13mm強の円柱状
断面を有する窒化珪素製セラミツク焼結体から成
るセラミツク部材1を常圧焼結法により製作し
た。次いでセラミツク部材1の金属部材との接合
部を#120、#140及び#170規格の3種類のダイ
ヤモンド碇石を用いてそれぞれ研磨加工し、該接
合部の面粗度を3種類設定するとともに、該接合
部の外径がインコロイ903相当の外径17mmの耐
熱低膨張合金製円環から成る金属部材2との嵌入
時において、金属部材2に対する隙間が20、30、
60、90、110μmとなる様に寸法設定した。なお、
金属部材2の内径面は切削仕上げにより面粗度を
2種類設定した。次いで、セラミツク部材1はア
セトン等の有機溶剤を用いて洗浄後、フオーミン
グガス雰囲気中で950℃の熱処理を行い、一方金
属部材2はアセトン等の有機溶剤を用いて洗浄
後、厚さ約10μmのニツケルめつきを施した。以
上の前処理を施したセラミツク部材1を金属部材
2に嵌入し、高周波誘導加熱方式により、アーム
ガス雰囲気中、820℃にてBAg8規格の高融点ロ
ウを流し込むことにより、セラミツク部材1と耐
熱低膨張合金製円環から成る金属部材2とを高融
点ロウ3のみにより締結した。なお、該接合部は
X線透過撮影および超音波探傷により、巣などの
欠陥がなく均一にロウ材が充填されていることが
確認された。
上記の如く製作した結合体は、耐熱低膨張合金
製円環から成る金属部材2を第2図に示す様に、
鋼製円筒治具4で支えた上、500℃に加熱した雰
囲気中でセラミツク部材1に鋼製押棒治具5を介
して矢印で示す方向に荷重を加え、セラミツク部
材1の金属部材2からの抜強度を測定し、、該両
者の接合強度とした。
また、前述の如き隙間を設定したセラミツク部
材1と金属部材2の接合部の面粗度Raは万能表
面形状測定機を用いて測定し、セラミツク部材1
の接合部外径はマイクロメータを用い、また金属
部材2の接合部内径は三次元座標測定器を用い
て、それぞれ寸法を測定した。以上の結果を第1
表−1、第1表−2に示す。
なお、セラミツク部材1の接合部を#120及び
#170規格の2種類のダイヤモンド砥石を用いて
それぞれ研磨し、該接合部の面粗度を2種類設定
した後、該接合部にNi70%,Mn3%、TiO22%、
酢酸ブチル6%、ガラス19%よりなるメタライズ
組成物を用いて、フオーミングガス雰囲気中で
950℃の温度にて金属層を形成し、該金属層上に
厚さ約10μmのニツケルめつきを施し、前記と同
様にして耐熱低膨張合金製円環より成る金属部材
2に嵌入ロウ付した結合体を比較例(試料番号
27,28)とした。
[Industrial Field of Application] The present invention relates to a combined body in which a ceramic member constituting a turbo rotor and a metal member constituting a rotating shaft are fitted and fastened by filling only brazing material. [Prior Art] In recent years, ceramic members with excellent mechanical strength, heat resistance, and wear resistance and low specific gravity, especially zirconia, silicon carbide, Sintered bodies such as SiAlON silicon nitride are suitable, but they have difficulties in processability, making it difficult to use the above ceramic members alone as mechanical parts, and applications where high loads are applied, such as turbochargers and gas turbine engines. It has been attracting attention that the rotation shafts of these machines are made of metal members with high strength and excellent workability, and that they are combined with the above-mentioned ceramic members to create a composite structure. body has been studied and proposed. Conventionally, when joining a ceramic member and a metal member, a method has often been adopted in which first metal plating or metallization is applied to the joint portion of the ceramic member, and then the ceramic member and the metal member are joined by brazing. was. In particular, when a ceramic member and a metal member are jointed together, the ceramic member and the metal member are generally required to have high coaxiality, so the joint portion of the ceramic member is generally polished. (Problem to be solved by the invention) However, in the case of such a conventional brazed joint of a ceramic member and a metal member, after polishing the joint of the ceramic member, a metallizing layer is applied to the joint. When a shaft joint is constructed by brazing the formed ceramic member and metal member,
For example, when a ceramic turbo rotor and a metal rotating shaft are joined by a shaft joint, variations in shaft diameter, squareness, roundness, etc. will be extremely small, and as a result, variations in the gap between the ceramic member and the metal member will also be small. However, since it is difficult to apply metallization to a uniform thickness over the entire joint area of ceramic parts, the metallization layer is eaten away and disappears during brazing in the thin parts. , the wettability of the brazing material deteriorates and defects such as cavities are likely to occur, resulting in a decrease in bonding strength. In addition, the adhesion strength between the bonded part of the polished ceramic member and the metallizing layer was lower than that of the fired surface, and the brazing strength between the ceramic member and the metal member was low and unstable. If a metallizing layer is formed on the fired surface and a shaft joint is constructed by brazing the ceramic member and the metal member, there will be large variations in shaft diameter, squareness, roundness, etc. Therefore, the hole diameter of the metal member must be machined to a large size, and the gap between each ceramic member and metal member increases, resulting in low and unstable bonding strength.
The bonding between the ceramic member and the metal member becomes less reliable. [Means for solving the problems] The present invention was devised as a result of various experiments in view of the above-mentioned drawbacks. By polishing the gap between the two to within a maximum of 150 μm so as not to impair accuracy such as roundness,
Even without forming a metal layer at the joint portion of the ceramic member, the portion where the ceramic member is fitted into the metal member is uniformly filled with brazing material, and as a result, the metal layer is provided on the ceramic member and brazing is performed. It was found that there was no difference in bonding strength from the conventional example. Therefore, in the present invention, a part of the ceramic member forming the turbo rotor, which has been polished to have a gap of 20 to 110 μm with respect to the hole formed in the metal member forming the rotating shaft, is inserted into the hole, and the ceramic member forming the turbo rotor is inserted into the hole. A combined body of a ceramic member and a metal member is provided, characterized in that only a brazing material is filled between the surface of the ceramic member and the surface of the metal member in the insertion portion, and the ceramic member is fastened with the metal member. [Example] Hereinafter, the present invention will be specifically explained in detail with reference to Examples. FIG. 1 is a sectional view showing an embodiment of the combined body of the present invention. 1 is a ceramic member forming a turbo rotor, 2 is a metal member forming a rotating shaft, and a hole is formed inside the metal member 2. The outer surface of the ceramic member 1 is polished and the metal member 2 is connected to the ceramic member 1 by filling only the brazing material 3 with the metal member 2. In order to obtain such a structure, first, a ceramic member 1 made of a silicon nitride ceramic sintered body having a cylindrical cross section with a diameter of approximately 13 mm as shown in FIG. 2 was manufactured by an atmospheric pressure sintering method. Next, the joint part of the ceramic member 1 with the metal member was polished using three types of diamond anchor stones of #120, #140, and #170 standards, and three types of surface roughness were set for the joint part, and When the joint part is fitted into the metal member 2, which is made of a ring made of a heat-resistant low-expansion alloy with an outer diameter of 17 mm equivalent to Incoloy 903, the gap with respect to the metal member 2 is 20, 30,
The dimensions were set to 60, 90, and 110 μm. In addition,
Two types of surface roughness were set for the inner diameter surface of the metal member 2 by cutting and finishing. Next, the ceramic member 1 was cleaned using an organic solvent such as acetone and then heat treated at 950°C in a forming gas atmosphere, while the metal member 2 was cleaned using an organic solvent such as acetone and then heated to a thickness of approximately 10 μm. Nickel plating has been applied. The ceramic member 1 subjected to the above pretreatment is inserted into the metal member 2, and a high melting point wax of BAg8 standard is poured in at 820°C in an arm gas atmosphere using a high frequency induction heating method, thereby forming the ceramic member 1 and the heat resistant low expansion material. A metal member 2 made of an alloy ring was fastened only with high melting point solder 3. It was confirmed by X-ray radiography and ultrasonic flaw detection that the joint was uniformly filled with brazing material without defects such as cavities. As shown in FIG. 2, the combined body manufactured as described above includes a metal member 2 made of a ring made of a heat-resistant low-expansion alloy.
While supported by a steel cylindrical jig 4, a load is applied to the ceramic member 1 in the direction shown by the arrow via a steel push rod jig 5 in an atmosphere heated to 500°C, and the ceramic member 1 is removed from the metal member 2. The extraction strength was measured and used as the bonding strength between the two. In addition, the surface roughness Ra of the joint between the ceramic member 1 and the metal member 2 with the gap set as described above was measured using a universal surface profile measuring machine.
The outer diameter of the joint of the metal member 2 was measured using a micrometer, and the inner diameter of the joint of the metal member 2 was measured using a three-dimensional coordinate measuring device. The above results are the first
It is shown in Table-1 and Table 1-2. In addition, after polishing the joint of the ceramic member 1 using two types of diamond grindstones of #120 and #170 standards and setting two types of surface roughness of the joint, the joint was coated with 70% Ni and Mn3. %, TiO2 2 %,
Using a metallized composition consisting of 6% butyl acetate and 19% glass, in a forming gas atmosphere.
A metal layer was formed at a temperature of 950°C, nickel plating with a thickness of about 10 μm was applied on the metal layer, and the metal member 2 made of a ring made of a heat-resistant low expansion alloy was fitted and brazed in the same manner as described above. A comparative example of the conjugate (sample no.
27, 28).
以上、詳細に説明したように本考案結合体はセ
ラミツク部材の金属部材と接合すべき部分に、金
属層を形成することなく、セラミツク部材を金属
部材に挿入しロウ材のみを充填して締結するよう
にしたもので、セラミツク部材と金属部材との接
合強度を損なうことなく接合に対する信頼性を確
保できるとともに、製造工程の大幅な短縮が実現
できる。
また、セラミツク部材と金属部材との同軸度、
セラミツク部材の軸径、直角度および真円度の精
度が確保され、とりわけ同軸度の精度が確保され
ることにより、結合後の加工を極めて簡便ならし
めることもできる。
As explained above in detail, the combined body of the present invention inserts the ceramic member into the metal member, fills only the brazing material, and fastens the ceramic member without forming a metal layer in the part where the ceramic member is to be joined to the metal member. With this structure, it is possible to ensure the reliability of the bonding between the ceramic member and the metal member without impairing the bonding strength, and it is also possible to significantly shorten the manufacturing process. In addition, the coaxiality between the ceramic member and the metal member,
By ensuring the accuracy of the shaft diameter, squareness and roundness of the ceramic members, and in particular ensuring the accuracy of coaxiality, processing after joining can be made extremely simple.
第1図は本考案の結合体の一実施例を示す断面
図、第2図は結合体の抜強度の測定方法の説明図
である。
1……セラミツク部材、2……金属部材、3…
…ロウ材。
FIG. 1 is a sectional view showing an embodiment of the combined body of the present invention, and FIG. 2 is an explanatory diagram of a method for measuring the extraction strength of the combined body. 1...Ceramic member, 2...Metal member, 3...
... wax wood.
Claims (1)
〜110μmの隙間を有するように研磨仕上げしたタ
ーボローターを成すセラミツク部材の部位を、前
記孔中に挿入し、該挿入部におけるセラミツク部
材表面と金属部材表面間にロウ材を充填してセラ
ミツク部材を金属部材で締結したことを特徴とす
るセラミツク部材と金属部材の結合体。 20 for the hole formed in the metal member that forms the rotating shaft
A part of the ceramic member constituting the turbo rotor that has been polished to have a gap of ~110 μm is inserted into the hole, and a brazing material is filled between the surface of the ceramic member and the surface of the metal member in the inserted part to close the ceramic member. A combination of a ceramic member and a metal member, characterized in that they are fastened together using a metal member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1985182528U JPH0329299Y2 (en) | 1985-11-26 | 1985-11-26 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1985182528U JPH0329299Y2 (en) | 1985-11-26 | 1985-11-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6293343U JPS6293343U (en) | 1987-06-15 |
JPH0329299Y2 true JPH0329299Y2 (en) | 1991-06-21 |
Family
ID=31128410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1985182528U Expired JPH0329299Y2 (en) | 1985-11-26 | 1985-11-26 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0329299Y2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5490217A (en) * | 1973-10-29 | 1979-07-17 | Hitachi Ltd | Bonding method of metal and ceramic |
JPS5845336B2 (en) * | 1976-06-25 | 1983-10-08 | 株式会社クボタ | Two-pipe extrusion method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5845336U (en) * | 1981-09-11 | 1983-03-26 | 大泉征雄 | Assembly structure of ceramic parts and metal parts |
-
1985
- 1985-11-26 JP JP1985182528U patent/JPH0329299Y2/ja not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5490217A (en) * | 1973-10-29 | 1979-07-17 | Hitachi Ltd | Bonding method of metal and ceramic |
JPS5845336B2 (en) * | 1976-06-25 | 1983-10-08 | 株式会社クボタ | Two-pipe extrusion method |
Also Published As
Publication number | Publication date |
---|---|
JPS6293343U (en) | 1987-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6224603B2 (en) | ||
JPH05155668A (en) | Combination of ceramic with metal | |
US5525432A (en) | Internal soldering in metal/ceramic composites | |
EP0376092B1 (en) | Ceramic turbocharger rotor | |
JPH03279277A (en) | Joint structure of turbine rotor | |
JPH0329299Y2 (en) | ||
JP2002529368A (en) | How to join ceramic to metal | |
EP0823410A1 (en) | Ceramic joint body and process for manufacturing the same | |
JPS5891088A (en) | How to join ceramic and metal | |
JP2515927Y2 (en) | Bonding structure of ceramic members and metal members | |
EP0112146A2 (en) | Radial blade type ceramic rotor and method of producing the same | |
JP2747865B2 (en) | Joint structure between ceramics and metal | |
JP2822405B2 (en) | Method of joining ceramic rotor and metal shaft | |
KR100420243B1 (en) | Joining method of silicon nitride and metal using in-situ buffer-layer | |
JPH0345938Y2 (en) | ||
JPH061672A (en) | Joining structure for ceramic shaft and metallic shaft | |
JP3318720B2 (en) | Ceramic-metal joint and its manufacturing method | |
JPS60120048A (en) | Coupling jig | |
JP2724516B2 (en) | Tappet manufacturing method | |
JPH10279374A (en) | Joined body of metallic member and ceramic member | |
JPH03115179A (en) | Method for joining ceramic member and metallic member | |
JPS6255498A (en) | Ceramic impeller | |
JPH0733294B2 (en) | Method for manufacturing ceramic / metal bonded body | |
JPS60155578A (en) | Method of bonding ceramic and metal member | |
JPS63288976A (en) | Joined body of sintered metal and ceramics |