[go: up one dir, main page]

JPH03292884A - Cell cultivation - Google Patents

Cell cultivation

Info

Publication number
JPH03292884A
JPH03292884A JP2095194A JP9519490A JPH03292884A JP H03292884 A JPH03292884 A JP H03292884A JP 2095194 A JP2095194 A JP 2095194A JP 9519490 A JP9519490 A JP 9519490A JP H03292884 A JPH03292884 A JP H03292884A
Authority
JP
Japan
Prior art keywords
cells
culture
porous membrane
cell
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2095194A
Other languages
Japanese (ja)
Inventor
Takao Miyamori
宮森 隆雄
Kanehiko Enomoto
榎本 兼彦
Shiruyoshi Matsumoto
松本 鶴義
Akihiro Sakimae
崎前 明宏
Ryozo Numazawa
沼沢 亮三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2095194A priority Critical patent/JPH03292884A/en
Publication of JPH03292884A publication Critical patent/JPH03292884A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To improve adhesiveness, propagability and extensibility, etc., of cell by keeping a specific crosslinked polymer on the surface of at least a part of porous membrane. CONSTITUTION:(A) A polymerizable monomer (e.g. maleic anhydride) having acid anhydride as a functional group is copolymerized with (B) a monomer component containing >=30wt.% divinylbenzene in a molar ratio of B/A=1/1-2/1 to obtain a crosslinked polymer. Next, 7-150wt.% said crosslinked polymer is kept on the surface of at least a part of porous membrane 2 having 0.01-5mum fractionated particle diameter and 10-90% porosity. Then, a culturing region 6 having a cell-adding port 3 and a region 7 having a medium inlet 4 and an outlet 5 are separated by said porous membrane 2, thus the regions 6 and 7 are filled with a liquid medium and necessary numbers of cell are added through the adding port 3, then the medium is flowed in the region 7, thus the medium in the region 6 is adjusted at a fixed temperature to culture cell.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は細胞を培養するために好適な多孔質中空糸膜を
用いた細胞培養方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a cell culture method using a porous hollow fiber membrane suitable for culturing cells.

〔従来の技術〕[Conventional technology]

近年モノクロナール抗体、インターフェロン、インター
ロイキン、TPA等の生体由来の生理活性物質の医学、
産業分野での有用性が明らかとなってきている。それに
伴い、これらの有用物質を大量かつ安価に生産するため
の高密度細胞培養方法の必要性が増加している。
In recent years, bioactive substances such as monoclonal antibodies, interferon, interleukin, and TPA have been used in medicine.
Its usefulness in the industrial field is becoming clear. Accordingly, there is an increasing need for high-density cell culture methods for producing these useful substances in large quantities and at low cost.

特にKNAZEKらによる中空糸膜面に細胞を付着させ
、中空糸の中空部に培地を循環させて、中空糸膜面を介
して細胞に栄養物を供給する方法(特開昭49−415
79号公報)は効率的に細胞を培養する方法として注目
されている。
In particular, a method by KNAZEK et al. in which cells are attached to the hollow fiber membrane surface, a medium is circulated through the hollow part of the hollow fiber, and nutrients are supplied to the cells through the hollow fiber membrane surface (Japanese Patent Laid-Open No. 49-415
No. 79) is attracting attention as a method for efficiently culturing cells.

この中空系法の利点は、限られた空間内に大きな表面積
を確保することにより、付着性細胞に対し広い付着面を
供給することができ、また、中空糸の膜方向に開いた微
小な孔を通して、細胞の生存、増殖に必要な各種栄養物
、酸素などの供給や細胞の代謝により生成した老廃物の
除去を拡散または中空糸内外に与えた圧力差により生し
る液体の流れに同伴して、極めて容易に行なわI、める
ことにある。その結果、細胞の高密度培養か可能となり
、生産物の濃度、生産性を高めることができる。
The advantage of this hollow system method is that by securing a large surface area within a limited space, it can provide a wide adhesion surface for adherent cells. Through the hollow fibers, various nutrients and oxygen necessary for cell survival and proliferation are supplied, and waste products generated by cell metabolism are removed by diffusion or by accompanying the flow of liquid caused by the pressure difference between the inside and outside of the hollow fibers. It is very easy to do this. As a result, high-density culture of cells becomes possible, and product concentration and productivity can be increased.

従来、中空糸性細胞培養に、セルロースアセテート製中
空糸(特公昭54−6634号公報)、ポリスルホン製
中空糸(特開昭62−130678号公報)などを使用
した例がみられる。
Conventionally, there have been examples of using hollow fibers made of cellulose acetate (Japanese Patent Publication No. 54-6634), hollow fibers made of polysulfone (Japanese Patent Application Laid-open No. 130678/1984), etc. for hollow fiber cell culture.

また、ポリエチレン、ポリプロピレンなどのポリオレフ
ィンからなる多孔質膜を用いる方法(特開昭63−17
685号公報)が提案されている。
Additionally, a method using a porous membrane made of polyolefin such as polyethylene or polypropylene (Japanese Unexamined Patent Publication No. 63-17
No. 685) has been proposed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来の多孔質膜を用いる細胞培養に利用
されてきた多孔質膜では、細胞の付着性、増殖性、生存
性などにおいて必ずしも充分でない場合が多く、これら
の点に関する改良が望まれていた。
However, the porous membranes that have been used for cell culture using conventional porous membranes are often not always sufficient in terms of cell adhesion, proliferation, and survival, and improvements in these areas have been desired. .

例えば、ポリスルホン中空糸は、セルロース系中空糸に
比較して細胞の付着性および増殖性、伸展性において優
れた特性を有している。しかしながら、現在一般に広く
使用されているポリスチレン製デイツシュに較べると、
細胞の付着性、増殖性、生存性において満足のいくもの
ではない。
For example, polysulfone hollow fibers have superior properties in cell attachment, proliferation, and extensibility compared to cellulose-based hollow fibers. However, compared to the polystyrene dates that are currently widely used,
Cell attachment, proliferation, and survival are not satisfactory.

さらに、本発明者らの研究によりば、ポリオレフィンか
らなる多孔質膜においても、細胞の付着性、増殖性は必
ずしも充分ではなかった。
Furthermore, according to the research conducted by the present inventors, even in porous membranes made of polyolefin, cell adhesion and proliferation were not necessarily sufficient.

一方、培養系の他の微生物による汚染を防ぐためには、
培養器の滅菌処理が必要となる。
On the other hand, to prevent contamination of the culture system with other microorganisms,
Sterilization of the culture vessel is required.

滅菌処理は、例えばγ線照射、エチレンオキサイドガス
などの殺菌ガスによるガス殺菌、蒸気殺菌などの方法に
よって行なうことができる。
Sterilization can be carried out, for example, by γ-ray irradiation, gas sterilization using a sterilizing gas such as ethylene oxide gas, steam sterilization, or the like.

しかしながら、従来の樹脂性の多孔質膜を用いた培養器
においては、簡便かつ安価な滅菌処理を膜性能を損なう
ことなく行なうことが困難であった。
However, in culture vessels using conventional resinous porous membranes, it has been difficult to perform simple and inexpensive sterilization without impairing membrane performance.

例えば、γ線照射による方法では、γ線照射装置が高価
である。また、ガス殺菌による方法では、滅菌処理後に
多孔質に付着したガス成分を通気によって除去すること
が困難であるため、培地または水などにより膜面に付着
残存しているガス成分を洗浄除去する必要がある。しか
しながら、滅菌処理後に行なう培養に影響を及ぼさない
程度にまで残存ガスを除去するには長時間の処理を要す
る。
For example, in the method using gamma ray irradiation, the gamma ray irradiation equipment is expensive. In addition, with gas sterilization methods, it is difficult to remove gas components that adhere to porous surfaces after sterilization by aeration, so it is necessary to wash and remove gas components that remain attached to the membrane surface using a medium or water. There is. However, it takes a long time to remove the residual gas to the extent that it does not affect the culture performed after sterilization.

さらに、蒸気殺菌による方法自体は、上述の他の方法よ
りも簡便で安価であるという利点を有するが、高温度条
件下に多孔質膜が曝されるため耐熱性において問題のあ
る多孔質膜の滅菌処理には適用しにくい。例えば、ポリ
エチレンやポリプロピレンなどからなる多孔質膜に蒸気
殺菌を行なうと、多孔質膜が著しく収縮してその膜性能
が大幅に低下する。
Furthermore, the steam sterilization method itself has the advantage of being simpler and cheaper than the other methods mentioned above, but since the porous membrane is exposed to high temperature conditions, it has problems with heat resistance. Difficult to apply to sterilization process. For example, when a porous membrane made of polyethylene, polypropylene, etc. is subjected to steam sterilization, the porous membrane will shrink significantly and its membrane performance will be significantly reduced.

本発明の目的は、細胞の付着性、増殖性、伸展性などの
良好な細胞培養に必要な特性に優れ、かつ蒸気殺菌をも
適用可能な多孔質膜を用い低いランニングコストでの良
好な細胞培養を可能とする方法を提供することにある。
The purpose of the present invention is to cultivate good cell culture at low running costs by using a porous membrane that has excellent properties necessary for good cell culture, such as cell adhesion, proliferation, and spreadability, and is also applicable to steam sterilization. The object of the present invention is to provide a method that enables culture.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の細胞培養方法は、他の領域と多孔質膜により仕
切られた培養領域中で細胞を培養する方法において、前
記多孔質膜の少なくとも一部の表面上に官能基としての
酸無水物を有する重合性モノマーとジビニルベンゼンと
を含む組成物から得られた架橋重合体を保持させてなる
ことを特徴とする。
The cell culture method of the present invention is a method of culturing cells in a culture region separated from other regions by a porous membrane, in which an acid anhydride is added as a functional group on the surface of at least a portion of the porous membrane. It is characterized by retaining a crosslinked polymer obtained from a composition containing a polymerizable monomer and divinylbenzene.

本発明に用いる多孔質膜は、例えばポリエチレン、ポリ
プロピレン、ポリ4−メチルペンテン−1などのポリオ
レフィン系素材:ポリスルホン;ポリビニルアルコール
;ポリメチルメタアクリレート:セルロースアセテート
などからなる多孔質膜に上述の架橋重合体を保持させる
ことにより得ることができる。
The porous membrane used in the present invention is a porous membrane made of a polyolefin material such as polyethylene, polypropylene, poly4-methylpentene-1, etc.; polysulfone; polyvinyl alcohol; polymethyl methacrylate; cellulose acetate; It can be obtained by maintaining the union.

例えば、ポリオレフィン系素材からなる多孔質膜の表面
への架橋重合体の保持は、特願昭63−221584号
に記載した方法で製造することができる。
For example, a crosslinked polymer can be retained on the surface of a porous membrane made of a polyolefin material by the method described in Japanese Patent Application No. 63-221584.

本発明で用いられる多孔質膜の孔径は、例えば培地、酸
素などの気体、生産物、排出物なとの移動させるべき物
質の充分な移動量が確保でき、かつ細胞が漏れない程度
の大きさであればよく、培養形態に応じて適宜選択され
る。また、孔の形状は特に限定されない。
The pore size of the porous membrane used in the present invention is large enough to ensure a sufficient amount of movement of substances such as culture medium, gases such as oxygen, products, and waste materials, and to prevent cells from leaking. It may be selected as appropriate depending on the culture form. Further, the shape of the hole is not particularly limited.

多孔質膜の孔径としては、例えば、分画粒子径が0.0
1〜5μm程度であることが好ましく、0.1〜2μm
程度であることがより好ましい。
The pore size of the porous membrane is, for example, a fractional particle size of 0.0.
It is preferably about 1 to 5 μm, and 0.1 to 2 μm
It is more preferable that the amount is within a certain range.

多孔質膜が延伸法により多孔質化されたものである場合
は、この分画粒子径は節部とミクロフィブリルとでかこ
まれてなる細孔のフィブリル間のスリット径の平均値で
示される。
When the porous membrane is made porous by a stretching method, the fractional particle diameter is expressed as the average diameter of the slits between the fibrils of the pores surrounded by the knots and microfibrils.

さらに、空孔率は、同様に培地等の充分な流れが得られ
、実用上充分な強度が保てる範囲でよく、具体的には1
0〜90%であればよく、40〜80%であることが好
ましい。膜厚は同様に実用上充分な強度が保てる範囲で
よいが、およそ20〜200μm程度であることが好ま
しい。
Furthermore, the porosity may be within a range that allows sufficient flow of the culture medium etc. and maintains sufficient strength for practical use, specifically 1.
It may be 0 to 90%, preferably 40 to 80%. The film thickness may be within a range that can maintain a practically sufficient strength, but it is preferably about 20 to 200 μm.

本発明に用いる多孔質膜としては、中空糸状、平膜、管
状膜などの任意の形態のものを用いることができる。特
に、延伸法により製造した中空糸は、中空糸の膜面にミ
クロフィブリルと節部とによって形成されるスリット状
の微小空間(細孔)が3次元的に相互に連通した細孔構
造が形成されているため、空孔率が高く、これを用いて
付着性細胞の培養を行なフた場合においては、表面に付
着した細胞に対し、連通した細孔構造部を通して、実質
的に充分に均一に栄養物や酸素などを供給したり、細胞
生産物、代謝産物などを容易に除去でき、かつ、目詰ま
りによる性能低下が少ないという点から好ましい。なお
、その製造は特公昭56−52123号公報、特開昭5
7−42919号公報などに記載された方法にしたがフ
て行なうことができる。
As the porous membrane used in the present invention, any form such as a hollow fiber, a flat membrane, or a tubular membrane can be used. In particular, hollow fibers produced by the drawing method have a pore structure in which slit-like microspaces (pores) formed by microfibrils and knots communicate with each other three-dimensionally on the membrane surface of the hollow fiber. Because it has a high porosity, when culturing adherent cells using this material, the cells attached to the surface are substantially fully absorbed through the communicating pore structure. It is preferable because nutrients, oxygen, etc. can be uniformly supplied, cell products, metabolic products, etc. can be easily removed, and there is little performance deterioration due to clogging. The manufacturing method is disclosed in Japanese Patent Publication No. 56-52123 and Japanese Patent Application Publication No. 5
This can be carried out according to the method described in Japanese Patent Publication No. 7-42919.

多孔質膜の少なくとも一部の表面に保持させる架橋重合
体は、官能基として酸無水物構造を有するモノマーから
なるモノマー成分(A)とジビニルベンセンを含む千ツ
マー成分(B)を含む組成物から得られる。
The crosslinked polymer held on at least a portion of the surface of the porous membrane is made from a composition containing a monomer component (A) consisting of a monomer having an acid anhydride structure as a functional group and a monomer component (B) containing divinylbenzene. can get.

該モノマー成分(A)としては、例えば、無水マレイン
酸、無水イタコン酸、無水ハイミック酸などが利用でき
る。
As the monomer component (A), for example, maleic anhydride, itaconic anhydride, himic anhydride, etc. can be used.

該架橋重合体形成用組成物中での千ツマー成分(A)と
モノマー成分(B)とのモル組成比は、B/A=1/1
〜2/1程度、好ましくは1/1〜1.5/1程度であ
ればよい。
The molar composition ratio of the monomer component (A) and the monomer component (B) in the composition for forming a crosslinked polymer is B/A=1/1.
It may be about 2/1 to 2/1, preferably 1/1 to 1.5/1.

なお、千ツマー成分(B)としては、ジビニルベンゼン
単独、ジビニルベンゼンとスチレンの混合物、ジビニル
ベンゼンとエチルビニルベンゼンの混合物、ジビニルへ
ンゼン、エチルビニルベンゼンおよびスチレンの混合物
などが利用できる。
Incidentally, as the fluorine component (B), divinylbenzene alone, a mixture of divinylbenzene and styrene, a mixture of divinylbenzene and ethylvinylbenzene, a mixture of divinylbenzene, ethylvinylbenzene and styrene, etc. can be used.

混合物を用いる場合の混合物中でのジビニルベンゼンの
割合は、30重量%以上であればよい。
When a mixture is used, the proportion of divinylbenzene in the mixture may be 30% by weight or more.

なお、形成される架橋重合体においては、重合性子ツマ
ー単位が、ブロック共重合体を形成することなく、分子
レベルで実質的に均一に分布されていることが好ましい
In addition, in the crosslinked polymer formed, it is preferable that the polymerizable child units are substantially uniformly distributed at the molecular level without forming a block copolymer.

本発明における「多孔質膜の少なくとも一部の表面」と
は、細孔表面および外表面の一部あるいは全部をいう。
In the present invention, "the surface of at least a portion of the porous membrane" refers to a portion or all of the pore surface and the outer surface.

すなわち、実質的に架橋重合体が保持されていればよく
、必ずしも全ての表面に架橋重合体が保持されている必
要はなく、少なくとも細胞が付着する側の外表面に保持
されていればよい。表面に保持される架橋重合体の量は
多孔質膜の空孔率や細孔径にも依存するが、多孔質膜の
重量に対しておよそ7〜150重量%、好ましくは5〜
120%、さらに好ましくは10〜100%である。
That is, it is sufficient that the crosslinked polymer is substantially retained, and it is not necessarily necessary that the crosslinked polymer be retained on all surfaces, but it is sufficient that the crosslinked polymer is retained at least on the outer surface on the side to which cells are attached. The amount of crosslinked polymer retained on the surface depends on the porosity and pore diameter of the porous membrane, but is approximately 7 to 150% by weight, preferably 5 to 150% by weight based on the weight of the porous membrane.
It is 120%, more preferably 10 to 100%.

また、「保持させてなるJとは保存中や使用中に容易に
脱離しない程度に架橋重合物が多孔質膜細孔表面に結合
ないしは密着されていることをいう。
Furthermore, "retained" means that the crosslinked polymer is bonded or adhered to the surface of the pores of the porous membrane to such an extent that it does not easily detach during storage or use.

本発明で用いる多孔質膜は、上述のように少なくともモ
ノマー成分(A)とモノマー成分(B)とを用いて得ら
れた架橋重合体がその表面に保持されることによって得
られる架橋構造により、多孔質膜の耐熱性が向上し、膜
の構造に変形、損傷などを与えることなく120〜13
0℃の蒸気殺菌処理が可能となり、しかも、例えば、ポ
リオレフィン系の多孔質膜やジビニルベンセンからなる
架橋重合体を表面に保持させた多孔質膜などに比較して
より優れた細胞の付着性、増殖性、伸展性が得られる。
The porous membrane used in the present invention has a crosslinked structure obtained by holding on the surface of the crosslinked polymer obtained using at least the monomer component (A) and the monomer component (B) as described above. The heat resistance of the porous membrane is improved, and the temperature of 120 to 13
Steam sterilization at 0°C is possible, and it also has better cell adhesion than, for example, polyolefin-based porous membranes or porous membranes with a cross-linked polymer made of divinylbenzene retained on the surface. Proliferation and spreadability are obtained.

なお、本発明において細胞の付着性などが高まるのは、
極性を有する酸無水物を含む架橋構造が存在することに
よると考えられる。
In addition, in the present invention, the adhesiveness of cells is increased due to the following:
This is thought to be due to the presence of a crosslinked structure containing a polar acid anhydride.

本発明の培養の具体的な態様は、培養する細胞の種類、
多孔質膜を介して移動させる物質の種類などに応じて適
宜選択される。
Specific aspects of the culture of the present invention include the type of cells to be cultured,
It is selected as appropriate depending on the type of substance to be transferred through the porous membrane.

本発明によれば、例えばアフリカミドリザル腎細胞(V
ero細胞)、上皮細胞 (940C3)、マウス繊維芽細胞(3T3)、チャイ
ニーズハムスター卵巣細胞(CHO)、チャイニーズハ
ムスター肺繊維芽細胞(V−79)、子宮頚部癌細胞(
Hela)、ヒト胎児肺由来正常2倍体細胞(Wl−3
8)などの付着性細胞例えばリンパ球細胞、骨髄腫細胞
、白血球細胞など、および、これらと他の細胞との細胞
融合によって得られる雑種細胞(ハイブリドーマ)等の
浮遊性細胞などの種々の細胞の効率よい培養を行なうこ
とができる。
According to the present invention, for example, African green monkey kidney cells (V
ero cells), epithelial cells (940C3), mouse fibroblasts (3T3), Chinese hamster ovary cells (CHO), Chinese hamster lung fibroblasts (V-79), cervical cancer cells (
Hela), human fetal lung-derived normal diploid cells (Wl-3
8) of various cells such as adherent cells such as lymphocytes, myeloma cells, white blood cells, etc., and floating cells such as hybrid cells (hybridomas) obtained by cell fusion of these cells with other cells. Efficient culture can be performed.

なお、本発明で用いる多孔質膜においては、付着性細胞
を用いた場合に良好な細胞の付着性および伸展性が得ら
れる。
In addition, in the porous membrane used in the present invention, good cell adhesion and spreadability can be obtained when adherent cells are used.

本発明に用いる培地は、培養する細胞に応じて選択すわ
ばよく、例えば、無機塩類、アミノ酸類、糖類、脂肪酸
類、ビタミン類、補酵素類、核酸塩基類、ホルモン類、
アルブミン、トランスフェリン、その他の種々の細胞の
成長因子、血清中の成分などから選択された成分を水に
溶解した液体培地などが用いられる。
The medium used in the present invention may be selected depending on the cells to be cultured, and includes, for example, inorganic salts, amino acids, sugars, fatty acids, vitamins, coenzymes, nucleobases, hormones,
A liquid medium in which components selected from albumin, transferrin, various other cell growth factors, components in serum, etc. are dissolved in water is used.

本発明の方法の具体的な態様としては、例えば以下のも
のを挙げることができる。
Specific embodiments of the method of the present invention include, for example, the following.

1)第1図に示すように、細胞添加口3を有する培養領
域6と培地人口4および出口5を有する領域7とを多孔
質膜2で仕切フた培養器を用意し、領域6,7中に液体
培地を満たした状態で、細胞添加口3から必要数の細胞
を添加し、培養領域6中の培地を所定の温度に調節して
培養を行なう。その際、培地人口4から培地を流入させ
、また培地出口5から培養液を流出させて、領域7内を
流通させる。なお、培地出口5から流出した培地は培地
人口4にもどして、領域7内を循環するようにして6よ
い。培地中の細胞の成育、維持に必要な栄養物や酸素な
どの物質は領域7内から多孔質膜2を介して領域6内に
供給され、細胞の増殖に利用される。また、領域6中に
細胞の増殖にともなって生じた生産物、老廃物などが膜
壁を通して領域7中に排出され、効率よい培養を行なう
ことかできる。
1) As shown in FIG. 1, a culture vessel is prepared in which a culture region 6 having a cell addition port 3 and a region 7 having a culture medium population 4 and an outlet 5 are partitioned with a porous membrane 2, and the regions 6 and 7 are separated by a porous membrane 2. With the inside filled with a liquid medium, a required number of cells are added from the cell addition port 3, and the culture medium in the culture area 6 is adjusted to a predetermined temperature to perform culture. At that time, the medium is allowed to flow in from the medium outlet 4, and the culture solution is allowed to flow out from the medium outlet 5 to circulate within the region 7. The culture medium flowing out from the culture medium outlet 5 may be returned to the culture medium population 4 and circulated within the region 7. Substances such as nutrients and oxygen necessary for the growth and maintenance of cells in the medium are supplied from within region 7 to region 6 via porous membrane 2 and utilized for cell proliferation. In addition, products, waste products, etc. generated in the region 6 as the cells proliferate are discharged into the region 7 through the membrane wall, allowing efficient culture.

2)第2図に示すように、細胞添加口3および培地出口
5を有する培養領域6と培地人口4を有する領域を多孔
質膜2で仕切った培養器を用意し、領域6.7に液体培
地をたした状態で、細胞添加口3から細胞の必要数を添
加し、培養領域中の培地の温度を所定の温度に調節して
培養を行なう。その際、培地人口4から培地を領域7に
流入させ、培地出口5から流出させる。培地出口5には
、必要に応じて細胞の流出を除くためのフィルターなど
を設けてもよい。また、培地出口5から流した培地は、
培地人口4へ返送して培養器1内を循環するようにして
もよい。
2) As shown in FIG. 2, a culture vessel is prepared in which a culture region 6 having a cell addition port 3 and a medium outlet 5 and a region having a medium population 4 are partitioned by a porous membrane 2, and a liquid is placed in the region 6.7. With the medium filled, the required number of cells is added through the cell addition port 3, and the temperature of the medium in the culture area is adjusted to a predetermined temperature to perform culture. At that time, the medium flows into the region 7 from the medium population 4 and flows out from the medium outlet 5. The medium outlet 5 may be provided with a filter or the like to remove outflow of cells, if necessary. In addition, the culture medium flowing from the culture medium outlet 5 is
The medium may be returned to the culture medium 4 and circulated within the incubator 1.

多孔質膜として中空糸膜を用いる場合には、例えば中空
糸膜の中空部と連通ずる領域と、中空糸膜6外壁と接す
る領域とを形成し、これら2つの領域を第1図および第
2図に示した領域6.7として利用する。
When using a hollow fiber membrane as the porous membrane, for example, a region communicating with the hollow part of the hollow fiber membrane and a region in contact with the outer wall of the hollow fiber membrane 6 are formed, and these two regions are separated from each other as shown in FIGS. It is used as area 6.7 shown in the figure.

中空糸膜を用い、中空糸膜外壁に接する領域を培養領域
として利用する場合の一例を以下に示す。
An example of a case where a hollow fiber membrane is used and the area in contact with the outer wall of the hollow fiber membrane is used as a culture area is shown below.

第3図は中空糸膜9の両端をボッティング材で固定し、
中空糸の中空部につながる空間に連通した端部導管10
.11は栄養物や酸素の供給、老廃物の除去用に用いる
ことができる。
In Figure 3, both ends of the hollow fiber membrane 9 are fixed with botting material,
End conduit 10 communicating with the space connected to the hollow part of the hollow fiber
.. 11 can be used for supplying nutrients and oxygen and removing waste products.

また、側部導管12.13は培養開始時の細胞の導入口
であり、培養が長時間行なわれて細胞濃度が高まった時
はここから老廃物や死亡した細胞を含有する培地を抜く
ことかできる。
In addition, the side conduits 12 and 13 are the inlet for cells at the start of culture, and when culture is continued for a long time and the cell concentration increases, it is necessary to drain the medium containing waste products and dead cells from here. can.

第4図は、第3図に示した細胞培養器を組み込んだ細胞
培養装置であり、培地貯槽16より細胞培養器8へ培地
をポンプ15により循環させるようにしたものである。
FIG. 4 shows a cell culture device incorporating the cell culture device shown in FIG.

以上、多孔質膜により仕切られた2つの領域を利用する
場合について述べたが、培養領域と多孔質膜で仕切られ
る領域の2以上を設け、培地成分や酸素などの気体等を
分割して供給したり、培養液の供給を行なう領域と、生
産物や老廃物を除去するための領域とを分割してもよい
Above, we have described the case where two areas partitioned by a porous membrane are used, but two or more areas, the culture area and the area partitioned by the porous membrane, are provided, and culture medium components and gases such as oxygen are supplied separately. Alternatively, the area may be divided into an area for supplying the culture solution and an area for removing products and wastes.

また、培養領域も2以上設けでもよい。Furthermore, two or more culture areas may be provided.

〔実 施 例〕〔Example〕

以下、実施例を用いて本発明を説明するが、本発明はこ
れらの実施例で限定されるものではない。
The present invention will be explained below using examples, but the present invention is not limited to these examples.

なお、実施例においては多孔質膜としていずれも延伸法
によフて得られるミクロフィブリルと節部とで形成され
るスリット状の空間(空孔)が3次元的に連通した多孔
質膜を用い、該多孔質膜の孔径は該スリット状空間の幅
の平均値と長さの平均値とで表現した。
In addition, in the examples, porous membranes in which slit-like spaces (pores) formed by microfibrils obtained by a stretching method and knots are three-dimensionally connected were used as porous membranes. The pore diameter of the porous membrane was expressed by the average width and length of the slit-like spaces.

架橋重合体の保持量はテトラリン還流下、多孔質膜を溶
解させる溶解分別法により求め多孔質膜に対する重量%
で表示した。
The amount of cross-linked polymer retained is determined by the dissolution fractionation method in which the porous membrane is dissolved under tetralin reflux and expressed as weight % of the porous membrane.
It was displayed in

実施例1 ポリエチレン多孔質中空糸(スリット状細孔の幅0.8
μm、長さ2.2μm、空孔率70%、膜厚55μm、
内径270μm)を第1表に示す濃度のスチレン(s 
t) 、ジビニルベンゼン(DVB)、重合性モノマー
としての無水マレイン酸および0.2重量%の過酸化ベ
ンゾイルを溶解したアセトン溶液中に10秒間浸漬した
後、室温下で30分間風乾しアセトンを揮散させ、次い
で60℃の窒素雰囲気中で20分間加熱してモノマー類
を重合させ架橋重合体を細孔表面に保持させた。多孔質
膜の重合体保持量を第1表に示す。
Example 1 Polyethylene porous hollow fiber (slit-like pore width 0.8
μm, length 2.2 μm, porosity 70%, film thickness 55 μm,
Styrene (s) with a concentration shown in Table 1
t) After dipping for 10 seconds in an acetone solution containing divinylbenzene (DVB), maleic anhydride as a polymerizable monomer, and 0.2% by weight of benzoyl peroxide, the sample was air-dried at room temperature for 30 minutes to volatilize the acetone. Then, it was heated in a nitrogen atmosphere at 60° C. for 20 minutes to polymerize the monomers and hold the crosslinked polymer on the pore surface. Table 1 shows the amount of polymer retained in the porous membrane.

このようにして得た多孔質中空糸150本を集束してポ
リカーボネート製円筒容器(内径8mm×有効長150
mm)に充填し、各中空糸の両端部の開口状態を保持す
るように、ウレタン樹脂で両端を固定して、第3図に示
すような細胞培養器8を作成した。
The 150 porous hollow fibers thus obtained were bundled together to form a polycarbonate cylindrical container (inner diameter 8 mm x effective length 150 mm).
mm) and fixed both ends of each hollow fiber with urethane resin so as to keep both ends open, thereby creating a cell culture vessel 8 as shown in FIG. 3.

本細胞培養器を120℃、30分の蒸気滅菌後、70%
エタノールにて湿潤化し、滅菌蒸留水で充分に洗浄した
後、別に蒸気滅菌したシリコンチューブ14により培地
貯[16と連結し、第4図に示すような細胞培養装置を
作製した。
After steam sterilizing this cell culture device at 120℃ for 30 minutes, 70%
After moistening with ethanol and thoroughly washing with sterile distilled water, the cell culture device was connected to a culture medium reservoir [16] using a silicone tube 14 that had been sterilized separately by steam, thereby producing a cell culture device as shown in FIG.

この培地貯槽16に、10%牛脂児血清を含むHan’
s  F−12培地21を入れ、フィルター17を介し
て5%CO2含有空気を供給した。
This medium storage tank 16 contains Han' containing 10% tallow serum.
sF-12 medium 21 was placed in the flask, and air containing 5% CO2 was supplied through a filter 17.

次に、細胞培養装置8の中空糸外側空間部にチャイニー
ズハムスター卵巣由来CHO−Kl(ATCCCCL−
61)細胞(5×105個)を、第3図の側部導管12
から添加し、密閉後培養を開始した。
Next, Chinese hamster ovary-derived CHO-Kl (ATCCCCCL-
61) Transfer the cells (5 x 105 cells) to the side conduit 12 in Figure 3.
After sealing, culturing was started.

培養は、培養器全体を回転させることなどにより培養器
内に細胞を均一に分散させ、3時間静置後装置傘体を3
7℃の恒温槽中に設置し、ポンプ15より培地を2.5
mIL/hrで循環させながら行なった。3日目に培地
貯[15中の培地を新しい培地と交換後、流速を5 m
 11 / h rにあげ6日目にもう1度新鮮培地と
交換後、流速を25m it / h rにあげ培養を
続けた。
For culturing, the cells are uniformly dispersed in the incubator by rotating the entire incubator, and after standing still for 3 hours, the device umbrella is
Place it in a constant temperature bath at 7℃, and pump 2.5℃ of culture medium from pump 15.
The experiment was performed while circulating at mIL/hr. On the 3rd day, the medium was stored [15] After replacing the medium with a new medium, the flow rate was increased to 5 m
After replacing the medium with fresh medium once more on the 6th day, the flow rate was increased to 25 m it/hr and culture was continued.

培養開始後8日目に、培養器をダルベツコのPBS (
−)で洗浄後、トリプシン0.25%、EDTAo、0
2%を含むダルベツコPBS(−)にて、細胞を回収し
、セルカウンターにて細胞数を測定した。また、回収し
た細胞の0.025%トリバンブルー染色を行ない、細
胞生存率を求め生細胞数を算出した結果、培養器内の生
細胞数は5.2X 10’個であった。
On the 8th day after the start of culture, the culture vessel was filled with Dulbecco's PBS (
-), trypsin 0.25%, EDTAo, 0
Cells were collected in Dulbecco's PBS (-) containing 2%, and the number of cells was measured using a cell counter. In addition, the recovered cells were stained with 0.025% Trivan Blue to determine the cell survival rate and the number of living cells was calculated. As a result, the number of living cells in the culture vessel was 5.2×10′.

実施例2 実施例1て用いたのと同様のポリエチレン多孔質中空糸
を第1表に示す濃度のジビニルベンゼン(DVB)、重
合性モノマーとしての無水マレイン酸および0.2重量
%の過酸化ベンゾイルを溶解したアセトン溶液に10秒
間浸漬した後、実施例1と同様の方法によって表面に架
橋重合体を保持させた多孔質中空糸を得た。
Example 2 Polyethylene porous hollow fibers similar to those used in Example 1 were mixed with divinylbenzene (DVB) at the concentrations shown in Table 1, maleic anhydride as a polymerizable monomer, and 0.2% by weight of benzoyl peroxide. After immersing the fibers in an acetone solution for 10 seconds, a porous hollow fiber having a crosslinked polymer retained on its surface was obtained in the same manner as in Example 1.

得られた中空糸を用い実施例1と同様にして培養装置を
作製し、同様の条件てのCHO−に1細胞の培養を行な
った。培養開始後8日目の細胞数を実施例1と同様にし
て計測したところ5.4×107個であった。
A culture device was prepared using the obtained hollow fiber in the same manner as in Example 1, and one cell was cultured in CHO- under the same conditions. The number of cells on the 8th day after the start of culture was measured in the same manner as in Example 1, and was found to be 5.4 x 107 cells.

第  1 表 比較例1 実施例1に用いたのと同様なポリエチレン製中空糸(架
橋重合体を保持させていないもの)150本を集束して
、ポリカーボネート製円筒容器(8φX150mm)に
充填し、ウレタン樹脂をポツティング材として両端を固
定した細胞培養器を作製した。
Table 1 Comparative Example 1 150 polyethylene hollow fibers similar to those used in Example 1 (without holding a crosslinked polymer) were bundled and filled into a polycarbonate cylindrical container (8φ x 150mm), and urethane A cell culture vessel was prepared using resin as a potting material and fixed at both ends.

細胞培養器をエチレンオキサイドガス殺菌後、70%エ
タノールにて親水化した後、滅菌蒸留水で充分洗浄した
The cell culture vessel was sterilized with ethylene oxide gas, made hydrophilic with 70% ethanol, and then thoroughly washed with sterile distilled water.

本細胞培養器を用いて実施例1と同様にして第4図の構
成の細胞培養装置を作製し同様の条件下でCHO−Kl
細胞の培養を行なった結果、8日後の生細胞数は1.7
X107個であった。
Using this cell culture device, a cell culture device having the configuration shown in FIG. 4 was prepared in the same manner as in Example 1, and CHO-Kl was
As a result of culturing the cells, the number of viable cells after 8 days was 1.7.
There were 107 pieces.

実施例3 実施例1で作製した培養装置を用い、実施例1と同様の
条件でCHO−Kl細胞の培養を開始した後、培養を1
7時間で中止し、培養器内から中空糸を取り出し、PB
S (−)緩衝液で洗浄後、中空糸ととキムザ染色して
、中空糸外壁表面に付着した細胞の増殖形態を実体顕微
鏡により観察したところ、中空糸壁表面に細胞が非常に
伸展性よく付着していることが確認された。
Example 3 Using the culture apparatus prepared in Example 1, culture of CHO-Kl cells was started under the same conditions as in Example 1, and then the culture was continued for 1 time.
Stop after 7 hours, remove the hollow fiber from the incubator, and incubate with PB.
After washing with S (-) buffer, the hollow fibers were stained with Kimza staining, and the proliferation morphology of cells attached to the outer wall surface of the hollow fibers was observed using a stereomicroscope. It was confirmed that it was attached.

比較例2 比較例1で作製した培養装置を用い、同じ条件でCHO
−Kl細胞の培養を開始した。17時間後、実施例3と
同様に中空糸を取り出してギムザ染色をし、細胞の増殖
形態を観察したところ、細胞が付着しているものの伸展
の程度は少なく、実施例3に比較して、細胞の付着数も
少なかった。
Comparative Example 2 Using the culture device prepared in Comparative Example 1, CHO was grown under the same conditions.
- Culture of Kl cells was started. After 17 hours, the hollow fiber was taken out and stained with Giemsa in the same manner as in Example 3, and the growth morphology of the cells was observed. Although the cells were attached, the degree of extension was small compared to Example 3. The number of attached cells was also small.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明の細胞培養方法においては、多
孔質膜として、多孔質膜表面上に官能基として酸無水物
をもつ重合性モノマーとジビニルベンゼンとを含む組成
物から得られた架橋重合体を保持せしめた膜を用いてい
るため、培養前の蒸気殺菌が可能であり、しかも他の素
材からなる膜に較べ細胞の増殖性、付着性細胞を用いた
場合の付着性、伸展性に優れるため、本方法によれば良
好な細胞培養が行なえるという特徴を有する。
As described above, in the cell culture method of the present invention, a crosslinked polymer obtained from a composition containing divinylbenzene and a polymerizable monomer having an acid anhydride as a functional group on the surface of the porous membrane is used as the porous membrane. Because it uses a membrane that maintains coalescence, steam sterilization before culturing is possible, and compared to membranes made of other materials, it has improved cell proliferation, adhesion and spreadability when using adherent cells. Therefore, this method has the characteristic that good cell culture can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は本発明に用い得る細胞培養器の一例を
示す模式断面図であり、第4図は第3図に示した細胞培
養器を用いた細胞培養装置の一例を示す図である。 図において、1,8:細胞培養器、2:多孔質膜(平服
)、3:細胞添加口、4:培地入口、5:培地出口、6
:培養領域、7:領域、9:多孔質中空糸膜、10,1
1:端部導管、12゜13:側部導管、14:シリコン
チューブ、15:チューブポンプ、16:培地貯槽、1
7゜18:フィルターをポす。
1 to 3 are schematic sectional views showing an example of a cell culture device that can be used in the present invention, and FIG. 4 is a diagram showing an example of a cell culture device using the cell culture device shown in FIG. 3. It is. In the figure, 1, 8: cell culture vessel, 2: porous membrane (plain clothes), 3: cell addition port, 4: medium inlet, 5: medium outlet, 6
: Culture area, 7: Area, 9: Porous hollow fiber membrane, 10, 1
1: End conduit, 12° 13: Side conduit, 14: Silicone tube, 15: Tube pump, 16: Medium storage tank, 1
7°18: Insert the filter.

Claims (1)

【特許請求の範囲】 1)他の領域と多孔質膜により仕切られた培養領域中で
細胞を培養する方法において、前記多孔質膜の少なくと
も一部の表面上に官能基としての酸無水物を有する重合
性モノマーとジビニルベンゼンとを含む組成物から得ら
れた架橋重合体が保持させてなることを特徴とする細胞
培養方法。 2)多孔質膜が中空糸形状を有する請求項1に記載の細
胞培養方法。
[Scope of Claims] 1) A method for culturing cells in a culture region separated from other regions by a porous membrane, wherein an acid anhydride as a functional group is provided on the surface of at least a portion of the porous membrane. A cell culture method characterized in that a crosslinked polymer obtained from a composition containing a polymerizable monomer and divinylbenzene is retained. 2) The cell culture method according to claim 1, wherein the porous membrane has a hollow fiber shape.
JP2095194A 1990-04-12 1990-04-12 Cell cultivation Pending JPH03292884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2095194A JPH03292884A (en) 1990-04-12 1990-04-12 Cell cultivation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2095194A JPH03292884A (en) 1990-04-12 1990-04-12 Cell cultivation

Publications (1)

Publication Number Publication Date
JPH03292884A true JPH03292884A (en) 1991-12-24

Family

ID=14130944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2095194A Pending JPH03292884A (en) 1990-04-12 1990-04-12 Cell cultivation

Country Status (1)

Country Link
JP (1) JPH03292884A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004357694A (en) * 2003-05-15 2004-12-24 Yukie Iwamoto Method for producing tissue plug
GB2425538A (en) * 2005-04-29 2006-11-01 Porvair Filtration Group Ltd Substrate and method for modulating tissue formation or deposition
WO2016140213A1 (en) * 2015-03-05 2016-09-09 東洋紡株式会社 Cell culture method using hollow fiber module
JP2017500408A (en) * 2013-12-19 2017-01-05 スリーエム イノベイティブ プロパティズ カンパニー Divinylbenzene / maleic anhydride polymer material
JPWO2016148230A1 (en) * 2015-03-17 2017-12-28 東洋紡株式会社 Method for producing stem cell culture supernatant

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004357694A (en) * 2003-05-15 2004-12-24 Yukie Iwamoto Method for producing tissue plug
GB2425538A (en) * 2005-04-29 2006-11-01 Porvair Filtration Group Ltd Substrate and method for modulating tissue formation or deposition
JP2017500408A (en) * 2013-12-19 2017-01-05 スリーエム イノベイティブ プロパティズ カンパニー Divinylbenzene / maleic anhydride polymer material
WO2016140213A1 (en) * 2015-03-05 2016-09-09 東洋紡株式会社 Cell culture method using hollow fiber module
JPWO2016148230A1 (en) * 2015-03-17 2017-12-28 東洋紡株式会社 Method for producing stem cell culture supernatant

Similar Documents

Publication Publication Date Title
EP1390087B1 (en) Crosslinked multipolymer coating
US8435751B2 (en) Membrane for cell expansion
KR101590666B1 (en) Irradiated membrane for cell expansion
JPH0728722B2 (en) Bioreactor equipment
JP2009034999A (en) Cross-linked multipolymer coating
JPS63196286A (en) Substrate for cell culture
WO2017104558A1 (en) Hollow-fiber membrane and hollow-fiber module for cell culture
EP0475303A2 (en) Growth of cells in hollow fibers in an agitated vessel
EP0402272B1 (en) Cell-culturing substrate, cell-culturing substrate unit bioreactor and extracorporeal circulation type therapeutic apparatus
JP4668568B2 (en) Culturing container, culturing apparatus, and cell culturing method
JPH03292884A (en) Cell cultivation
JPH0310674A (en) Porous membrane for cell culture and cell culture device using the same
JP6848273B2 (en) Cell culture device
Piskin Plasma processing of biomaterials
JPH0216972A (en) Cell culture method
JPH03266980A (en) Base material for cell culture and production of cell aggregate using same
JPH04237492A (en) Formed product for culturing cell
JPH03505965A (en) bioreactor equipment
Nagaoka et al. Cell proliferation on hydrogels
US20120301923A1 (en) Dialysis fermenter-bioreactor with dialysis device
JPH03292885A (en) Cell culture method
JPS63196285A (en) Substrate for cell culture
JPH0398571A (en) Cell culture device and cell culture method
JPH05308953A (en) Cell culture membrane
JPH0833475A (en) Culture medium for adhered animal cell