[go: up one dir, main page]

JPH03291931A - Resistless patterning method - Google Patents

Resistless patterning method

Info

Publication number
JPH03291931A
JPH03291931A JP9323290A JP9323290A JPH03291931A JP H03291931 A JPH03291931 A JP H03291931A JP 9323290 A JP9323290 A JP 9323290A JP 9323290 A JP9323290 A JP 9323290A JP H03291931 A JPH03291931 A JP H03291931A
Authority
JP
Japan
Prior art keywords
film
irradiated
light
etching
patterning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9323290A
Other languages
Japanese (ja)
Inventor
Nobumasa Suzuki
伸昌 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP9323290A priority Critical patent/JPH03291931A/en
Publication of JPH03291931A publication Critical patent/JPH03291931A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To reduce the number of process steps, improve throughput, and decrease industrial waste like developing liquid, by coating a substratum with a specified film for patterning, projecting specified light having spacial intensity distribution, and selectively etching and eliminating only the film part which is irradiated or only the film part which is not irradiated. CONSTITUTION:A substratum 1 is coated with a film 2 for patterning wherein the etching rate is changed by irradiation of specified light and the absorption coefficient of said light is 0.05-5mum<-1>. After specified light 5 having spacial intensity distribution is projected on the film 2, only the film part 3 which is irradiated or only the film part 2 which is not irradiated is selectively etched and eliminated. For example, by using a parallel plane type plasma CVD system, a 500nm thick SiN film 2 is formed on an Si substrate 1, and irradiated with KrF excimer laser light 5, via a mask 4 wherein a Cr film pattern is formed on a synthetic quartz plate. Then by using 1:7 buffer hydrofluoric acid as etching solution, the part 2 which is not irradiated is selectively etched and eliminated, thereby forming an SiN film pattern.

Description

【発明の詳細な説明】 〔産業上の利用分野) 本発明は半導体素子、電子回路などの製造に用いられる
パターニング方法、特にレジストを用いないパターニン
グ方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a patterning method used for manufacturing semiconductor devices, electronic circuits, etc., and particularly to a patterning method that does not use a resist.

〔従来の技術) 従来、パターニング方法にはフォトレジストが用いられ
てきた。フォトレジストを用いた膜のパターニング方法
は、例えば次のように行なわれる。
[Prior Art] Photoresists have conventionally been used in patterning methods. A method for patterning a film using a photoresist is performed, for example, as follows.

(i)被覆基体上全面に膜を形成する。(i) Forming a film over the entire surface of the coated substrate.

(ii)フォトレジストをコートする。(ii) Coating with photoresist.

(iii) 70−100℃でソフトベークする。(iii) Soft bake at 70-100°C.

(iv)露光装置により、空間的強度分布をもつ光をフ
ォトレジストに照射する。
(iv) An exposure device irradiates the photoresist with light having a spatial intensity distribution.

(V)フォトレジストの光照射又は未照射部分を選択的
に除去し、現像する。
(V) Selectively remove the irradiated or unirradiated portions of the photoresist and develop.

(vi)120−170℃でハードベークする。(vi) Hard bake at 120-170°C.

(vri)エツチング装置により、膜をパターニングす
る。
(vri) Pattern the film using an etching device.

(viii)灰化装置によりフォトレジストを除去する
(viii) Remove the photoresist using an ashing device.

(発明が解決しようとする課題) しかしながら、上記従来のフォトレジストを用いたパタ
ーニング方法には、 (i)  工程数が多く、スルーブツトが上がらない。
(Problems to be Solved by the Invention) However, the above conventional patterning method using a photoresist has the following problems: (i) The number of steps is large, and throughput cannot be increased.

(i i)産業廃棄物となる現像液などを大量に必要と
する。
(ii) A large amount of developer, etc., which becomes industrial waste, is required.

などの欠点があった。There were drawbacks such as.

本発明は上記従来技術であるフォトレジストを用いたパ
ターニング方法による問題点に鑑み成されたものであり
、フォトレジストを用いずにパターニングを行う新規な
方法を提供するものである。
The present invention was made in view of the problems with the conventional patterning method using a photoresist, and provides a new method for patterning without using a photoresist.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、基体上に、所定の光の照射によりエツチング
速度が変化しかつ機先に対する吸収係数が0.05〜5
であるパターニング形成用膜を被覆する工程、機成に空
間的な強度分布をもつ所定の光を照射する工程、及び機
成の光照射又は未照射部分のみを選択的にエツチング除
去する工程を含むことを特徴とするレジストレスパター
ニング方法であり、本発明によれば、工程数が大幅に減
少するのでスルーブツトが向上し、又フォトレジストの
現像工程を含まないので現像液などの産業廃棄物を減ら
すことができる。
In the present invention, the etching rate changes by irradiating a predetermined light onto the substrate, and the absorption coefficient for the etching tip is 0.05 to 5.
a step of coating the structure with a patterning film, a step of irradiating the structure with a predetermined light having a spatial intensity distribution, and a step of selectively etching away only the irradiated or unirradiated portions of the structure. According to the present invention, the number of steps is significantly reduced, thereby improving throughput, and since it does not include a photoresist development step, industrial waste such as developer is reduced. be able to.

本発明においては、フォトレジストを用いずに選択性よ
く膜のエツチングを行うが、その目的を達成するために
用いることのできる膜としては、第1に、所定の光照射
前後でのエツチング速度比が大きいもの、好ましくは1
0倍以上、より好ましくは100倍以上となる性能を有
するものであり、照射前後で増大しても減少してもよい
In the present invention, a film is etched with good selectivity without using a photoresist. First, the film that can be used to achieve this purpose has a certain etching rate ratio before and after irradiation with light. is large, preferably 1
It has a performance that is 0 times or more, more preferably 100 times or more, and may increase or decrease before and after irradiation.

ここで、本発明において、所定の光の照射によりエツチ
ング速度が変化するとは、光を照射したことが直接の原
因となってエツチング工程におけるエツチング速度が光
照射部分で変化することをいうが、該エツチング速度は
エツチング手段、条件によって変わるため、常法に基づ
く最適なエツチング方法における速度の変化を意味する
。又、所定の光照射とは、前記膜のエツチング速度比を
大きくとることのできる条件下での光の照射であり、用
いる膜の材料、成膜条件、等により適宜、波長及び照射
エネルギー等を設定すればよい。
Here, in the present invention, the expression that the etching rate changes due to irradiation with a predetermined light means that the etching rate in the etching process changes in the light irradiated area as a direct result of the irradiation with light. Since the etching speed varies depending on the etching method and conditions, it means a change in speed in an optimal etching method based on a conventional method. Further, the predetermined light irradiation is light irradiation under conditions that can increase the etching rate ratio of the film, and the wavelength, irradiation energy, etc. may be adjusted as appropriate depending on the material of the film used, film formation conditions, etc. Just set it.

通常、波長180〜500nm程度の光である。以下、
光照射又は光といった場合は上記所定の条件下でのもの
を意味する。
Usually, the light has a wavelength of about 180 to 500 nm. below,
When referring to light irradiation or light, it means under the above-mentioned predetermined conditions.

次に、膜に要請される第2の性能は、膜に光が有効に吸
収される為に適当な吸収係数、好ましくは0.05〜5
μl11−1を持つことである。但し、光照射により吸
収係数が低下する場合は、光照射後の吸収係数が0.0
5〜5μm−1である限り、光照射前の吸収係数は5以
上でもよい。
Next, the second performance required of the film is an appropriate absorption coefficient, preferably 0.05 to 5, in order for the film to effectively absorb light.
It is to have μl11-1. However, if the absorption coefficient decreases due to light irradiation, the absorption coefficient after light irradiation is 0.0.
The absorption coefficient before light irradiation may be 5 or more as long as it is 5 to 5 μm −1 .

本発明において用いることのできる膜材料としては、■
記要件を満たすものであればいずれでもよく、例えばA
t、 W等から成る金属膜でも可能であるが、エツチン
グ速度比がより大きくとれるもの、例えば非晶質、結晶
質等の半導体又は非晶質、結晶質等の絶縁体で、特に市
販の露光装置における波長帯248〜436nmの紫外
光に対して前記要件が良好に満たされるSEN、 5i
n2等の絶縁体膜やSi、 GaAs等の半導体膜が実
用性に優れており、いずれも光照射によってエツチング
速度及び吸収係数が低下する。
Membrane materials that can be used in the present invention include:
Any item may be used as long as it satisfies the above requirements, for example, A.
Although it is possible to use a metal film made of T, W, etc., it is possible to use a film with a higher etching speed ratio, such as a semiconductor such as amorphous or crystalline, or an insulator such as amorphous or crystalline. SEN, 5i, which satisfies the above requirements for ultraviolet light in the wavelength range of 248 to 436 nm in the device
Insulator films such as N2 and semiconductor films such as Si and GaAs have excellent practicality, and both have a reduced etching rate and absorption coefficient when irradiated with light.

尚、エツチング速度は膜の緻密さによっても影響される
が、光照射によりエツチング速度が低下する場合は、光
照射前の膜は緻密である必要はなく、光照射後とのエツ
チング速度比を考えると、むしろ緻密でないほうが効果
的である場合が多い。このため、例えば成膜中の基体温
度は低くてもよく、室温が適当である場合が多い。
Note that the etching speed is also affected by the density of the film, but if the etching speed decreases due to light irradiation, the film does not need to be dense before light irradiation, and the etching speed ratio with that after light irradiation should be considered. In fact, in many cases it is more effective to be less precise. For this reason, for example, the substrate temperature during film formation may be low, and room temperature is often appropriate.

前記膜材料により成る膜が光照射により、エツチング速
度が変化し、場合により吸収係数が変化する理由として
は、エツチング速度が減少する場合は膜中の不完全結合
や水素が光照射によフて減少し、膜が緻密になる結果、
また、エツチング速度が増加する場合は結合状態が光照
射により非結合状態に遷移し、結合が切断される結果、
エツチング速度が変化または吸収係数が変化するためと
考えられ、好適な光の波長帯は不完全結合や水素の電子
遷移エネルギーによってきまるものである。
The reason why the etching rate of a film made of the above-mentioned film material changes due to light irradiation, and sometimes the absorption coefficient changes, is that when the etching rate decreases, incomplete bonds and hydrogen in the film are destroyed by light irradiation. As a result, the membrane becomes denser.
Additionally, when the etching rate increases, the bonded state transitions to a non-bonded state due to light irradiation, and as a result, the bond is broken.
This is thought to be due to a change in the etching rate or a change in the absorption coefficient, and the suitable wavelength band of light is determined by incomplete bonding and electron transition energy of hydrogen.

上記膜の成膜方法としては上記の条件を満たすものであ
れば、熱CVD、プラズマCVD、光CVD、スパッタ
、蒸着などエピタキシャルなど成膜手段であわば何でも
よいが、室温でのプラズマCVDで行うと、適度な緻密
さを有し、エツチング速度も吸収係数も適度な膜が容易
にできるため最適である。尚、膜の厚さは0.1〜1μ
m程度でよい。
As long as the above conditions are met, any film forming method such as thermal CVD, plasma CVD, optical CVD, sputtering, vapor deposition, etc. may be used to form the above film, but it is possible to use plasma CVD at room temperature. It is optimal because it can easily form a film with appropriate density, appropriate etching rate, and appropriate absorption coefficient. In addition, the thickness of the film is 0.1 to 1μ
About m is sufficient.

次に、上記条件を満たす膜を形成した後、所望の空間的
強度分布をもつ光を常法により照射することにより、光
照射部と未照射部のエツチング速度を大きく変え、その
後エツチングすることにより選択的に光照射部又は未照
射部を除去し、パターニングを形成することができる。
Next, after forming a film that satisfies the above conditions, by irradiating it with light having a desired spatial intensity distribution using a conventional method, the etching speed of the light-irradiated area and the non-irradiated area is greatly changed, and then etching is performed. Patterning can be formed by selectively removing the light irradiated portion or the non-irradiated portion.

光に空間的強度分布をもたせるにはマスクを用いるのが
よく、密着露光、縮少投影露光等により行なうことがで
きる。エツチングは光照射前後のエツチング速度比が大
きく、例えば10倍以上変わるものであればウェットで
もドライエツチングでもよい。
A mask is preferably used to give the light a spatial intensity distribution, and this can be done by contact exposure, reduced projection exposure, or the like. Etching may be wet or dry etching as long as the etching speed ratio before and after light irradiation is large, for example, 10 times or more.

例えば緩衝フッ酸やケミカルドライエツチング等により
エツチングを行なえばよい。
For example, etching may be performed using buffered hydrofluoric acid or chemical dry etching.

又、光照射に用いることのできる光源としてはKrFエ
キシマレーザ、高圧水銀ランプ等であり、これに適当な
レンズ等を組み込み平行光束を照射できる光学系であれ
ば光照射手段として用いることができる。尚、光の照射
エネルギーとしては、エツチング速度が所望の大きさに
なるのに充分なエネルギーを与えればよいが、通常基板
上で0.05〜2W/cm210〜200分間程度でよ
い。
Further, light sources that can be used for light irradiation include a KrF excimer laser, a high-pressure mercury lamp, etc., and any optical system that incorporates a suitable lens or the like and can irradiate a parallel beam can be used as the light irradiation means. Incidentally, the light irradiation energy may be sufficient to achieve a desired etching rate, but it is usually 0.05 to 2 W/cm for about 210 to 200 minutes on the substrate.

このように、本発明の方法においてはパターニングに要
する工程数は3で、従来のフォトレジストを用いる場合
の半分以下になるのでスルーブツトが向上し、又、現像
工程が不要なので現像液などの産業廃棄物を大幅に減少
させることができる。
As described above, in the method of the present invention, the number of steps required for patterning is 3, which is less than half of that when using conventional photoresists, improving throughput, and since no developing step is required, industrial waste such as developer is reduced. can be significantly reduced.

(実施例) 以下に本発明をSiN膜のパターニングに用いた実施例
を第1図に基づいて説明する。
(Example) An example in which the present invention is used for patterning a SiN film will be described below with reference to FIG.

第1図において、1はSi基板、2はプラズマCVDで
形成した光来照射SiN膜、3は光照射したSiN層、
4はマスク、5はKrFエキシマレーザ光である。
In FIG. 1, 1 is a Si substrate, 2 is a photo-irradiated SiN film formed by plasma CVD, 3 is a photo-irradiated SiN layer,
4 is a mask, and 5 is a KrF excimer laser beam.

(a)はSiN膜を形成する工程を示す。6″φ対応対
応子板型プラズマCVD装置を用い、 5iH42(1
/NH* 50/N2200 sccm 、圧力0.2
 Torr%RFパワー300W、基板温度 室温の条
件で10分間成膜し、500 nm厚のSiN膜を形成
した。
(a) shows the process of forming a SiN film. 5iH42 (1
/NH* 50/N2200 sccm, pressure 0.2
The film was formed for 10 minutes under the conditions of Torr% RF power of 300 W and substrate temperature of room temperature to form a 500 nm thick SiN film.

(b)は空間的強度分布をもつ光を照射する工程を示す
。光源としてMrFエキシマレーザを用い、フライアイ
レンズとコリメータレンズを含む光学系により大面積均
一な平行光束を形成した。マスクは合成石英板にCr膜
パターンを形成した最小パターン幅1μmのものを用い
、基板に密着させた。基板上での照度は0.5W/cm
”であった。照射は45分間行なった。尚、光照射前の
吸収係数は6以とであフたが、光照射後1.8に低下し
た。
(b) shows a step of irradiating light with a spatial intensity distribution. A MrF excimer laser was used as a light source, and a parallel light beam uniform over a large area was formed by an optical system including a fly's eye lens and a collimator lens. The mask used was a synthetic quartz plate with a Cr film pattern formed thereon, with a minimum pattern width of 1 μm, and was brought into close contact with the substrate. Illuminance on the board is 0.5W/cm
The irradiation was carried out for 45 minutes.The absorption coefficient before the light irradiation was 6 or more, but it decreased to 1.8 after the light irradiation.

又、照射後、緻密化したためか、膜厚が2割程減少した
(第2図参照)。
Furthermore, after irradiation, the film thickness decreased by about 20%, probably due to densification (see Figure 2).

(c)はエツチングにより膜の未照射部を除去する工程
を示す。エツチング液として1ニアの緩衝フッ酸を用い
、30秒間エツチングした。エツチング速度は光照射部
で90 nm/min、未照射部で11100n/mi
nであり、1ケタ以上差があった。その結果最小線幅1
μmのSiN膜パターンが形成された。すなわち、わず
か3工程でパターニングを良好に完了することができた
(c) shows a step of removing the unirradiated portion of the film by etching. Etching was performed for 30 seconds using 1N buffered hydrofluoric acid as an etching solution. The etching speed is 90 nm/min in the light irradiated area and 11100 n/min in the non-irradiated area.
n, and there was a difference of more than one digit. As a result, the minimum line width is 1
A μm SiN film pattern was formed. That is, patterning could be successfully completed in just three steps.

〔発明の効果〕〔Effect of the invention〕

上述したように、フォトレジストを用いない本発明のパ
ターニング方法によれば、パターニングの工程数が大幅
に減少するのでスルーブツトが向−h 17、又フォト
レジストの現像工程を用いないので現像液などの産業廃
棄物の量を減少させる効果がある。さらに、パターニン
グに用いる膜の形成等各工程も容易に行うことができる
ので、本発明は、半導体素子、電子回路などの製造にお
けるパターニング工程において実用上非常に有用なもの
である。
As mentioned above, according to the patterning method of the present invention that does not use a photoresist, the number of patterning steps is greatly reduced, resulting in improved throughput. It has the effect of reducing the amount of industrial waste. Further, since each process such as forming a film used for patterning can be easily performed, the present invention is extremely useful in practice in patterning processes in the manufacture of semiconductor elements, electronic circuits, and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例で行った本発明の工程の流れを表わす図
であり、(a)は基体上に膜を形成する工程、(b)は
空間的な強度分布をもつ光を照射する工程、(c)は膜
の光照射又は未照射部分のみを選択的にエツチング除去
する工程を示す。第2図は実施例で述べたSiN膜の光
照射前後の吸収スペクトルを表わす。 1はSi基板、 2はプラズマCVDで形成した光来照射SiN膜、 3は光照射したSiN層、 4はマスク、 5はKrFエキシマレーザ光。
FIG. 1 is a diagram showing the flow of the steps of the present invention carried out in Examples, in which (a) is a step of forming a film on a substrate, and (b) is a step of irradiating light with a spatial intensity distribution. , (c) shows a step of selectively etching away only the irradiated or non-irradiated portions of the film. FIG. 2 shows the absorption spectra of the SiN film described in the example before and after light irradiation. 1 is a Si substrate, 2 is a photoirradiated SiN film formed by plasma CVD, 3 is a photoirradiated SiN layer, 4 is a mask, and 5 is a KrF excimer laser beam.

Claims (1)

【特許請求の範囲】 1、基体上に、所定の光の照射によりエッチング速度が
変化しかつ該光に対する吸収係数が0.05〜5μm^
−^1であるパターニング形成用膜を被覆する工程、該
膜に空間的な強度分布をもつ所定の光を照射する工程、
及び該膜の光照射又は未照射部分のみを選択的にエッチ
ング除去する工程を含むことを特徴とするレジストレス
パターニング方法。 2、前記膜が半導体または絶縁体から成る請求項1に記
載のレジストレスパターニング方法。 3、前記半導体又は絶縁体は結晶質または非晶質である
請求項2に記載のレジスタレスパターニング方法。
[Claims] 1. The etching rate changes upon irradiation of a predetermined light onto the substrate, and the absorption coefficient for the light is 0.05 to 5 μm^
-^1 A step of coating the patterning film, a step of irradiating the film with a predetermined light having a spatial intensity distribution,
and a step of selectively etching away only the irradiated or non-irradiated portions of the film. 2. The resistless patterning method according to claim 1, wherein the film is made of a semiconductor or an insulator. 3. The resistorless patterning method according to claim 2, wherein the semiconductor or insulator is crystalline or amorphous.
JP9323290A 1990-04-10 1990-04-10 Resistless patterning method Pending JPH03291931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9323290A JPH03291931A (en) 1990-04-10 1990-04-10 Resistless patterning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9323290A JPH03291931A (en) 1990-04-10 1990-04-10 Resistless patterning method

Publications (1)

Publication Number Publication Date
JPH03291931A true JPH03291931A (en) 1991-12-24

Family

ID=14076797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9323290A Pending JPH03291931A (en) 1990-04-10 1990-04-10 Resistless patterning method

Country Status (1)

Country Link
JP (1) JPH03291931A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05102032A (en) * 1991-10-08 1993-04-23 Sharp Corp Method of patterning silicon nitride film
JP2008535244A (en) * 2005-03-29 2008-08-28 東京エレクトロン株式会社 Method and system for increasing tensile stress in a thin film using parallel electromagnetic radiation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05102032A (en) * 1991-10-08 1993-04-23 Sharp Corp Method of patterning silicon nitride film
JP2008535244A (en) * 2005-03-29 2008-08-28 東京エレクトロン株式会社 Method and system for increasing tensile stress in a thin film using parallel electromagnetic radiation

Similar Documents

Publication Publication Date Title
US8158335B2 (en) High etch resistant material for double patterning
JP3161040B2 (en) Method for manufacturing semiconductor device
JPH05188576A (en) Polarized-light exposing apparatus using polarizer and manufacture of polarizing mask
JPH0955351A (en) Manufacture of semiconductor device
JPH03291931A (en) Resistless patterning method
US5104481A (en) Method for fabricating laser generated I.C. masks
KR101078719B1 (en) Method of manufacturing semiconductor device
JPH08278625A (en) Photomask manufacturing method
JPH07211616A (en) Fine pattern formation method
RU2145156C1 (en) Method for fabrication of structures in microelectronics
JP3271185B2 (en) Manufacturing method of antireflection film
JPH05303210A (en) Pattern forming method
JPS6037127A (en) Manufacturing method of semiconductor device
KR100563819B1 (en) Method of manufacturing anti-reflection film of semiconductor device
JPH04291733A (en) Gaas device and forming method for t-shaped gate electorode
JP3035535B1 (en) Pattern forming method and pattern forming apparatus
JPH0513325A (en) Pattern formation method
JPS6097625A (en) Formation of pattern
JPS63166231A (en) Manufacture of photo mask
JPS61209450A (en) Photomask
JPS59194439A (en) Method for forming pattern of semiconductor device
JPH0458168B2 (en)
JPH0313949A (en) Resist pattern forming method
JPH0637071A (en) Adjusting method for contact hole diameter of semiconductor device
WO1993017452A1 (en) Laser generated i.c. mask