[go: up one dir, main page]

JPH03288826A - liquid crystal electro-optical element - Google Patents

liquid crystal electro-optical element

Info

Publication number
JPH03288826A
JPH03288826A JP2090711A JP9071190A JPH03288826A JP H03288826 A JPH03288826 A JP H03288826A JP 2090711 A JP2090711 A JP 2090711A JP 9071190 A JP9071190 A JP 9071190A JP H03288826 A JPH03288826 A JP H03288826A
Authority
JP
Japan
Prior art keywords
liquid crystal
fixed direction
langmuir
optical element
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2090711A
Other languages
Japanese (ja)
Inventor
Takaaki Tanaka
孝昭 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2090711A priority Critical patent/JPH03288826A/en
Publication of JPH03288826A publication Critical patent/JPH03288826A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133765Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers without a surface treatment

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To obtain a good memory effect by bistable uniform orientation and to prevent the degradation in contrast by an orientation defect by forming grooves which are unified in a fixed direction on at least one electrode surface and further accumulating the thin films of a high-polymer compd. by a Langmuir-Blodgett's method on this surface. CONSTITUTION:The grooves which are approximately unified in the fixed direction are formed on at least one electrode 4 surface of the liquid crystal electrooptical element which crimps a ferroelectric liquid crystal 6 between a pair of substrates 1 and 2 having a scanning electrode group and a signal electrode group and further, the thin film of the high-polymer compd. formed by the Langmuir-Blodgett's method is accumulated on this surface. A glass substrate surface 1 provided with the transparent electrodes of ITO is treated by a polishing liquid contg. Al2O3, by which the fine grooves facing the fixed direction are formed on the ITO surface in such a manner that the directions thereof are paralleled in the upper and lower substrates 1, 2. The surface properties and the thickness of the oriented films are controlled. The excellent liquid crystal having the good memory effect by the bistable uniform orientation is obtd. in this way.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は強誘電性液晶を用いた電気光学素子に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an electro-optical element using ferroelectric liquid crystal.

[従来の技術] 近年、情報処理のコンピユータ化が進み、それに伴いコ
ンピュータの小型化が強く望まれるようになった。特に
マンマシンインターフェイスとしてゆるぎない地位を占
めていたCRTデイスプレィは重く大きい為、軽く薄い
液晶デイスプレィや、プラズマデイスプレィに置き換え
られようとしている。液晶デイスプレィとしては、ツイ
ストネマティック型のものが一般に使用されている。し
かし、高精細のデイスプレィとしては、応答の遅いネマ
ティック液晶よりも高速でメモリー性を有する強誘電性
液晶が研究されている。 (例えばC1ark   ら
、 Appl、Phys、Lett、、36,899 
 (1980))従来の強誘電性液晶を用いた電気光学
素子の配向制御方法は、基板表面にポリイミド等の有機
高分子層を設はラビング処理を行なう方法、SiOを斜
め方向から蒸着する方法、磁場配向法、直流電界を印加
しながら徐冷する方法等がある。
[Background Art] In recent years, information processing has become increasingly computerized, and along with this, there has been a strong desire for computers to be made smaller. In particular, CRT displays, which have held a strong position as man-machine interfaces, are heavy and large, so they are being replaced by lighter and thinner liquid crystal displays and plasma displays. Twisted nematic type liquid crystal displays are generally used. However, for high-definition displays, ferroelectric liquid crystals, which have faster response times and have memory properties, are being researched than nematic liquid crystals, which have slower responses. (For example, C1ark et al., Appl. Phys. Lett., 36,899
(1980)) Conventional methods for controlling the orientation of electro-optical elements using ferroelectric liquid crystals include a method of forming an organic polymer layer such as polyimide on the surface of a substrate and performing a rubbing treatment, a method of evaporating SiO from an oblique direction, There are methods such as a magnetic field orientation method and a method of slow cooling while applying a direct current electric field.

[発明が解決しようとする課題] 強誘電性液晶の電界による応答特性、特に記憶効果は、
液晶分子と基板表面の化学的、あるいは電気化学的相互
作用に大きく影響されると考えられる、カイラルスメク
テイツクC相(以下、SmC”相と略記する)のスイッ
チング原理によれば、良好な記憶効果を得るためには液
晶分子は基板表面に平行かつ一方向に揃っている事が望
ましい。
[Problems to be solved by the invention] The response characteristics of ferroelectric liquid crystals due to electric fields, especially the memory effect, are
Good memory is achieved according to the switching principle of the chiral smect C phase (hereinafter abbreviated as "SmC" phase), which is thought to be greatly influenced by chemical or electrochemical interactions between liquid crystal molecules and the substrate surface. In order to obtain this effect, it is desirable that the liquid crystal molecules be aligned parallel to the substrate surface and in one direction.

しかしながら従来の基板表面に高分子化合物を塗布し膜
表面にラビング処理を施す等の配向制御方法を用いると
、SmC”相における分子配向はツイスト状態すなわち
液晶分子ダイレクタが片側の基板表面から対向基板表面
において円錐の側面上を回転しており、自発分極が上下
両界面で内側或は外側を向いた状態を呈しやすく、従っ
て良好な記憶効果を得るのは困難であった。また、強誘
電体の自発分極を電界印加によって一方向に揃えると表
面に分極電荷が生じ、これが強誘電体内部に逆電界を形
成する事が知られている。強誘電性液晶の場合、内部に
含まれるイオン性不純物がこの逆電界によって局在化し
、その状態で分極を反転させるとイオンの移動度が低い
為に分極反転直後にこのイオンによる電界が前記逆電界
に重畳して液晶に印加される事になり、双安定性が失わ
れる。
However, when conventional orientation control methods such as applying a polymer compound to the substrate surface and rubbing the film surface are used, the molecular orientation in the SmC'' phase is twisted, that is, the liquid crystal molecular director moves from one substrate surface to the opposite substrate surface. The ferroelectric material rotates on the side surface of the cone, and the spontaneous polarization tends to point inward or outward at both the upper and lower interfaces, making it difficult to obtain a good memory effect. It is known that when spontaneous polarization is aligned in one direction by applying an electric field, a polarized charge is generated on the surface, which forms a reverse electric field inside the ferroelectric material.In the case of ferroelectric liquid crystals, ionic impurities contained inside is localized by this reverse electric field, and if the polarization is reversed in that state, the mobility of the ions is low, so immediately after the polarization is reversed, the electric field due to these ions will be superimposed on the reverse electric field and will be applied to the liquid crystal. Bistability is lost.

この電界(以下、反電界と称する)の強度は液晶の自発
分極値に比例し、液晶層と絶縁層及び配向膜の静電容量
の和に反比例する。双安定性を維持する為に反電界の絶
対値を小さくするには前記絶縁層及び配向膜の厚みを薄
くする必要がある。しかし従来行なわれて来た様にディ
ッピングやスピンコードによってポリイミド等の配向膜
を形成した場合、100Å以下のオーダーで均一な薄膜
を得る事は困難である。
The strength of this electric field (hereinafter referred to as an anti-electric field) is proportional to the spontaneous polarization value of the liquid crystal, and inversely proportional to the sum of the capacitances of the liquid crystal layer, the insulating layer, and the alignment film. In order to reduce the absolute value of the anti-electric field in order to maintain bistability, it is necessary to reduce the thickness of the insulating layer and alignment film. However, when an alignment film of polyimide or the like is formed by dipping or spin-coating as has been conventionally done, it is difficult to obtain a uniform thin film on the order of 100 Å or less.

ラビング処理を施さない配向膜形成方法の1つとして、
ラングミュア−ブロジェット法(以下、LB法と略記す
る)が提案されている(例えば、池野ら:電子情報通信
学会技術報告Vo1.88 No。
One of the alignment film forming methods that does not involve rubbing treatment is
The Langmuir-Blodgett method (hereinafter abbreviated as LB method) has been proposed (for example, Ikeno et al.: Institute of Electronics, Information and Communication Engineers Technical Report Vol. 1.88 No.

267 (198B))。この方法は膜厚制御には好適
である。しかし従来のLB配向膜の場合、液晶の配向性
が累積層数及び累積する高分子化合物の構造に依存する
事が知られており、液晶配向膜として満足な特性を得る
ためには材料の選択が必要であり、また、配向にある程
度の累積層数を要する材料の場合には必要な素子特性を
得る領域での膜厚制御が出来ない等の問題点を有してい
た。
267 (198B)). This method is suitable for film thickness control. However, in the case of conventional LB alignment films, it is known that the alignment of liquid crystals depends on the number of accumulated layers and the structure of the accumulated polymer compound, and in order to obtain satisfactory characteristics as a liquid crystal alignment film, material selection is necessary. In addition, in the case of materials that require a certain number of accumulated layers for orientation, there are problems such as the inability to control the film thickness in a region where necessary device characteristics can be obtained.

本発明は、液晶配向膜の形成方法を改良して表面物性及
び配向膜の膜厚を制御する事により上記問題点を解決す
るもので、その目的とするところは、双安定なユニフォ
ーム配向によって良好な記憶効果を持つ優れた液晶電気
光学素子を提供する事である。
The present invention solves the above problems by improving the method for forming a liquid crystal alignment film and controlling the surface properties and the thickness of the alignment film. An object of the present invention is to provide an excellent liquid crystal electro-optical element having a memory effect.

[課題を解決するための手段1 本発明の液晶電気光学素子は上記課題を解決するために
、走査電極群と信号電極群を有する一対の基板間に強誘
電性液晶を挟持して成る液晶電気光学素子に於て少なく
とも一方の電極表面には方向がほぼ一定に揃った溝が形
成され、更に同表面に高分子化合物のラングミュア−プ
ロジェット法による薄膜が累積された事を特徴とする。
[Means for Solving the Problems 1] In order to solve the above problems, the liquid crystal electro-optical device of the present invention is a liquid crystal electro-optic device comprising a ferroelectric liquid crystal sandwiched between a pair of substrates having a scanning electrode group and a signal electrode group. The optical element is characterized in that grooves with substantially uniform directions are formed on the surface of at least one electrode, and a thin film of a polymer compound is deposited on the same surface by the Langmuir-Prodgett method.

[実施例 1] 第1図は本発明実施例に於ける電気光学素子の主要断面
図である。ITO透明電極を設けたガラス基板表面をA
l2O3を含む研磨液で処理する事によって工To表面
に一定方向を向いた微細な溝を上下基板でその方向が平
行になる様に形成した。
[Example 1] FIG. 1 is a main sectional view of an electro-optical element in an example of the present invention. The surface of the glass substrate with ITO transparent electrodes is A.
By treating with a polishing liquid containing 12O3, fine grooves oriented in a certain direction were formed on the surface of the substrate so that the directions were parallel to each other on the upper and lower substrates.

次にポリアミック酸に長鎖アルキルアミンを付加して疎
水基とした化合物のN、N−ジメチルアセトアミド/ベ
ンゼン混合溶液をを水面に展開してL膜(ラングミュア
M)とし、表面圧を25 dyne/cmに保ちながら
15 mm/min、の速度で上記ITOに形成した溝
の方向に対して平行に基板を引き上げて1層のLB膜を
形成した。膜形成後イミド化反応をする事によってポリ
イミド薄膜を得る。ここでは柿本らによって提案された
方法(ChemistryLett、、 823 (1
986)参照)に従ってイミド化を行なった。このよう
にして得られた基板を、上下で引き上げ方向が180度
となるように組み立てた。
Next, an N,N-dimethylacetamide/benzene mixed solution of a compound made into a hydrophobic group by adding a long-chain alkylamine to polyamic acid was spread on the water surface to form an L membrane (Langmuir M), and the surface pressure was set to 25 dyne/benzene. The substrate was pulled up parallel to the direction of the grooves formed in the ITO at a speed of 15 mm/min while maintaining the LB film as one layer. After film formation, an imidization reaction is performed to obtain a polyimide thin film. Here, we use the method proposed by Kakimoto et al. (Chemistry Lett, 823 (1)
The imidization was carried out according to the method (see 986). The thus obtained substrates were assembled so that the pulling direction was 180 degrees at the top and bottom.

セル厚は約2μとした。The cell thickness was approximately 2μ.

上記基板間に強誘電性液晶組成物を加熱封入し、室温ま
で徐冷した。ここで液晶にはメルク社製ZLI−377
4を用いた。以上の方法で得られた液晶電気光学素子を
偏光軸の互いに直交する偏光板間に挟持し、第2図21
に示す駆動波形を印加して、その際の同図22に示され
る光学応答を評価した。記憶効果の良否は電界印加時の
透過光量(第2図22のI+)と電界除去後の透過光量
(第2図22のI2)の比I2/I+が大きい程良好で
あると考えられる6本実1@例では25℃に於て工2/
I電=0.87、コントラスト比1: 12良好であっ
た。LB膜の積層数を3層、5層とした場合もほぼ同様
な結果が得られた。
A ferroelectric liquid crystal composition was heated and sealed between the substrates, and slowly cooled to room temperature. Here, the liquid crystal is ZLI-377 manufactured by Merck.
4 was used. The liquid crystal electro-optical element obtained by the above method was sandwiched between polarizing plates whose polarization axes were orthogonal to each other, and
A driving waveform shown in FIG. 22 was applied, and the optical response shown in FIG. 22 at that time was evaluated. It is thought that the better the memory effect is, the larger the ratio I2/I+ of the amount of transmitted light when an electric field is applied (I+ in Figure 2, 22) and the amount of transmitted light after the electric field is removed (I2 in Figure 2, 22). Actual 1@ Example: Processed at 25℃ 2/
The I voltage was 0.87 and the contrast ratio was 1:12, which was good. Almost similar results were obtained when the number of laminated LB films was 3 or 5.

[実施例2 ] 実施例1に示した素子の電極間に±25v、15Hzの
交番波形を約10秒間印加したところ、液晶の配向状態
は、層方向にほぼ垂直な方向に緻密な筋状組織を伴った
ユニフォーム状態を呈した。
[Example 2] When an alternating waveform of ±25 V and 15 Hz was applied for about 10 seconds between the electrodes of the device shown in Example 1, the alignment state of the liquid crystal was found to be a dense striated structure in a direction almost perpendicular to the layer direction. It appeared in a uniform state with.

この電界処理により、封入冷却時に形成されたジグザグ
欠陥は除去された。該素子を偏光軸の互いに直交する偏
光板間に挟持し、第2図21に示す駆動波形を印加して
、その際の同図22に示される光学応答を評価した。本
実施例では25°Cに於てI2/I+=0.98、コン
トラスト比1:37と良好であった。
By this electric field treatment, zigzag defects formed during cooling of the encapsulation were removed. The element was held between polarizing plates whose polarization axes were perpendicular to each other, and the driving waveform shown in FIG. 21 was applied to evaluate the optical response shown in FIG. 22. In this example, at 25°C, I2/I+=0.98 and the contrast ratio was 1:37, which was good.

[5!明の効果] 本発明は上記の構成によって、液晶配向膜の形成方法を
改良して表面物性及び膜厚を制御する事により、上記従
来技術の欠点を解決し、双安定なユニフォーム配向によ
って良好な記憶効果を持ち、配向欠陥によるコントラス
ト低下の少ない優れた液晶電気光学素子を提供する事が
できた。
[5! [Bright Effects] With the above configuration, the present invention solves the drawbacks of the prior art by improving the method for forming a liquid crystal alignment film and controlling the surface physical properties and film thickness, and achieves good results by bistable uniform alignment. It was possible to provide an excellent liquid crystal electro-optical element that has a memory effect and exhibits little reduction in contrast due to alignment defects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の液晶電気光学素子の断面図であ
る。 第2図は本発明の液晶電気光学素子を評価する際に用い
た駆動波形と、対応する光学応答の一例を示す図である
。 1.2.、、上下ガラス基板 3 00.スペーサ 4.5.、、透明電極 6 09.液晶層 9.10.、、LE配向膜 11、12.  、偏光板 21   、、、駆動波形 22  、  、光学応答 以上
FIG. 1 is a sectional view of a liquid crystal electro-optical element according to an embodiment of the present invention. FIG. 2 is a diagram showing an example of a driving waveform used in evaluating the liquid crystal electro-optical element of the present invention and a corresponding optical response. 1.2. ,,upper and lower glass substrates 3 00. Spacer 4.5. ,,transparent electrode 6 09. Liquid crystal layer 9.10. ,,LE alignment film 11, 12. , polarizing plate 21 , , drive waveform 22 , , optical response or more

Claims (1)

【特許請求の範囲】[Claims] (1)走査電極群と信号電極群を有する一対の基板間に
強誘電性液晶を挟持して成る液晶電気光学素子に於て少
なくとも一方の電極表面には方向がほぼ一定に揃った溝
が形成され、更に同表面に高分子化合物のラングミュア
−プロジェット法による薄膜が累積された事を特徴とす
る液晶電気光学素子。
(1) In a liquid crystal electro-optical device consisting of a ferroelectric liquid crystal sandwiched between a pair of substrates having a scanning electrode group and a signal electrode group, grooves with substantially uniform directions are formed on the surface of at least one electrode. A liquid crystal electro-optical element characterized in that a thin film of a polymer compound is deposited on the same surface by the Langmuir-Prodgett method.
JP2090711A 1990-04-05 1990-04-05 liquid crystal electro-optical element Pending JPH03288826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2090711A JPH03288826A (en) 1990-04-05 1990-04-05 liquid crystal electro-optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2090711A JPH03288826A (en) 1990-04-05 1990-04-05 liquid crystal electro-optical element

Publications (1)

Publication Number Publication Date
JPH03288826A true JPH03288826A (en) 1991-12-19

Family

ID=14006118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2090711A Pending JPH03288826A (en) 1990-04-05 1990-04-05 liquid crystal electro-optical element

Country Status (1)

Country Link
JP (1) JPH03288826A (en)

Similar Documents

Publication Publication Date Title
JPS59214824A (en) liquid crystal electro-optical device
JPH0654368B2 (en) Liquid crystal cell
JPH03164713A (en) Ferrodielectric liquid crystal electrooptical device and its production
JPS62160426A (en) Liquid crystal display element
JPS61165730A (en) liquid crystal electro-optical device
JPH02208633A (en) Liquid crystal display device
JPH03288826A (en) liquid crystal electro-optical element
JPH0348817A (en) Liquid crystal electro-optical element
JPS62299815A (en) Manufacturing method of ferroelectric liquid crystal display element
JPH03134627A (en) Liquid crystal eletrooptical element
JPH0411222A (en) liquid crystal electro-optical element
JPS63228130A (en) Ferroelectric smectic liquid crystal electro-optical device
JPS6330828A (en) Manufacture of liquid crystal display device
JPH0380223A (en) Liquid crystal electrooptical element
JPH06313889A (en) Liquid crystal electro-optical device
JP3062978B2 (en) Ferroelectric liquid crystal device
JPH01245224A (en) Liquid crystal electro-optic element
JPH07181495A (en) Ferroelectric liquid crystal element
JPH07248484A (en) Liquid crystal display device
JPH03129323A (en) Liquid crystal electrooptic element
JPH0336524A (en) liquid crystal electro-optical element
JPH02293717A (en) liquid crystal electro-optical element
JPS63110424A (en) Ferroelectric liquid crystal element
JPS62247326A (en) Production of ferroelectric liquid crystal element
JPH02293719A (en) Liquid crystal electrooptical element