[go: up one dir, main page]

JPH03288629A - Manufacture of composite molder product - Google Patents

Manufacture of composite molder product

Info

Publication number
JPH03288629A
JPH03288629A JP2089478A JP8947890A JPH03288629A JP H03288629 A JPH03288629 A JP H03288629A JP 2089478 A JP2089478 A JP 2089478A JP 8947890 A JP8947890 A JP 8947890A JP H03288629 A JPH03288629 A JP H03288629A
Authority
JP
Japan
Prior art keywords
mold
resin
particles
matrix resin
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2089478A
Other languages
Japanese (ja)
Inventor
Shiro Yamamoto
山本 至郎
Masataka Inoue
正隆 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2089478A priority Critical patent/JPH03288629A/en
Publication of JPH03288629A publication Critical patent/JPH03288629A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

PURPOSE:To obtain a composite molded product having excellent productivity and workability by making reinforcing fibers exist in the vicinity of the inner surface of a mold, and also making heat expansion particles and solid heat melting matrix resin or the mixed substance with the material thereof exist in the part to be a porous core after the molding and, after that, heating the mold. CONSTITUTION:By using matrix resin or the material thereof to be softened and liquified by heating in combination with expansive particles, these raw material composites are put into the mold wrapping with reinforcing fibers, or put into the central part of the mold that is preliminarily placed with reinforcing fibers in the proximity of the inner surface of the mold so as to be heated therein, whereby the matrix resin or raw material constituting the raw material composites is softened or melted and the heat expansive particles are expanded, and thus, by the expansion forces thereof, a part of the matrix resin is impregnated in the layer of the reinforcing fibers and, by pressing the layer into the inner surface of the mold so as to be solidified under the state, thereby forming it into the configuration of the inner surface of the mold. Such heat expansive particles are increased in volume by heating and, for such foaming expansive particles, foaming expansive particles in which foaming agents are wrapped with vinylidene chloride, polystyrene or the like are is given for example.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、多孔質コアとそれを取囲む繊維補強樹脂複合
材料とを主とする軽量な複合成形物の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a lightweight composite molded article mainly comprising a porous core and a fiber-reinforced resin composite material surrounding it.

[従来の技術] 多孔質成形物は工業的には樹脂成形物の一種である。従
来、これは工業的には発泡性樹脂を用いて成形する方法
、つまり、発泡成形により製造されている。
[Prior Art] Porous molded products are industrially a type of resin molded products. Conventionally, this has been manufactured industrially by a method of molding using a foamable resin, that is, by foam molding.

この方法は、大別すると、加熱又は減圧すると発泡する
樹脂又は樹脂原料を成形用の型に入れて所定の形状に成
形する方法、これらの樹脂の特定のものを粒子状に発泡
成形しく一次発泡体)、これを型に入れて更に膨張させ
(二次発泡)所定の形状に成形する方法、に分けられる
。そして、このような発泡成形を利用してサンドイツチ
材等、軽量構造体を製造する方法としては、予め成形し
た発泡成形物を表皮材料たとえば予め成形した繊維補強
樹脂成形物(以下、FRPと略称することがある)と貼
り合わせるか、該発泡成形物をプリプレグ等で覆って成
形するか、あるいは予め成形した外殻中空体の内部に発
泡性樹脂を注入して発泡成形するのが普通である。また
、近年、発泡膨張を用いた内圧成形や熱膨張性成形物を
多孔質体の素材として用いる方法も開発されている。(
例えば、特開平1−255530号、特願平1−179
830号、特開昭63−162207号など) [発明が解決しようとする課題] 表面が繊維補強樹脂複合材料により所定の形状に成形さ
れた、芯部が多孔質からなる複合成形物を熱膨張性樹脂
を用いて成形するこれらの成形法は、一般に、良好な成
形物が得られる優れた方法である。しかしながら、その
工程は単純とは云い難く、生産性も特別に優れたものと
は云い難い。
This method can be roughly divided into two methods: a method in which a resin or resin raw material that foams when heated or reduced pressure is placed in a mold and molded into a predetermined shape, and a method in which a specific resin is foam-molded into particles and primary foaming is performed. This can be divided into two methods: putting it into a mold, expanding it further (secondary foaming), and molding it into a predetermined shape. As a method of manufacturing lightweight structures such as Sanderutsch timber using such foam molding, a pre-formed foam molding is used as a skin material such as a pre-formed fiber reinforced resin molding (hereinafter abbreviated as FRP). Usually, the foam molded product is bonded with a material (sometimes referred to as a foam material), the foam molded product is covered with a prepreg or the like, or a foamable resin is injected into a pre-formed hollow outer shell to perform foam molding. In addition, in recent years, methods have been developed in which internal pressure molding using foaming expansion and methods using thermally expandable molded products as materials for porous bodies have been developed. (
For example, Japanese Patent Application Publication No. 1-255530, Japanese Patent Application No. 1-179
No. 830, JP-A No. 63-162207, etc.) [Problem to be solved by the invention] A composite molded product whose surface is molded into a predetermined shape using a fiber-reinforced resin composite material and whose core is porous is subjected to thermal expansion. These molding methods using plastic resins are generally excellent methods that yield good molded products. However, the process is far from simple and the productivity is far from particularly high.

すなわち、かかる方法のうちフオームRTM法(予め成
形した発泡成形コアを補強繊維で包み、型に入れて補強
繊維層に液状の硬化性樹脂を注入する方法)、フオーム
TEM法(発泡成形コアを液状の硬化性樹脂を含浸した
補強繊維で包み、型に入れてコアを再膨張させて成形す
る方法)、TERTM法(発泡成形コアを補強繊維で包
み、型に入れて補強繊維層に液状の硬化性樹脂を注入し
コアを再膨張させる方法)等では、いずれも予め最終成
形物に相似した形状のフオームコアを成形し、これを芯
にして別途FRP層用の液状硬化性の樹脂を用いて成形
する。これらは、別途に成形物に相似したコアを成形す
る必要かあるだけでなく、発泡コアを作る以外に液状の
樹脂を扱う必要があるという問題がある。
Specifically, among these methods, the Foam RTM method (a method in which a pre-formed foam core is wrapped with reinforcing fibers, placed in a mold, and a liquid curable resin is injected into the reinforcing fiber layer), the Foam TEM method (a method in which a foam core is wrapped in a liquid TERTM method (wrapping a foam molded core with reinforcing fibers, placing it in a mold and applying liquid hardening to the reinforcing fiber layer) In both methods, a foam core with a shape similar to the final molded product is molded in advance, and then a liquid hardening resin for the FRP layer is separately molded using this as a core. do. These problems not only require the separate molding of a core similar to the molded product, but also the need to handle liquid resin in addition to making the foam core.

本発明者らは、先にフオームコアを予備成形する必要の
ない方法として、熱膨張性バルーンと液状の硬化性樹脂
とを用いたサンドイツチ材の成形方法を開発して提案し
た。(例えば、特願平1−179830号、1−255
305号、1−229425号など)。しかし、これら
の方法でも液状の硬化途上の樹脂を取扱うため成形作業
の煩雑さを残している。
The present inventors have developed and proposed a method for molding sand german materials using a thermally expandable balloon and a liquid curable resin as a method that does not require preforming a form core. (For example, Japanese Patent Application No. 1-179830, 1-255
No. 305, No. 1-229425, etc.). However, even with these methods, the molding operation remains complicated because the resin is in a liquid state and is in the process of being cured.

本発明は、先に提案した方法を更に改良し、さらに生産
性、作業性にすぐれた複合成形物の製造法を提供しよう
とするものである。
The present invention aims to further improve the previously proposed method and provide a method for manufacturing composite molded articles with even better productivity and workability.

[課題を解決するための手段] 本発明者らは上述の課題を達成する手段について鋭意検
討を重ね、本発明の簡便な成形法を開発した。
[Means for Solving the Problems] The present inventors have conducted extensive studies on means for achieving the above-mentioned problems, and have developed the simple molding method of the present invention.

即ち、本発明は、少なくとも繊維補強樹脂複合材料によ
り所定の形状に成形された表層部と多孔質コアと含有す
る複合成形品を製造するに当り、成形用の型内において
、少くとも型の内面付近に補強用繊維を、そして、成形
後に多孔質コアになる部分に熱膨脹性粒子と固体の熱溶
融性マトリックス樹脂又はその原料との混合物を存在さ
せ、しかる後、型を加熱して、上記固体のマトリックス
樹脂又はその原料を溶融するとともに上記熱膨脹性粒子
を発泡膨張させながら表層部を成形するを特徴とする複
合成形品の製造方法である。
That is, in manufacturing a composite molded article containing at least a surface layer and a porous core formed into a predetermined shape from a fiber-reinforced resin composite material, at least the inner surface of the mold is formed in a mold for molding. Reinforcing fibers are placed nearby, and a mixture of heat-expandable particles and a solid heat-fusible matrix resin or its raw material is present in the portion that will become the porous core after molding, and then the mold is heated to form the solid material. This method of manufacturing a composite molded article is characterized in that the surface layer portion is molded while melting the matrix resin or its raw material and foaming and expanding the thermally expandable particles.

本発明方法では、フオームRTM、フオームTEM、T
ERTMと呼ばれる一連のフオームコアを用いる方法の
ようにコアを予め成形する必要がなく、コアと別途の樹
脂を用いることもなく、また液状の硬化性樹脂を用いる
こともなく、加熱すれば軟化又は液化するマトリックス
樹脂又はその原料と熱膨脹性粒子とを併用して一挙に成
形することを主たる特徴としている。したかって、これ
らの原料組成物を、補強用繊維で包んで型に入れるか又
は予め型の内面近くに補強用m維を入れた型の中央部に
入れて、加熱し、原料組成物を構成するマトリックス樹
脂又は原料を軟化又は溶融させるとともに熱膨脹性粒子
を膨脹させ、その膨張力によりマトリックス樹脂の一部
を補強用繊維の層に浸透させると共に核層を型の内面に
押しつけ、その状態で固化させて、型の内面の形状に成
形する方法である。この際、予め熱膨脹性粒子とマトリ
ックス樹脂とを、該粒子は通さず溶融又は軟化したマト
リックス樹脂を通す分離層で包んでおき、該粒子の熱膨
張圧力を利用して溶融した樹脂又はその原料のみを分離
層を透過させて繊維質補強材料に侵入させFRPとする
ことによりサンドイツチ材を成形する方法か好まし〈実
施される。
In the method of the present invention, foam RTM, foam TEM, T
Unlike the method using a series of foam cores called ERTM, there is no need to pre-shape the core, there is no need to use a separate resin in addition to the core, and there is no need to use liquid hardening resin, which softens or liquefies when heated. The main feature is that the matrix resin or its raw material is used in combination with thermally expandable particles to be molded all at once. Therefore, these raw material compositions are wrapped in reinforcing fibers and placed in a mold, or placed in the center of a mold in which reinforcing fibers have been placed near the inner surface of the mold, and heated to form the raw material compositions. The matrix resin or raw material to be used is softened or melted, and the thermally expandable particles are expanded, and the expansion force causes part of the matrix resin to penetrate into the reinforcing fiber layer, and the core layer is pressed against the inner surface of the mold, and solidified in that state. This is a method of molding the material into the shape of the inner surface of the mold. At this time, the thermally expandable particles and the matrix resin are wrapped in advance in a separation layer that does not allow the particles to pass through, but allows the melted or softened matrix resin to pass through, and the thermal expansion pressure of the particles is used to allow only the molten resin or its raw materials to pass through. A preferred method is to form a Sanderutsch material by passing through a separation layer and penetrating a fibrous reinforcing material to form FRP.

この固体のマトリックス樹脂又はその原料は、熱可塑性
樹脂か、常温では固化する部分重合した熱硬化性樹脂の
原料であり、熱膨脹性粒子の膨張開始温度以下の温度で
溶融し流動化得るものである。即ち、型に入れたのち加
熱することにより該マトリックス樹脂が軟化又は液状と
なって比較的低粘度となり、その中に混合されている熱
膨脹性粒子が膨脹し、それにより、マトリックス樹脂が
流動して型の内面の形状に合せて成形されるものである
。かかるマトリックス樹脂は通常常温下で粉末状のもの
が好ましく用いられる。
This solid matrix resin or its raw material is a thermoplastic resin or a raw material for a partially polymerized thermosetting resin that solidifies at room temperature, and can be melted and fluidized at a temperature below the expansion start temperature of the thermally expandable particles. . That is, by heating the matrix resin after placing it in a mold, the matrix resin becomes soft or liquid and has a relatively low viscosity, and the heat-expandable particles mixed therein expand, causing the matrix resin to flow. It is molded to match the shape of the inner surface of the mold. Such a matrix resin is usually preferably used in powder form at room temperature.

本発明方法では、熱膨脹性粒子と熱溶融性マトリックス
樹脂との混合物を目的成形物の多孔質コアになる位置に
設置させ、加熱して上記樹脂を溶融又は軟化させるとと
もに熱膨脹性粒子を発泡膨張させ、この力を利用して熱
膨脹性粒子と液化したマトリックス樹脂を型内の隅々ま
で行き汎らせて内圧成形することにより、液状の硬化性
樹脂のように取扱いに際して作業環境を汚染することが
少なくすることができる。また熱可塑性樹脂の場合には
、溶融後、熱膨張粒子の膨脹で樹脂が補強繊維層に行き
混れば直ちに冷却、回収出来、予め部分重合して常温で
固体になっている熱硬化性樹脂原料の場合には追加反応
量を低下出来るものである。
In the method of the present invention, a mixture of heat-expandable particles and a heat-melt matrix resin is placed in a position that will become the porous core of a target molded product, and heated to melt or soften the resin and foam and expand the heat-expandable particles. By using this force to spread the thermally expandable particles and liquefied matrix resin to every corner of the mold and perform internal pressure molding, it is possible to avoid contaminating the working environment when handling unlike liquid hardening resins. It can be reduced. In addition, in the case of thermoplastic resins, after melting, if the resin spreads through the reinforcing fiber layer due to the expansion of thermally expandable particles, it can be immediately cooled and recovered.Thermosetting resins are partially polymerized in advance and become solid at room temperature. In the case of raw materials, the amount of additional reaction can be reduced.

成形に際して、液状に戻った樹脂又はその原料の一部を
解放、型から排出するのが好ましい場合があり、これに
より、樹脂の行き汎らない場所、特に予め併用した補強
材料プリフォーム等の樹脂の注入不良な部分にも樹脂を
行き汎らせ、熱膨脹性粒子間の樹脂量を減らし、キャビ
ティ内の熱膨脹性粒子の存在のバラツキを補正するのに
役立てることができる。従って圧力の解放をその目的に
従って加えることも出来る。
During molding, it may be preferable to release some of the resin or its raw materials that have returned to a liquid state and discharge them from the mold. It is possible to spread the resin even to areas where the injection is defective, reduce the amount of resin between the thermally expandable particles, and help correct variations in the presence of the thermally expandable particles within the cavity. Therefore, pressure relief can also be applied according to its purpose.

サンドイツチ材を作る場合、得られる成形物は多孔質部
のコアとFRPからなる表皮か一体になった継目の無い
成形物が得られる。
When making Sanderutsch material, the resulting molded product is a seamless molded product in which the core of the porous portion and the skin made of FRP are integrated.

熱膨脹性粒子はブロックとして存在しても構わないが、
均等に分散していることがより一層望ましい。均質な分
散という観点から、熱膨脹性粒子を平均粒径IIIIi
l以下の小粒子とすることが好ましく、他の中空体(例
えば無機中空粒子)等と併用する場合にはこれらと熱膨
脹性粒子とを十分に混合し分散させて用いることが好ま
しい。
Thermally expandable particles may exist as blocks, but
Even distribution is even more desirable. From the point of view of homogeneous dispersion, thermally expandable particles have an average particle size of IIIi.
It is preferable to use small particles of 1 or less, and when used in combination with other hollow bodies (for example, inorganic hollow particles), it is preferable to sufficiently mix and disperse these and thermally expandable particles.

本発明に用いられる熱膨脹性粒子は加熱により体積が増
大するものであり、例えは、発泡剤を包含した粒子、例
えば塩化ビニリデンで発泡剤を包んだ「マイクロスフェ
ア」と呼ばれるもの等の発泡膨張性粒子、汎用されてい
るポリスチレン等の発泡膨張粒子、発泡成形した粒子(
例えばポリエチレン、ポリプロピレン、ポリウレタン、
ゴム等の一次膨張粒子)等である。後者の発泡成形熱膨
張粒子の場合には、成形した粒子□を加圧加熱して固定
した粒子等も含まれる。
The heat-expandable particles used in the present invention increase in volume when heated, and examples thereof include foam-expandable particles containing a blowing agent, such as particles called "microspheres" in which the blowing agent is wrapped in vinylidene chloride. particles, expanded expanded particles such as commonly used polystyrene, and foamed particles (
For example, polyethylene, polypropylene, polyurethane,
(primary expanded particles such as rubber) etc. In the case of the latter foam-molded thermally expandable particles, particles obtained by pressurizing and heating molded particles □ to fix them are also included.

0 これに非膨張の中空体を混合することも出来る。0 A non-expandable hollow body can also be mixed with this.

軽量多孔質体を得るのに、このような中空体は安価で便
利なものである。経済性も考慮すると好適な非膨張性中
空体としては、ガラスバルーン、シラスバルーン等の無
機中空体粒子が挙げられる。
Such hollow bodies are inexpensive and convenient for obtaining lightweight porous bodies. In consideration of economic efficiency, suitable non-expandable hollow bodies include inorganic hollow particles such as glass balloons and glass balloons.

このような中空体は、例えは熱膨張粒子より小さなもの
として、熱膨張粒子間のマトリックス樹脂の一部を置き
かえて、成形品の一層の軽量化を図ることが出来る。例
えば、熱膨張粒子が比較的大径の球状である場合には、
その最密充填した場合の隙間より小さな球として、細密
充填の空間に相当するマトリックス樹脂の一部を置きか
えることが可能である。
Such a hollow body, for example, may be smaller than the thermally expandable particles, and by replacing a portion of the matrix resin between the thermally expandable particles, it is possible to further reduce the weight of the molded product. For example, if the thermally expandable particles are spherical with a relatively large diameter,
It is possible to replace a part of the matrix resin corresponding to the space of close packing with a sphere smaller than the gap in the case of close packing.

一方、成形樹脂としては熱可塑性樹脂、常温で固体の硬
化性の液状樹脂が用いられる。後者としては常温で固体
のエポキシ樹脂、不飽和ポリエステル樹脂、非発泡性ウ
レタン樹脂又はこれらの前駆体等一般によく知られてい
る液状成形樹脂のうち常温で固体のものか好ましく用い
られる。熱可塑性樹脂としては熱膨張粒子か膨張して了
わない1 温度(通常は150°C程度)で軟化ないし溶融して流
動性を持つことが必要で、このような樹脂としては比較
的低融点のポリオレフィン、ポリスチレン等や、フェノ
キシ樹脂、一部の液晶樹脂などが好ましく用いられる。
On the other hand, as the molding resin, a thermoplastic resin or a curable liquid resin that is solid at room temperature is used. As the latter, among generally well-known liquid molding resins that are solid at room temperature, such as epoxy resins, unsaturated polyester resins, non-foaming urethane resins, or their precursors, those that are solid at room temperature are preferably used. As a thermoplastic resin, it is necessary to have fluidity by softening or melting at a temperature (usually around 150°C) that does not expand due to thermal expansion particles, and for such a resin it has a relatively low melting point. Polyolefins, polystyrene, etc., phenoxy resins, some liquid crystal resins, etc. are preferably used.

この樹脂は、熱膨脹性粒子の開発が進めは広がり、当然
、熱可塑性樹脂の開発でもその適用範囲は広がる。
The development of heat-expandable particles for this resin is progressing, and the scope of its application is also expanding as thermoplastic resins are being developed.

本発明方法によりサンドイツチ材を製造する際には、成
形物表層部付近に補強繊維を使用するが、この補強繊維
は無機繊維、有ms維を問わない。
When producing Sanderutsch material by the method of the present invention, reinforcing fibers are used near the surface layer of the molded product, and the reinforcing fibers may be either inorganic fibers or organic fibers.

たとえばカラス繊維、炭素繊維、ボロン繊維、炭化ケイ
素繊維、アルミナ繊維等の無機繊維、ポリエステル、ア
ラミド、ポリオレフィン、ポリアミド、アリレート等の
有機合成繊維、綿、麻等の天然繊維を単独又は組合わせ
て用いられる。織物、編み物、のほか、ストランド、ヤ
ーン等としてたとえばフィラメントワインデングで構成
することも出来るし、短繊維のウェブ、マット等で用い
ることも出来る。
For example, inorganic fibers such as glass fiber, carbon fiber, boron fiber, silicon carbide fiber, and alumina fiber, organic synthetic fibers such as polyester, aramid, polyolefin, polyamide, and arylate, and natural fibers such as cotton and hemp may be used alone or in combination. It will be done. In addition to woven fabrics and knitted fabrics, it can also be constructed of filament windings as strands, yarns, etc., and can also be used as short fiber webs, mats, etc.

補強用の繊維として、プリフォームを用いても 2 よい。実質的に分離層を併用する場合は補強用繊維シー
トやプリフォームの目開きは自由に選択でき、例えば一
方向繊維配列プリプレグや三次元織物や編み物のプリフ
ォームも使用できる。
A preform may be used as the reinforcing fiber. When a separation layer is substantially used in combination, the opening of the reinforcing fiber sheet or preform can be freely selected, and for example, unidirectional fiber array prepreg, three-dimensional woven fabric, or knitted preform can also be used.

また、好ましい態様で使用される分離層(分離膜)とし
ては、熱膨脹後の粒子を実質的に通さず液化した成形樹
脂は通す分離機能含有する部分が少なくともその一部又
は全部を構成し、残りは上記液状成形樹脂をも通さない
材料からなるものを用いる。かかる分離層の分離機能を
構成するものとしては繊維シート及び/又は多孔質シー
トが挙げられる。繊維シートとしては各種天然繊維、合
成繊維、金属繊維、炭素又はセラミックス等の無機繊維
等の織布、編み物、組み物、不織布、紙等が用いられる
。多孔質シートとしては連通気孔含有するものであり、
ポリウレタン、ポリスチレン、あるいはポリプロピレン
等のフオームシートや延伸、抽出又は凝固法などでつく
るポリプロピレンあるいはポリスフオン等の多孔膜が用
いられる。
In addition, the separation layer (separation membrane) used in a preferred embodiment includes at least a part or all of the part containing a separation function that substantially does not pass particles after thermal expansion but allows liquefied molded resin to pass through, and the remainder is made of a material that does not allow the liquid molding resin to pass through. Examples of materials constituting the separation function of such a separation layer include a fiber sheet and/or a porous sheet. As the fiber sheet, woven fabrics, knitted fabrics, braided fabrics, non-woven fabrics, paper, etc. made of various natural fibers, synthetic fibers, metal fibers, inorganic fibers such as carbon or ceramics, etc. are used. The porous sheet contains continuous pores,
Foam sheets such as polyurethane, polystyrene, or polypropylene, or porous membranes such as polypropylene or polysphone made by stretching, extraction, or coagulation methods are used.

その目開きは、使用する熱膨脹性粒子の種類やそ3 の発泡性に応じて選択される。この分離層にそれ自体補
強機能含有するガラス繊維、炭素繊維、アラミド繊維等
のシートを用いることも出来る。これらのシートは、表
面に色彩や模様を施したものでもよい。さらにこの分離
層として容易に成形品の形状に合せ得るように伸縮性含
有する材料を選択することも出来る。
The opening size is selected depending on the type of thermally expandable particles used and the foamability of the particles. A sheet of glass fiber, carbon fiber, aramid fiber, etc., which itself has a reinforcing function, can also be used for this separation layer. These sheets may be colored or patterned on the surface. Furthermore, it is also possible to select an elastic material for the separation layer so that it can be easily adapted to the shape of the molded product.

液状化したマトリックス樹脂を通さない材料を構成する
ものとしては、分離機能含有する部分で用いている材料
とは異なった材料とつなぎ合わせる以外に、分離機能含
有する部分で用いている繊維シート及び/又は多孔質シ
ートを予め樹脂等でその目開きを封止処理したもの、繊
維シートがポリプロピレン繊維など加熱処理により融着
させ得る場合には融着処理により目開きをつぶしたもの
フィルム等を貼付けたものなどがある。
Materials that do not allow the liquefied matrix resin to pass through may be composed of fiber sheets and/or materials used in the separation function-containing area, in addition to joining with materials different from those used in the separation function-containing area. Alternatively, a porous sheet whose openings have been sealed in advance with a resin, etc., or a fiber sheet whose openings have been closed by a fusion process if the fiber sheet can be fused by heat treatment, such as polypropylene fibers, and a film, etc. There are things etc.

尚、平板や表裏のある面状の成形品の場合、分離層は型
の内面の一方の側だけに設置することも出来る。この場
合、他の側には分離層を設けない例、分離層の代わりに
液状化した樹脂も通さない 4 フィルム等の材料を設置する例などがあるが、目的に応
じて選択すれはよい。例えば、自動二輪車のカウリング
の場合、表面側に印刷したフィルムを設置し、裏面側に
カラス繊維からなる分離層を用いることで、成形後表面
側を塗装しデカールを貼る作業を簡略化出来る。
In addition, in the case of a flat plate or a planar molded product with front and back surfaces, the separation layer can be provided only on one side of the inner surface of the mold. In this case, there are examples in which no separation layer is provided on the other side, and examples in which a material such as a film that does not allow even liquefied resin to pass is provided in place of the separation layer, but the choice may be made depending on the purpose. For example, in the case of a motorcycle cowling, by installing a printed film on the front side and using a separation layer made of glass fiber on the back side, it is possible to simplify the work of painting the front side and applying decals after molding.

本発明は、固体、特に主として少くとも2種の粉末状物
を混合して原料として使用し、加熱溶融する作業を含む
ので、伝熱か一つの要素になる場合かある。このための
改善策としてマイクロ波加熱及び又は電磁加熱を利用す
ることが好ましい場合かある。前者では原料組成にシリ
コンカーバイド等のマイクロ波を吸収して発熱するもの
を、後者では鉄粉、針金等の電磁誘導体を併用すること
か好ましい。
Since the present invention involves mixing solid materials, especially at least two types of powder materials, as raw materials and heating and melting the mixture, heat transfer may be one of the factors. As a remedy for this, it may be preferable to use microwave heating and/or electromagnetic heating. In the former case, it is preferable to use a material that absorbs microwaves and generates heat, such as silicon carbide, in the raw material composition, and in the latter case, it is preferable to use an electromagnetic induction material such as iron powder or wire in combination.

[発明の効果] 本発明方法により、内層が多孔質コアで外層が繊維強化
樹脂である軽量で強靭な複合成形物、特にサンドイッチ
構造物が、容易に、且つ安価に、得られる。
[Effects of the Invention] By the method of the present invention, a lightweight and strong composite molded article, especially a sandwich structure, whose inner layer is a porous core and outer layer is a fiber-reinforced resin, can be easily and inexpensively obtained.

5 そして、本発明方法による成形物は、建築、車輌等の各
種構造材、スポーツ用品、電気部品その他の分野に広く
応用することができる。
5 The molded product produced by the method of the present invention can be widely applied to various structural materials such as architecture and vehicles, sports goods, electrical parts, and other fields.

すなわち、すでに述べたように、本発明方法によれは、
液状の硬化性樹脂のように取扱いに際して作業環境を汚
染することが少なく、熱可塑性樹脂の場合には溶融後、
熱膨脹性粒子の膨張で樹脂か補強繊維層に行き汎れは直
ちに冷却、回収出来、予め部分重合して常温で固体にな
っている熱硬化性樹脂原料の場合には追加反応景を低下
出来るという効果を奏するものである。
That is, as already mentioned, according to the method of the present invention,
Unlike liquid hardening resins, there is less pollution of the working environment when handling them, and in the case of thermoplastic resins, after melting,
The expansion of the thermally expandable particles spreads to the resin or reinforcing fiber layer and can be immediately cooled and recovered, and in the case of thermosetting resin raw materials that have been partially polymerized in advance and become solid at room temperature, the additional reaction scene can be reduced. It is effective.

なお、成形に際して、液状になった樹脂又はその原料の
一部を解放、排出する場合は、樹脂の行き汎らない場所
、特に予め併用した補強材料プリフォーム等の樹脂の注
入不良な部分にも樹脂を行き汎らせ、熱膨脹性粒子間の
樹脂量を減らし、キャビティ内の熱膨脹性粒子の存在の
バラツキを補正するのにも有用である。
In addition, when releasing or discharging a part of the liquid resin or its raw materials during molding, be sure to do so in areas where the resin does not spread, especially in areas where the resin has not been properly injected, such as reinforcing material preforms used in advance. It is also useful for distributing resin, reducing the amount of resin between thermally expandable particles, and correcting for variations in the presence of thermally expandable particles within the cavity.

[実施例] 次に、本発明の実施例及び比較例をあげるか、6 本発明はこれらより限定されるものではない。尚、特に
断りのないかぎり各例中の「部」は重量部である。
[Example] Next, Examples and Comparative Examples of the present invention will be given.The present invention is not limited to these. In addition, unless otherwise specified, "parts" in each example are parts by weight.

実施例1 松本油脂■製の熱膨脹性発泡ビーズ、[マツモト マイ
クロスフェア−F−80SDJを入手した。この発泡ビ
ーズは140℃以上で膨張を始め、約70倍まで膨張す
る性質含有する。以下、この粒子をF−80SDと略称
する。
Example 1 Heat-expandable foam beads [Matsumoto Microspheres-F-80SDJ] manufactured by Matsumoto Yushi ■ were obtained. These foam beads begin to expand at temperatures above 140°C and have the property of expanding up to about 70 times. Hereinafter, this particle will be abbreviated as F-80SD.

一方、シェル製のエポキシ樹脂及び硬化剤、即ち[エピ
コート1001J  (この樹脂自体は熱可塑性である
)を70部、「エピコート348」を30部、無水フタ
ル酸を30部、「エボメートYLH185,を1部、8
0℃で混合した。冷却固化後、粉砕して粉末状とした。
On the other hand, epoxy resin and curing agent made by Shell, namely [70 parts of Epikote 1001J (this resin itself is thermoplastic), 30 parts of "Epicoat 348", 30 parts of phthalic anhydride, 1 part of "Evomate YLH185," Part, 8
Mixed at 0°C. After cooling and solidifying, it was crushed into powder.

これを固体粉末樹脂Aとする。This is referred to as solid powder resin A.

上記のF−80SDを100部、固体粉末樹脂Aを10
0部用い、両者を固相のまま混合した。得られたものを
混合物Bとする。
100 parts of the above F-80SD, 10 parts of solid powder resin A
0 part was used, and both were mixed in solid phase. The obtained mixture is referred to as mixture B.

ユニセル■製のポリエステル不織布「ユニセル」B T
 −0404を用い、金型のキャビティに合わせて、7 但し後記の補強繊維層に相当する分を小さ目にした、袋
を作成した。これに上記の混合物Bを収容した。
Unicell's polyester nonwoven fabric "Unicell" B T
-0404 was used to create a bag with a size corresponding to the reinforcing fiber layer (described later) being made smaller to fit the cavity of the mold. This contained the mixture B described above.

アルミニウムの板2枚の間に、「テフロン」の枠を挾ん
だ金型を作り、上下の端にノズルを設けた。日東紡製の
カラス繊維クロスW F −181−1008■を用意
し、上記金型−杯のカラスクロスを2枚と長さを金型に
合せ幅をノズルを覆うサイズにした短冊状ガラスクロス
10枚を作り、大きなガラスクロスと併用して、ガラス
クロス/混合物Bの袋詰め/ガラスクロスの順で金型に
入れた。ノズルを覆う位置、つまり金型の上下端は、小
さなガラスクロスを重ねて埋め、この位置にはF−80
SD成形粒子が入らないようにした。双方のノズルを用
いて吸気し金型内部を真空にした。次いで金型を145
℃のシリコン油浴に入れ、加熱した。液化した少量の樹
脂とガスを上記ノズルより溢流させ、逐次ノズルを閉鎖
した。1時間後シリコン油浴から金型を取りだし、冷却
して金型から成形物を取りだした。かくして、表面かカ
ラス繊維強化エポ 8 キシ樹脂、内層がエポキシ樹脂マトリックス中に発泡し
たF−80SDが分散したフオーム状体からなる良好な
軽量サンドイッチ構造物か得られた。得られた成形物は
、小さなガラスクロスを入れた部分以外はF−80SD
が均等に行き渡り、密度は(1,56g/)であった。
A mold was made with a Teflon frame sandwiched between two aluminum plates, and nozzles were installed at the top and bottom ends. A glass fiber cloth WF-181-1008■ made by Nittobo was prepared, and two pieces of the mold-cup crow cloth were prepared, along with 10 strips of glass cloth whose length matched the mold and whose width was sized to cover the nozzle. A sheet was made, used together with a large glass cloth, and placed in a mold in the following order: glass cloth/bagging mixture B/glass cloth. The position that covers the nozzle, that is, the upper and lower ends of the mold, is filled with small glass cloth, and F-80 is used in this position.
Prevented SD molded particles from entering. Air was sucked in using both nozzles to create a vacuum inside the mold. Then the mold is 145
Place in a silicone oil bath and heat. A small amount of liquefied resin and gas were allowed to overflow from the nozzle, and the nozzle was sequentially closed. After 1 hour, the mold was removed from the silicone oil bath, cooled, and the molded product was taken out from the mold. In this way, a good lightweight sandwich structure was obtained consisting of a glass fiber-reinforced epoxy resin on the surface and a foam-like body in which F-80SD foamed in the epoxy resin matrix was dispersed in the inner layer. The resulting molded product is F-80SD except for the part where the small glass cloth was inserted.
was distributed evenly, and the density was (1.56 g/).

実施例2 実施例1と同様にしてF−80SD、固体粉末樹脂A、
混合物Bを準備した。
Example 2 F-80SD, solid powder resin A,
Mixture B was prepared.

最大幅120mm、最大長さ350 mm、 f&大厚
さ14市の、蛇状のモデルを作る2個組の金型を準備し
た。
A set of two molds for making a serpentine model with a maximum width of 120 mm, a maximum length of 350 mm, and a thickness of 14 cm was prepared.

金型の上下にはノズルを設けた。この金型に合わせたガ
ラスクロス及びカーボンクロス4葉も準備した。ガラス
クロスは実施例1と同様の日東紡製のガラス繊維クロス
WF−180−100BVであり、カーボンクロスは東
し製の炭素繊維1111i 物C06304である。
Nozzles were provided at the top and bottom of the mold. Four leaves of glass cloth and carbon cloth were also prepared to fit this mold. The glass cloth was glass fiber cloth WF-180-100BV manufactured by Nittobo Co., Ltd., which is the same as in Example 1, and the carbon cloth was carbon fiber 1111i product C06304 manufactured by Toshi Co., Ltd.

また、ユニセル■製のポリエステル不織布「ユニセル、
 BT−0404を金型に合わせて袋にした。
In addition, Unicell ■ polyester nonwoven fabric “Unicell,
BT-0404 was made into a bag according to the mold.

混合物Bを「ユニセル」の袋に入れ、ガラスクロスとカ
ーボンクロスで挾んで金型に収めた。
Mixture B was placed in a "Unicell" bag, sandwiched between glass cloth and carbon cloth, and placed in a mold.

 9 金型内を真空に引き、145℃のシリコンオイルの温浴
に入れた。それぞれのノズルに液化した樹脂とガスが出
るのを確認してからノズルを閉じた。
9 The inside of the mold was evacuated and placed in a hot bath of silicone oil at 145°C. After confirming that liquefied resin and gas were coming out of each nozzle, the nozzles were closed.

1時間保持後、温浴から取りだし、冷却して成形物を取
りだした。比重0.8の良好な蛇形モデルが得られた。
After holding for 1 hour, the molded product was taken out from the hot bath, cooled, and taken out. A good snake-shaped model with a specific gravity of 0.8 was obtained.

実施例3 両端にノズルを設けて断面が20rnm X 20+n
m、長さが500帥である金型を用意しな。
Example 3 Nozzles are provided at both ends and the cross section is 20rnm x 20+n
Prepare a mold with a length of 500 m.

ポリプロピレンとフレオン等の発泡剤を加圧下で混合し
、常圧下に放出し、得られた予備発泡粒子を常圧で熟成
し、次いで圧力容器に入れ、160℃の外温で6kg/
cIiIの圧力で1時間圧縮した。室温に戻ってから常
圧に戻し、ポリプロピレンの発泡粒子を得た。この発泡
粒子は、粒径1〜2 mmであり、100℃に加熱する
と直ちに20%体積膨脹膨張がこれを常温に戻しても体
積の収縮は見られないという性質含有するものである。
Polypropylene and a blowing agent such as freon are mixed under pressure and discharged under normal pressure, and the obtained pre-expanded particles are aged at normal pressure, then placed in a pressure vessel at an external temperature of 160°C to produce 6 kg/
It was compressed for 1 hour at a pressure of cIiI. After returning to room temperature, the pressure was returned to normal pressure to obtain expanded polypropylene particles. These foamed particles have a particle size of 1 to 2 mm, and have the property that when heated to 100° C., the particles immediately expand in volume by 20%, but no volume contraction is observed even when the particles are returned to room temperature.

このポリプロピレン粒子をPPBと略称する。These polypropylene particles are abbreviated as PPB.

実施例2で用いたポリエステル不織布[ユニセ0 ルJ BT−0404で周囲80關の筒を作り上記のP
PB100部と実施例1で用いた固体粉末粒子A100
部を混合して詰めた。
A tube with a circumference of 80 mm was made using the polyester nonwoven fabric [UNICEL J BT-0404] used in Example 2, and
PB100 parts and solid powder particles A100 used in Example 1
The parts were mixed and packed.

PPBと固体粉末樹脂Aを収めた「ユニセル」製の筒を
、炭素繊維のブレード2層とガラス繊維のブレード1層
で覆った。用いたブレードは、炭素繊維ブレードは、「
トレカJ T−3964,T−3484、カラス繊維ブ
レードは「アドキンス・アンド・ピアーズ、 $927
3であり、各ブレードをT−3484、$9273 、
T−3964の順で重ねた。
A cylinder made from "Unicell" containing PPB and solid powder resin A was covered with two layers of carbon fiber braid and one layer of glass fiber braid. The blade used was a carbon fiber blade.
Trading card J T-3964, T-3484, glass fiber braid "Adkins & Pierce, $927
3, each blade is T-3484, $9273,
They were stacked in the order of T-3964.

これを前記の金型に収め、金型を閉じた。金型を水平に
し、−旦、真空ポンプで減圧となしほぼ真空にした。次
いで実施例1.2とほぼ同様に、110℃の温浴に入れ
、余分の樹脂とカスを抜きながら、樹脂を硬化さぜな。
This was placed in the mold described above, and the mold was closed. The mold was placed horizontally, and then the pressure was reduced using a vacuum pump to create a nearly vacuum. Next, in substantially the same manner as in Example 1.2, the resin was cured by placing it in a hot bath at 110° C. while removing excess resin and debris.

金型を1時間後に温浴から取りだし、冷却して金型から
成形物を取りだした。かくして表面が炭素/カラス繊維
強化エポキシ樹脂、内層がエポキシ樹脂とポリプロピレ
ンの発泡体である、軽量角材が得られた。表面のFRP
層を含んだ比重は0.56g/−であった。
The mold was removed from the hot bath after one hour, cooled, and the molded product was taken out from the mold. In this way, a lightweight square timber was obtained whose surface was made of carbon/glass fiber-reinforced epoxy resin and whose inner layer was a foam of epoxy resin and polypropylene. FRP surface
The specific gravity including the layer was 0.56 g/-.

1 実施例4 ポリエチレン樹脂を入手した。この樹脂は熱分析すると
、約70℃から吸熱を始めて軟化し、98°Cで吸熱の
割合が最大となる。
1 Example 4 Polyethylene resin was obtained. When this resin is thermally analyzed, it begins to endotherm at about 70°C and softens, and the endothermic rate reaches its maximum at 98°C.

実施例1と同様の[マイクロスフェア、 50部、旭硝
子製の中空バルーンM28を30部、上記のポリエチレ
ン樹脂を100部混合した。これを混合物Bとする。
50 parts of the same microspheres as in Example 1, 30 parts of Asahi Glass's hollow balloon M28, and 100 parts of the above polyethylene resin were mixed. This is called mixture B.

アルミニウムの板2枚の間に、[テフロンJの枠を挾ん
だ金型を作った。この金型の上下の端にノズルを設けた
。−・方、金型−杯のガラスクロスを6枚と長さを金型
に合せ幅をノズルを覆うサイズにした短冊状カラスクロ
ス8枚を作った。
A mold was made with a Teflon J frame sandwiched between two aluminum plates. Nozzles were provided at the top and bottom ends of this mold. - On the other hand, the mold - 6 pieces of cup glass cloth and 8 pieces of rectangular crow cloth whose length was matched to the mold and whose width was sized to cover the nozzle were made.

実施例1のポリエステル/ポリプロピレン不織布「ユニ
セル」で金型の内寸に合わせて、且つ、小さい方のガラ
スクロスを上下に入れることを考えて、袋を作った。こ
の袋に、同様に実施例3と同じPPBと固体粉末樹脂A
を入れた。大きなカラスクロスを用いて、ガラスクロス
/ PPBと固体粉末樹脂Aの袋詰め/カラスクロスの
順で金型に入2 れた。小さなガラスクロスを重ねてノズルを覆う位置つ
まり上下端を埋めた。これを150°Cの温浴に入れた
A bag was made using the polyester/polypropylene nonwoven fabric "Unicell" of Example 1, matching the inner dimensions of the mold, and considering the possibility of inserting smaller glass cloths at the top and bottom. In this bag, the same PPB and solid powder resin A as in Example 3 were added.
I put it in. Using a large crow cloth, glass cloth/PPB and bagging of solid powder resin A/crow cloth were placed in the mold in this order. I layered small pieces of glass cloth to cover the nozzle, i.e. the top and bottom edges. This was placed in a hot bath at 150°C.

10分後に温浴から取りだし、冷却して金型から成形物
を取りだした。表面かカラス繊維強化ポリエチレン、内
層が1マイクロスフエア」発泡体とポリエチレンである
軽量で良好なサンドイツチ材が得られた。
After 10 minutes, the molded product was taken out from the hot bath, cooled, and taken out from the mold. A light and good sand german material was obtained in which the surface layer was made of glass fiber reinforced polyethylene and the inner layer was made of 1 microsphere foam and polyethylene.

実施例5 下記の構造を持っているフェノキシ樹脂を準備した。こ
の樹脂は、実験では140℃で流動性を示した。
Example 5 A phenoxy resin having the following structure was prepared. This resin exhibited fluidity at 140°C in experiments.

実施例4のポリエチレン樹脂の代わりにこのフェノキシ
樹脂を用いて、同様に成形物を製造した。
A molded article was similarly produced using this phenoxy resin in place of the polyethylene resin of Example 4.

但しカラスバルーンM28は併用せずに、同様の成3 形を行ない、良好な軽量サンドイツチ材を得た。However, without using the crow balloon M28, the same product can be used. After shaping, a good lightweight sandwich material was obtained.

実施例6 実施例1で用いたエポキシ樹脂[エピコート1001J
はそれ自身、流動点80℃以下の熱可塑性示す樹脂であ
る。この樹脂のみをマトリックス樹脂に用いて同様な試
作を行った。
Example 6 Epoxy resin used in Example 1 [Epicote 1001J
itself is a thermoplastic resin with a pour point of 80°C or lower. A similar trial production was conducted using only this resin as the matrix resin.

[エピコート1ooi 、を実施例3と同じPPBとと
もに1対1の重量比で混合し、混合物となし、「ユニセ
ル」製の袋に入れた。これをカラスクロスに挾んで金型
に収め、145℃の温浴に入れ、加熱した。得られた成
形物は実施例1と同様で、その比重は0.45t/ai
で実施例1より小さかった。
[Epicote 1ooi was mixed with the same PPB as in Example 3 in a 1:1 weight ratio to form a mixture, and the mixture was placed in a bag made by "Unicell". This was sandwiched between crow cloth, placed in a mold, placed in a 145°C hot bath, and heated. The obtained molded product was similar to Example 1, and its specific gravity was 0.45 t/ai.
It was smaller than Example 1.

[エピコート1001Jを100部、PPBを100部
、カラスビーズM28を50混合した場合には、成形品
の比重は0.52であり、軽量になった。発泡体と中空
体の大きさは、後者が著しく小さく、前者の充填隙間を
後者が埋めたためと考えられる。
[When 100 parts of Epicoat 1001J, 100 parts of PPB, and 50 parts of Karasbeads M28 were mixed, the molded product had a specific gravity of 0.52 and was lightweight. This is thought to be because the size of the foam and the hollow body were significantly smaller, and the latter filled the filling gap of the former.

Claims (5)

【特許請求の範囲】[Claims] (1)少なくとも繊維補強樹脂複合材料により所定の形
状に成形された表層部と多孔質コアとを有する複合成形
物を製造するに当り、成形用の型内において、少くとも
型の内面付近に補強用繊維を、そして成形後に多孔質コ
アとなる部分に熱膨脹性粒子と固体の熱溶融性マトリッ
クス樹脂又はその原料との混合物を存在させ、しかる後
、型を加熱して、上記マトリックス樹脂又はその原料を
溶融するとともに上記熱膨脹性粒子を発泡膨張させなが
ら表層部を成形することを特徴とする複合成形物の製造
方法。
(1) When manufacturing a composite molded product having at least a surface layer and a porous core molded into a predetermined shape from a fiber-reinforced resin composite material, reinforcement is provided at least near the inner surface of the mold in the mold for molding. A mixture of heat-expandable particles and a solid heat-melting matrix resin or its raw material is present in the fiber for use in the porous core and in the portion that will become the porous core after molding, and then the mold is heated to form the matrix resin or its raw material. A method for producing a composite molded article, which comprises molding the surface layer while melting the heat-expandable particles and foaming and expanding the heat-expandable particles.
(2)熱膨脹性粒子として熱膨脹性発泡バルーンを用い
ることを特徴とする請求項(1)の製造方法。
(2) The manufacturing method according to claim (1), characterized in that a thermally expandable foam balloon is used as the thermally expandable particles.
(3)マトリックス樹脂又はその原料として、熱可塑性
樹脂を用いることを特徴とする請求項(1)又は(2)
に記載の製造方法。
(3) Claim (1) or (2) characterized in that a thermoplastic resin is used as the matrix resin or its raw material.
The manufacturing method described in.
(4)少なくとも繊維補強樹脂複合材料により所定の形
状に成形された表層部と多孔質コアと含有する複合成形
物を製造するに当り、 (a)成形用の型内に、膨脹後の発泡性樹脂粒子を実質
的に通さないが溶融したマトリックス樹脂又はその原料
は通す多孔質シートからなる分離層を設置すること、 (b)上記分離層に囲まれている成形後に多孔質コアと
なる部分に、熱膨脹性粒子と固体の熱溶融性マトリック
ス樹脂又はその原料との混合物を存在させること、 (c)分離層および熱膨脹性粒子と固体の熱溶融性マト
リックス樹脂又はその原料との混合物を型内に収容する
こと、 (d)型を十分高い温度まで加熱し、固体の熱溶融性マ
トリックス樹脂又はその原料を溶融させるとともに、熱
膨脹性粒子を昇温して体積膨脹を生じさせ、これにより
分離層及びその外側にある樹脂を型の内面に押しつける
こと、(e)溶融した液状のマトリックス樹脂及び/又
はその原料を固化させること、そして、 (f)得られた複合成形物を型から取り出すこと、を特
徴とする請求項(1)(2)又は(3)に記載の複合成
形物の製造方法。
(4) In manufacturing a composite molded product containing at least a surface layer portion molded into a predetermined shape and a porous core made of a fiber-reinforced resin composite material, (a) In a mold for molding, foamability after expansion is (b) Installing a separation layer made of a porous sheet that does not substantially allow resin particles to pass through, but allows molten matrix resin or its raw materials to pass; (b) in a portion surrounded by the separation layer that will become a porous core after molding; (c) providing a separation layer and a mixture of the heat-expandable particles and the solid heat-fusible matrix resin or its raw material in a mold; (d) heating the mold to a sufficiently high temperature to melt the solid thermofusible matrix resin or its raw material and to raise the temperature of the thermoexpandable particles to cause volumetric expansion, thereby forming a separation layer and (e) solidifying the molten liquid matrix resin and/or its raw materials; and (f) removing the resulting composite molding from the mold. The method for producing a composite molded article according to claim (1), (2) or (3).
(5)型の加熱をマイクロ波又は電磁誘導により行うこ
とを特徴とする請求項(1)、(2)、(3)又は(4
)に記載の複合成形物の製造方法。
(5) Claim (1), (2), (3) or (4) characterized in that the mold is heated by microwaves or electromagnetic induction.
) The method for producing a composite molded article.
JP2089478A 1990-04-04 1990-04-04 Manufacture of composite molder product Pending JPH03288629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2089478A JPH03288629A (en) 1990-04-04 1990-04-04 Manufacture of composite molder product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2089478A JPH03288629A (en) 1990-04-04 1990-04-04 Manufacture of composite molder product

Publications (1)

Publication Number Publication Date
JPH03288629A true JPH03288629A (en) 1991-12-18

Family

ID=13971846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2089478A Pending JPH03288629A (en) 1990-04-04 1990-04-04 Manufacture of composite molder product

Country Status (1)

Country Link
JP (1) JPH03288629A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2381491A (en) * 2001-10-30 2003-05-07 Trysome Ltd Forming composite structures
GB2381492A (en) * 2001-10-30 2003-05-07 Trysome Ltd Forming composite structures
JP2012196899A (en) * 2011-03-22 2012-10-18 Teijin Ltd Carbon fiber reinforced thermoplastic resin sandwich molding, and method of manufacturing the same
JP2013129195A (en) * 2011-12-21 2013-07-04 Goodyear Tire & Rubber Co:The Method of providing air passage in tire
WO2016152856A1 (en) * 2015-03-26 2016-09-29 新日鉄住金化学株式会社 Fiber-reinforced plastic molding material, method for producing same, and molded article
WO2019073848A1 (en) 2017-10-11 2019-04-18 株式会社 Monopost Method for manufacturing fiber-reinforced resin molded article

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2381491A (en) * 2001-10-30 2003-05-07 Trysome Ltd Forming composite structures
GB2381492A (en) * 2001-10-30 2003-05-07 Trysome Ltd Forming composite structures
GB2381491B (en) * 2001-10-30 2005-02-02 Trysome Ltd Forming composite structures
GB2381492B (en) * 2001-10-30 2005-08-31 Trysome Ltd Forming composite structures
US7638080B2 (en) 2001-10-30 2009-12-29 Trysome Limited Forming composite structures
JP2012196899A (en) * 2011-03-22 2012-10-18 Teijin Ltd Carbon fiber reinforced thermoplastic resin sandwich molding, and method of manufacturing the same
JP2013129195A (en) * 2011-12-21 2013-07-04 Goodyear Tire & Rubber Co:The Method of providing air passage in tire
WO2016152856A1 (en) * 2015-03-26 2016-09-29 新日鉄住金化学株式会社 Fiber-reinforced plastic molding material, method for producing same, and molded article
JPWO2016152856A1 (en) * 2015-03-26 2017-12-14 新日鉄住金化学株式会社 Fiber-reinforced plastic molding material, method for producing the same and molded product
JP2019031683A (en) * 2015-03-26 2019-02-28 日鉄ケミカル&マテリアル株式会社 Phenoxy resin powder for fiber-reinforced plastic molding material
JP2019048460A (en) * 2015-03-26 2019-03-28 日鉄ケミカル&マテリアル株式会社 Metal laminate of fiber reinforced plastic molding material
US10590250B2 (en) * 2015-03-26 2020-03-17 Nippon Steel Chemical & Material Co., Ltd. Fiber-reinforced plastic molding material, method for producing same, and molded article
WO2019073848A1 (en) 2017-10-11 2019-04-18 株式会社 Monopost Method for manufacturing fiber-reinforced resin molded article
KR20200047710A (en) 2017-10-11 2020-05-07 가부시키가이샤 모노포스트 Method for manufacturing fiber-reinforced resin molded article

Similar Documents

Publication Publication Date Title
US5242637A (en) Process for the production of composite molded articles
EP0585965A1 (en) Process for the production of composite molded articles
US5888642A (en) Syntactic foam core material for composite structures
EP2111970B1 (en) Method of fabricating a product using expandable microspheres
JPH03288629A (en) Manufacture of composite molder product
JPH0712613B2 (en) Method for manufacturing composite molded article
JPH054291A (en) Manufacture of foamable-thermally-expandable web
JP2553206B2 (en) Method for manufacturing lightweight composite molded article
JP5864324B2 (en) Method for producing fiber reinforced composite
JP3051195B2 (en) Manufacturing method of composite molded products
JP2731006B2 (en) Manufacturing method for composite molded products
JP2809861B2 (en) Intermediate material for manufacturing lightweight composite molded products
JP3124301B2 (en) Manufacturing method of composite molded products
JP2776973B2 (en) Manufacturing method of composite molded product
JPH0740503Y2 (en) Intermediate material for composite moldings
JP2986564B2 (en) Composite molded product, its production method and its intermediate material, and backing material for panel
JP2986561B2 (en) Composite molded article and method for producing the same
JPH0712614B2 (en) Method for producing composite molded article and intermediate material used therefor
JPH04310726A (en) Manufacture of light composite molded material
CN111959002A (en) Method for manufacturing bicycle parts made of composite materials
JPH04310725A (en) Manufacture of light composite molded material
JPH04115932A (en) Manufacture of composite molding and intermediate stock therefor
JPH04216923A (en) Manufacture of light-weight composite molded form and intermediate blank thereof
JPH08118370A (en) Two-stage foaming body, composite material using the same and molding of composite material
JPH06134878A (en) Production of composite molded product