JPH03288533A - Microporous membrane - Google Patents
Microporous membraneInfo
- Publication number
- JPH03288533A JPH03288533A JP8938190A JP8938190A JPH03288533A JP H03288533 A JPH03288533 A JP H03288533A JP 8938190 A JP8938190 A JP 8938190A JP 8938190 A JP8938190 A JP 8938190A JP H03288533 A JPH03288533 A JP H03288533A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- filtration
- permeation flux
- suspended
- pore size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は微孔性膜(以下濾過膜と称する)の構造、特性
に関するものであり、特に大きい膜透過流束を維持する
ための濾過方式に供用される濾過膜に関するものである
。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to the structure and characteristics of a microporous membrane (hereinafter referred to as a filtration membrane), and in particular to a filtration method for maintaining a large membrane permeation flux. The present invention relates to a filtration membrane used for.
本発明の濾過膜は、種々の高分子、微生物、酵母、微粒
子を含有あるいは懸濁する流体の分離、精製、回収、濃
縮などに適用され、特に濾過を必要とする微細な微粒子
を含有する流体からその微粒子を分離する必要のあるあ
らゆる場合に適用することができ、例えば微粒子を含有
する各種の懸濁液、醗酵液あるいは培養液などの他、顔
料の懸濁液などから微粒子を分離する場合にも適用され
、また微粒子を含む懸濁気体から微粒子を分離、除去し
て気体を精製する、例えば医療用アンプルへ充填する無
菌化窒素ガス、超純水製造装置へ陽圧用ガスとして充填
する無塵、無菌のガスあるいはIc製漬ラインにおける
空調用無塵、無微生物の空気などの製造のためにも適用
される。The filtration membrane of the present invention is applied to the separation, purification, recovery, concentration, etc. of fluids containing or suspending various polymers, microorganisms, yeast, and fine particles, and in particular, fluids containing fine particles that require filtration. It can be applied in any case where it is necessary to separate fine particles from, for example, various suspensions containing fine particles, fermentation liquids, culture liquids, etc., as well as from suspensions of pigments, etc. It is also applied to gas purification by separating and removing fine particles from suspended gas containing fine particles, for example, sterilizing nitrogen gas to be filled into medical ampoules, and nitrogen gas to be filled as positive pressure gas into ultrapure water production equipment. It can also be applied to the production of dust-free, sterile gas, or dust-free, microorganism-free air for air conditioning in IC manufacturing lines.
(従来の技術)
従来、膜を用いて懸濁物質を含有する原流体から懸濁物
質を分離する技術としては、例えば圧力を駆動力とする
逆浸透法、限外濾過法、精密濾過法、電位差を駆動力と
する電気透析法、濃度差を駆動力とする拡散透析法など
がある。これらの方法は、連続操作が可能であり、分離
操作中に温度やPHの条件を大きく変化させることなく
分離、精製あるいは濃縮ができ、粒子、分子、イオンな
ど広範囲にわたって分離が可能であり、小型ブラントで
も処理能力を大きく保つことができるので経済的であり
、分離操作に要するエネルギーが小さく、かつ他の分離
法では難しい低濃度原流体の処理が可能であるなどの理
由により広範に実施されている。そしてこれらの分離技
術に用いられる膜としては、酢酸セルローズ、硝酸セル
ローズ、再生セルローズ、ポリスルホン、ポリアクリロ
ニトリル、ポリアミド、ポリイミドなどの有機高分子な
どを主体とした高分子膜や耐熱性、耐薬品性などの耐久
性に優れている多孔質セラミックス膜などがあり、主と
してコロイドの濾過を対象とする限外濾過膜が使用され
、微細な粒子の濾過を対象とする精密濾過ではそれに適
した微孔を有する精密濾過膜が使用されている。(Prior Art) Conventionally, techniques for separating suspended solids from a raw fluid containing suspended solids using a membrane include, for example, reverse osmosis, ultrafiltration, microfiltration, which uses pressure as a driving force. There are electrodialysis methods that use a potential difference as a driving force, and diffusion dialysis methods that use a concentration difference as a driving force. These methods can be operated continuously, can separate, purify, or concentrate without significantly changing the temperature or pH conditions during the separation operation, can separate a wide range of particles, molecules, and ions, and are small and compact. It is economical because a large processing capacity can be maintained even with a blunt, the energy required for separation operation is small, and it is possible to process low-concentration raw fluids that are difficult to use with other separation methods, so it is widely implemented. There is. The membranes used in these separation techniques include polymer membranes mainly made of organic polymers such as cellulose acetate, cellulose nitrate, regenerated cellulose, polysulfone, polyacrylonitrile, polyamide, and polyimide, as well as membranes with heat resistance, chemical resistance, etc. There are porous ceramic membranes with excellent durability, ultrafiltration membranes are mainly used for colloid filtration, and precision filtration membranes have micropores suitable for filtration of fine particles. A microfiltration membrane is used.
ところで近年、バイオテクノロジーの進歩に伴い、高純
度化、高性能化、高精密化が要求されるようになり、精
密濾過あるいは限外濾通技術の応用分野が拡大しつつあ
る。しかしながら、精密濾過あるいは限外濾過において
は膜を用いて微粒子を分離する場合に、濃度分極の影響
によりケーク層が生して透過原体の流れに抵抗が生し、
また膜の目詰まりによる抵抗が大きくなって膜透過流束
が急激にかつ著しく低下してしまうという問題があり、
これが精密濾過あるいは限外濾過の実用化を妨げる最大
の原因であった。またそれに用いられる膜は汚染され易
く、その防止対策が必要である。濾過方法としては、濾
過されるべき全ての流体が濾材(濾布や膜など)とケー
ク層をi!l遇して流体中に含まれている微粒子を分離
するいわゆるデッドエンド型濾過方式がある。このデッ
ドエンド型濾過方式では流体が通過して懸濁物質が分離
されるためには濾材とケーク層が有する流体の流れを妨
げる抵抗に打ち勝つ流体圧が必要であり、このため精密
濾過あるいは限外a過においては、このようなプントエ
ンド濾過を行うと膜透過流束が小さくなってしまうので
ある。このため、クロスフロー型濾過方式を精密濾過法
にも適用されることが考えられた。このクロスフロー型
濾過方式は、濾過膜の膜表面に平行に濾過すべき原流体
を膜の軸方向に流し、流体は濾過膜を通って反対側へ濾
過するもので、濾過すべき原流体は濾過膜に沿って平行
に流れ、濾過後流体がIIt通膜面に対して垂直に流れ
る濾過方式であり、両者の流れが丁度直交しているので
このように称されているのである。In recent years, with the progress of biotechnology, higher purity, higher performance, and higher precision have been required, and the fields of application of precision filtration or ultrafiltration technology are expanding. However, when fine particles are separated using a membrane in microfiltration or ultrafiltration, a cake layer forms due to the influence of concentration polarization, creating resistance to the flow of the permeate.
There is also the problem that the resistance due to membrane clogging increases and the membrane permeation flux suddenly and significantly decreases.
This was the biggest reason for preventing the practical application of precision filtration or ultrafiltration. Furthermore, the membrane used therein is easily contaminated, and measures to prevent this are required. As a filtration method, all the fluid to be filtered passes through the filter medium (filter cloth, membrane, etc.) and the cake layer i! There is a so-called dead-end filtration system that separates fine particles contained in a fluid. In this dead-end filtration system, in order for the fluid to pass through and the suspended solids to be separated, fluid pressure is required to overcome the resistance of the filter media and cake layer that impedes fluid flow. In a-filtration, if such punto-end filtration is performed, the membrane permeation flux becomes small. For this reason, it was considered that the cross-flow type filtration method could also be applied to the precision filtration method. In this cross-flow type filtration method, the raw fluid to be filtered is passed parallel to the membrane surface of the filtration membrane in the axial direction of the membrane, and the fluid is filtered to the opposite side through the filtration membrane. This is a filtration method in which the fluid flows parallel to the filtration membrane, and the filtered fluid flows perpendicularly to the IIt membrane-passing surface, so called because the two flows are exactly perpendicular to each other.
このクロスフロー型濾過方は、膜に平行な原流体の流れ
によって膜面上に形成されたケーク層が剥ぎ取られるの
で従来のデッドエンド型濾過方式に比べて膜透過流束が
大きく、大量の原流体を直接連続的に分離、精製、濃縮
が可能であり、濾過性向上のためのフロック生成剤を必
要とせず、そのため捕集された懸濁物質に助剤が渭入せ
ず、膜の微孔径と目的@!l質との相互作用をコントロ
ールすることにより極めて純粋な濾過流体が得られる等
々の特長を有する。In this cross-flow type filtration method, the cake layer formed on the membrane surface is stripped off by the flow of raw fluid parallel to the membrane, so the membrane permeation flux is larger than in the conventional dead-end type filtration method, and a large amount of It is possible to directly and continuously separate, purify, and concentrate raw fluids, and there is no need for flocculation agents to improve filterability. Micropore diameter and purpose @! It has the advantage that extremely pure filtration fluid can be obtained by controlling the interaction with the filtrate.
(発明が解決しようとする課B)
上述のように、クロスフロー型濾過方式は原理的には高
度な分離技術であるが、最大の問題であるWi!透過流
束は、デッドエンド型濾過方式に比べて大きいが、精!
!iM方法としてこのクロスフロ一方式を採用しても十
分高い膜透過流束が得られないという問題があった。(Question B that the invention attempts to solve) As mentioned above, the cross-flow filtration method is an advanced separation technology in principle, but the biggest problem is Wi! Although the permeation flux is larger than that of dead-end filtration methods, it is very effective!
! Even if this cross-flow one-way method was adopted as the iM method, there was a problem in that a sufficiently high membrane permeation flux could not be obtained.
また従来から行われている懸濁物質とべ体との分離の具
体的な例を見ても、例えば醜酵液から菌体を分離する場
合には、従来遠心分離法、ケーク濾過法、珪藻土濾過法
などの一次濾過と精密濾過法などの二次濾過が併用され
ており、その際に擬集性の沈降がし易い酵母を用いて沈
降分離し、その酵母を再度利用しているが、しかしこの
菌体の分離ではプロセスの連続化が困難であり、酵素な
どの生産物が濾過助剤に強く吸着することにより回収率
が低下し、二次濾過である精密濾過による菌体の収集の
際には、膜面上に形成されるケーク層や膜の目詰まりに
よって濾過時間の経過と共に膜透過流束が低下し、さら
に遠心分離法により菌体の活性化が失われるという問題
があった。In addition, looking at specific examples of conventional methods for separating suspended solids and bacterial bodies, for example, when separating bacterial bodies from an unsightly fermented liquid, conventional methods include centrifugation, cake filtration, and diatomaceous earth filtration. Primary filtration, such as the method, and secondary filtration, such as the precision filtration method, are used together, and during this time, yeast that is prone to aggregate sedimentation is used for sedimentation separation, and the yeast is reused. In this separation of bacterial cells, it is difficult to make the process continuous, and products such as enzymes strongly adsorb to the filter aid, reducing the recovery rate. This method has the problem that the membrane permeation flux decreases as the filtration time passes due to the cake layer formed on the membrane surface and clogging of the membrane, and furthermore, the activation of bacterial cells is lost due to the centrifugation method.
また例えば下水の生物学的処理において、生ずる活性汚
泥は多量の水を含有するので、その後の処理の前にまず
これを濃縮することが行われており、このIII縮では
液体中に存在する悲濁戚分やコロイド成分より寸法の大
きいものについては凝集沈降を行い、溶解成分のうち金
属イオンなどは水酸化物、酸化物、硫化物などとして不
溶化させ、コロイドの寸法以上の大きさにして沈降分離
し、ここで得られた濃縮物からさらに液体を分離するこ
とにより活性汚泥の固液分離を行っているが、このよう
な活性汚泥の濃縮において高度処理を行うには、沈殿に
要する広大な設備が必要であり、プロセスも複雑化し、
固液分離の運転管理には高度な技術を必要とし、広大に
発生する量の汚泥を廃棄るすための広大な場所を要する
など諸々の問題があった。For example, in the biological treatment of sewage, the activated sludge produced contains a large amount of water, so it is first concentrated before further treatment. Those larger in size than the turbidity and colloid components are coagulated and sedimented, and metal ions among the dissolved components are insolubilized as hydroxides, oxides, sulfides, etc., and the particles are made to a size larger than that of the colloids and then sedimented. Solid-liquid separation of activated sludge is performed by separating the concentrate and further separating the liquid from the concentrate obtained here. However, in order to carry out advanced treatment in the concentration of activated sludge, the vast amount of time required for sedimentation is required. Equipment is required, the process is complicated,
The operation and management of solid-liquid separation required advanced technology, and there were various problems such as the need for a vast area to dispose of the vast amount of sludge generated.
これらの問題を解決するために、従来から濾過膜への原
流体の流入を断続的に停止したり、濾過膜の透過流体側
の弁を閉止することにより、濾過膜の膜面に垂直にかか
る圧力を断続的になくすあるいは減少させたり、また濾
過膜の透過液側から圧力を加え透過液側から原流体側へ
流体を流すことによって、濾過膜の原流体側の膜面上に
堆積しているケーク層や付着層を断続的に取り除く「逆
洗」と称する試みがなされている。しかし、これら逆洗
が行われた場合、ケーク層、付着層と膜との吸着力、結
合力が小さい剛体粒子等の場合には「逆洗」の後、透過
流束が濾過開始初期の透過流束まで回復するが、酵母や
微生物等の高吸着性、高圧縮性の懸′/@物賞の場合「
逆洗」を行っても、ケーク層や付着層が十分取り除けな
いため、透過流束は回復せず徐々に低下して結果として
経済的な透過流束を得ることができなかった。In order to solve these problems, conventional methods have been used to intermittently stop the flow of raw fluid into the filtration membrane, or to close the valve on the permeate side of the filtration membrane. By intermittently removing or reducing the pressure, or by applying pressure from the permeate side of the filtration membrane to flow the fluid from the permeate side to the raw fluid side, the membrane surface on the raw fluid side of the filtration membrane is deposited. Attempts have been made to intermittently remove cake layers and adhesion layers called "backwashing." However, when such backwashing is performed, in the case of rigid particles with small adsorption and bonding forces between the cake layer, adhesion layer and membrane, after backwashing, the permeation flux decreases to the permeation flux at the initial stage of filtration. However, in the case of highly adsorbent and highly compressible materials such as yeast and microorganisms,
Even if "backwashing" was performed, the cake layer and adhesion layer could not be sufficiently removed, so the permeation flux did not recover and gradually decreased, and as a result, it was not possible to obtain an economical permeation flux.
(問題を解決するための手段および作用)本発明は、上
述した従来技術にあった問題点を解決するために為され
たものであって、実用性のある高い膜透過流束を持つ新
規な微孔性膜を提供することを目的とするものである。(Means and effects for solving the problem) The present invention has been made in order to solve the problems in the prior art described above, and is a novel and practical method that has a high membrane permeation flux. The purpose is to provide a microporous membrane.
すなわち本発明は、懸濁物を含む懸濁液からと懸濁物質
と液体とを分離する目的において、濾過膜が高い純水透
過流束特性と表面開孔率を有することを特徴とする。That is, the present invention is characterized in that the filtration membrane has a high pure water permeation flux characteristic and a high surface porosity for the purpose of separating suspended matter and liquid from a suspension containing suspended matter.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
本発明は、懸濁物質を含む流体から懸濁物質と液体を分
離する際に、透過流束を高める目的で使用される逆洗操
作を行った後の透過流束の回復性を高める濾過膜の構造
、特性に関するものである。The present invention is a filtration membrane that increases the recovery of permeation flux after backwashing operation, which is used for the purpose of increasing permeation flux when separating suspended solids and liquid from a fluid containing suspended solids. It concerns the structure and characteristics of.
そして本発明の特徴は、濾過膜の純水透過流束を高め、
表面開孔率を高めたことである。濾過膜の表面孔径は懸
IIA物質が膜内部に侵入しない大きさが好ましく、す
なわち懸濁物質の大きさより小さければ良い。本発明の
効果が顕著であるのは精密濾過膜に属する領域であり、
その表面孔径は約0.01μm〜10μmであり、さら
に、0.05〜3μmの範囲である時、特に効果が大き
い・。The characteristics of the present invention are to increase the pure water permeation flux of the filtration membrane,
This is because the surface porosity has been increased. The surface pore size of the filtration membrane is preferably a size that does not allow the suspended IIA substance to enter the membrane, ie, it is sufficient that it is smaller than the size of the suspended solids. The effect of the present invention is remarkable in the area belonging to microfiltration membranes,
The surface pore diameter is about 0.01 μm to 10 μm, and the effect is particularly large when the surface pore diameter is in the range of 0.05 to 3 μm.
透過流束を高めるためには濾過膜の膜面に垂直にかかる
圧力を断続的になくすあるいは減少させる「逆洗」を行
った際、ケーク層や付着層は膜表面からはぎ取られる必
要があるが、ケーク層、付着層と膜との結合力が大きい
場合には部分的あるいはほとんどケーク層、付着層を取
り除くことはできず、これら結合力を減少させる必要が
あった。In order to increase the permeation flux, the cake layer and adhesion layer need to be stripped off from the membrane surface when "backwashing" is performed, which intermittently eliminates or reduces the pressure applied perpendicular to the membrane surface of the filtration membrane. However, if the bonding force between the cake layer, adhesion layer and the film is large, it is not possible to partially or almost remove the cake layer or adhesion layer, and it is necessary to reduce these bonding forces.
また、流体を透過液側から原流体側に透過させる「逆洗
」の際、濾過膜の透過抵抗が大きい場合はケーク層、付
着層をはぎ取る方向にかかる力が低下し、上記同様にケ
ーク層、付着層を取り除くことはできなかった。本発明
では、ケーク層、付着層と膜面との結合力を減少させる
方法として濾過膜の表面開孔率を高めケーク層、付着層
とiIt過膜とき接触面積を低下させたことに特徴があ
る。また、濾過膜の純水透過流束を高めるすなわち膜透
過抵抗を低下させることにより逆洗時にケーク層、付N
Nがはぎ取られる方向の力を減少させないことに特徴が
ある。In addition, during "backwashing" in which fluid permeates from the permeate side to the source fluid side, if the permeation resistance of the filtration membrane is large, the force applied in the direction of peeling off the cake layer and adhesion layer decreases, and as above, the cake layer , it was not possible to remove the adhesion layer. The present invention is characterized in that the surface porosity of the filtration membrane is increased to reduce the contact area between the cake layer, the adhesion layer, and the iIt filtration membrane as a method of reducing the bonding force between the cake layer, the adhesion layer, and the membrane surface. be. In addition, by increasing the pure water permeation flux of the filtration membrane, that is, by lowering the membrane permeation resistance, a cake layer is formed during backwashing.
It is characterized in that it does not reduce the force in the direction in which N is stripped off.
本発明は、「逆洗」操作を行う場合に限定されず、クロ
スフロー型濾過方式で原流体の流束を極端に高めたり、
回転円筒型濾過器のようにケーク層や付着層をはぎ取る
剪断力が極端に大きいときは逆洗操作を行わなくても効
果が顕著である。The present invention is not limited to the case of performing a "backwash" operation, but can extremely increase the flux of the raw fluid by using a cross-flow type filtration method,
When the shearing force for stripping off the cake layer or adhering layer is extremely large, such as in a rotating cylindrical filter, the effect is significant even without backwashing.
本発明の濾過膜を用いるクロスフロー濾過方法を図1に
示す。図2はクロスフロー濾過器の断面図を示しており
、懸濁物質が膜面上でケーク層を形成している状態を示
している。A cross-flow filtration method using the filtration membrane of the present invention is shown in FIG. FIG. 2 shows a cross-sectional view of a cross-flow filter, showing suspended solids forming a cake layer on the membrane surface.
なお、濾過膜を通る単位時間当りの流体の量はその流体
で計られるが、その量は濾過膜の面積で変わるので流量
を膜の面積で除した量とし、その量を濾過流束〔単位二
m/秒〕という。The amount of fluid passing through a filtration membrane per unit time is measured in terms of that fluid, but since the amount varies depending on the area of the filtration membrane, the flow rate is divided by the area of the membrane, and the amount is calculated as the filtration flux [unit: 2m/sec].
本発明に用いられる濾過膜は、微細孔を有し、その孔径
は10μm以下、好ましくは5μm以下であって、実際
に使用するに当たっては濾過する懸濁物質を含有する流
体原液の種類によって最適な孔径を選択する。The filtration membrane used in the present invention has micropores, the pore size of which is 10 μm or less, preferably 5 μm or less. Select pore size.
ここで言う懸濁物質とは無機質、有機質であることは問
わず、微生物、酵母も含み、濾過膜として限外濾過膜を
用いる場合は蛋白質、高分子なども含む。The suspended matter referred to herein includes both inorganic and organic substances, including microorganisms and yeast, and when an ultrafiltration membrane is used as the filtration membrane, it also includes proteins, polymers, and the like.
濾過をする流体は液体の外に気体でもよいが、特に液体
について頻繁に使用される。液体に含有される微粒子は
濾過によって除去されるものであれば何でもよいが、粗
大なものは通常の濾過で分離、除去できるので微細なも
のを分離、除去するのが最も有効である。また膜の形状
は平膜、チューブラ−1中空系を問わない。The fluid to be filtered may be a gas in addition to a liquid, but it is particularly frequently used for liquids. Any fine particles contained in the liquid can be removed as long as they can be removed by filtration, but since coarse particles can be separated and removed by ordinary filtration, it is most effective to separate and remove fine particles. Further, the shape of the membrane does not matter whether it is a flat membrane or a tubular 1 hollow system.
(表面孔径、表面開孔率の制御I)
表面孔径および表面開孔率は、たとえば特開昭63−1
39929号の場合、製膜原液をキャスティングコータ
ーで流延したのち、水をはった凝固浴に浸漬するまでの
雰囲気を変化させることにより制御が可能である。すな
わち、ポリスルホン(IC1社製P−3500)15部
、Nメチル2ピロリドン70部、ポリビニルピロリドン
15部を均一に溶解した製膜原液を用いた場合、流延か
ら20℃の水をはった凝固浴に浸漬する間に調湿空気を
表面に供給するが、調温空気の湿度を高める、空気の供
給風速を高める、調湿空気の供給時間を長くすることに
よって形成される微孔性膜の表面孔径および表面開孔率
を高めることができる。(Control I of surface pore diameter and surface porosity ratio) The surface pore diameter and surface porosity ratio are determined by, for example, Japanese Patent Application Laid-Open No. 63-1
In the case of No. 39929, control is possible by changing the atmosphere after casting the film-forming stock solution with a casting coater and before immersing it in a coagulation bath containing water. That is, when using a film-forming stock solution in which 15 parts of polysulfone (P-3500 manufactured by IC1), 70 parts of N-methyl 2-pyrrolidone, and 15 parts of polyvinylpyrrolidone were uniformly dissolved, the solution was mixed with water at 20°C after casting. Conditioned air is supplied to the surface during immersion in the bath, but microporous membranes formed by increasing the humidity of the conditioned air, increasing the air supply speed, and lengthening the supply time of the conditioned air. The surface pore size and surface porosity can be increased.
(実施例)
実施例−1
大腸菌(IF○−3301)を0.9wt%の生理食塩
水に1 dry g/ 1の含有率で分散させたものを
懸濁液として用い、公称孔径0.2μmの精密濾過膜を
純水透過流束、表面開孔率を変化させてクロスフロー濾
過を行った。使用した精密濾過膜は、特開昭63−13
9929号に記載される方法により作成したポリスルホ
ンを材質とするもの(図6に記載の1.2.3)、特開
昭56154051号に記載される方広により作成した
ポリスルホンを材質とするもの(図6に記載の45)、
特開昭55−8887号に記載される方法により作成し
たポリアミドを材質とするもの(図6に記載の6..7
.8)、特開昭57−202330号に記載される方法
により作成したポリアミドを材質とするもの(図6に記
載の9)、特開昭54−16382号に記載される方法
により作成したポリビニリデン2フロライドを材質とす
るもの(図6に記載の10.11)、特公昭55−64
06号に記載される方法により作成したセルロースアセ
テートを材質とするもの(図6に記載の12.13)で
ある、使用したモジュールは有効膜面積100cdの薄
層波路式のもので、実験条件は圧力差0.5kg/cj
、原流体の流量101 /sin、液温度25℃であっ
た。濾過開始後原流体を送るポンプを断続的に停止して
逆洗をを行った。逆洗はポンプ運転150秒、停止30
秒で操作した。(Example) Example-1 A suspension in which Escherichia coli (IF○-3301) was dispersed in 0.9 wt% physiological saline at a content of 1 dry g/1 was used as a suspension, and the nominal pore size was 0.2 μm. Cross-flow filtration was performed using the microfiltration membrane by changing the pure water permeation flux and surface porosity. The precision filtration membrane used was disclosed in Japanese Patent Application Laid-Open No. 1983-13.
One made of polysulfone made by the method described in No. 9929 (1.2.3 in Fig. 6), one made of polysulfone made by Hohiro described in JP-A No. 56154051 ( 45) described in Figure 6,
Those made of polyamide prepared by the method described in JP-A No. 55-8887 (6..7 in Fig. 6)
.. 8), polyamide made by the method described in JP-A-57-202330 (9 in Figure 6), polyvinylidene made by the method described in JP-A-54-16382 2. Made of fluoride (10.11 shown in Figure 6), Special Publication 1986-1986
The module used was a thin-layer waveguide type module with an effective membrane area of 100 cd, which was made of cellulose acetate prepared by the method described in No. 06 (12.13 in Figure 6), and the experimental conditions were as follows. Pressure difference 0.5kg/cj
, the flow rate of the raw fluid was 101/sin, and the liquid temperature was 25°C. After the filtration started, the pump that sent the raw fluid was stopped intermittently to perform backwashing. For backwashing, run the pump for 150 seconds and stop for 30 seconds.
Operated in seconds.
図3にi3過流束の経時変化を、図4にポリスルホンを
材質としたiIt過膜について、平均透過流束の経時変
化を示した。濾過開始時の平均透過流束をJ avoと
し、各時間における平均透過流束との比を図5に示す。Figure 3 shows the change in i3 flux over time, and Figure 4 shows the change in average permeation flux over time for the iIt membrane made of polysulfone. The average permeation flux at the start of filtration is designated as Javo, and the ratio to the average permeation flux at each time is shown in FIG.
透過流束の回復性は平均透過流束の比J av/ J
avoが0.75となるまでの時間Tによって判断した
。すなわちTの値が大きいほど透過流束の回復性が良く
結果として高い透過流束が得られることになる。The recoverability of permeation flux is determined by the ratio of average permeation flux J av/J
Judgment was made based on the time T until avo reached 0.75. That is, the larger the value of T, the better the recovery of the permeation flux, and as a result, the higher the permeation flux can be obtained.
表面開孔率、純水透過流束の違う各種の膜を用いた時の
結果を図6に示した。この結果純水透過流束がI X
10−3rd/rd ・sec (△P=0.5kg
/ cd )すなわち2 X 10−3rrr/ n(
・sec ・atm以上の時かつ表面開孔率が30%以
上の時、Tの値が大きく透過流束の回復性が良い、すな
わち高い透i!5流束が得られることが明らかとなった
。Figure 6 shows the results when various membranes with different surface porosity and pure water permeation flux were used. As a result, the pure water permeation flux is
10-3rd/rd ・sec (△P=0.5kg
/ cd) or 2 X 10-3rrr/n(
・sec ・atm or more and the surface porosity is 30% or more, the value of T is large and the permeation flux recovery is good, that is, the permeability i! It became clear that 5 fluxes were obtained.
(発明の効果)
本発明によれぽ、基本的には逆洗を伴う濾過方式におい
て高い膜透過流束が得られ、それによつて種々の懸濁物
質を含有する液体から各懸濁成分の分離、回収、精製、
濃縮などがきわめて効率的しかも経済的に行われる。そ
してさらにプロセスの連続化及び装置の小型化が可能で
あり、膜の選択性を利用して目的物のみを連続的に選択
的に分離することができ、酵母や菌体などを反応液中に
固定することによりバイオリアクターへの反応ができ、
従来技術に比べて運転管理が容易でかつ高濃度で運転が
可能であり、膜の透過性を回復させるために特別な洗浄
などを必要としないなど諸々の効果が奏せられる。(Effects of the Invention) According to the present invention, a high membrane permeation flux can be obtained in a filtration method that basically involves backwashing, thereby separating each suspended component from a liquid containing various suspended substances. , recovery, purification,
Concentration etc. can be carried out extremely efficiently and economically. Furthermore, it is possible to make the process continuous and downsize the equipment, and by utilizing the selectivity of the membrane, it is possible to continuously and selectively separate only the target substance, making it possible to remove yeast and bacterial cells from the reaction solution. Immobilization enables reaction in bioreactors,
Compared to conventional techniques, it is easier to manage operations, can be operated at higher concentrations, and does not require special cleaning to restore membrane permeability.
第1図は本濾過膜を用いるクロスフロー濾過方法の概念
を示した説明図である0図において、供給タンク】内の
懸濁液を流路2を経てポンプ3により濾過膜を内蔵した
モジュール5を通して循環する。この際懸濁液の圧力は
圧力調整バルブ8によって調整する。この圧力を圧力計
4により、液の流量はフローメーター9により読み取る
。逆洗はポンプ3を停止することにより行われる。6は
分離された液の流路、7は圧力計、10は分離された液
の貯蔵タンクである。
第2図はクロスフロー濾過器内の断面図であり、懸濁物
質が濾過膜の表面上にケーク層を形成している状態を表
している。
第3図は周期的に逆洗を行った場合の透過流束の経時変
化を示している。
第4図は第3図と同様の操作を行った場合の、ポリスル
水ンを材質とする濾過膜の平均透過流束の経時変化を表
している。
第5図は第4図の平均透過流束と濾過開始初期の透過流
束の比の経時変化を示しており、また透過流束の回復性
を示す指標となるTを示している。
第6図は各種の濾過膜の純水透過流束、表面開孔率によ
るTへの影響を示している。Fig. 1 is an explanatory diagram showing the concept of the cross-flow filtration method using the present filtration membrane. circulate through. At this time, the pressure of the suspension is adjusted by a pressure regulating valve 8. This pressure is read by a pressure gauge 4, and the flow rate of the liquid is read by a flow meter 9. Backwashing is performed by stopping the pump 3. 6 is a flow path for the separated liquid, 7 is a pressure gauge, and 10 is a storage tank for the separated liquid. FIG. 2 is a cross-sectional view of the interior of the cross-flow filter, showing a state in which suspended matter forms a cake layer on the surface of the filter membrane. FIG. 3 shows the change in permeation flux over time when backwashing is performed periodically. FIG. 4 shows the change over time in the average permeation flux of a filtration membrane made of polysulfur water when the same operation as in FIG. 3 is performed. FIG. 5 shows the change over time in the ratio of the average permeation flux shown in FIG. 4 to the permeation flux at the initial stage of filtration, and also shows T, which is an index indicating the recoverability of the permeation flux. FIG. 6 shows the influence of pure water permeation flux and surface porosity on T of various filtration membranes.
Claims (1)
で使用される微孔性膜において、表面孔径が0.01μ
m以上10μm以下でかつ25℃の純水透過流束が2×
10^−^3m^2/m^2・sec/atm以上であ
る微孔性膜。 2、表面開孔率が30%以上である上記請求範囲1の微
孔性膜。[Claims] 1. A microporous membrane used for the purpose of separating suspended matter and liquid from a suspended matter dispersion, the surface pore size of which is 0.01 μm.
m or more and 10 μm or less and pure water permeation flux at 25°C is 2×
A microporous membrane having a rate of 10^-^3m^2/m^2·sec/atm or more. 2. The microporous membrane according to claim 1, which has a surface porosity of 30% or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8938190A JPH03288533A (en) | 1990-04-04 | 1990-04-04 | Microporous membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8938190A JPH03288533A (en) | 1990-04-04 | 1990-04-04 | Microporous membrane |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03288533A true JPH03288533A (en) | 1991-12-18 |
Family
ID=13969098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8938190A Pending JPH03288533A (en) | 1990-04-04 | 1990-04-04 | Microporous membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03288533A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001053213A1 (en) * | 2000-01-18 | 2001-07-26 | Asahi Kasei Kabushiki Kaisha | Method for purifying suspended water by membrane filtration |
-
1990
- 1990-04-04 JP JP8938190A patent/JPH03288533A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001053213A1 (en) * | 2000-01-18 | 2001-07-26 | Asahi Kasei Kabushiki Kaisha | Method for purifying suspended water by membrane filtration |
US8043508B2 (en) | 2000-01-18 | 2011-10-25 | Asahi Kasei Chemicals Corporation | Method for purifying suspended water by membrane filtration |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ladewig et al. | Fundamentals of membrane bioreactors | |
Li et al. | Treatment of oily wastewater by organic–inorganic composite tubular ultrafiltration (UF) membranes | |
Singh | Membrane technology and engineering for water purification: application, systems design and operation | |
Singh | Hybrid membrane systems for water purification: technology, systems design and operations | |
Aptel et al. | Categories of membrane operations | |
US5221479A (en) | Filtration system | |
Abd El-Ghaffar et al. | A review of membranes classifications, configurations, surface modifications, characteristics and Its applications in water purification | |
JPH04250834A (en) | Precision filter membrane | |
JPH04349927A (en) | Preparation of precise filter membrane | |
JP2003080246A (en) | Apparatus and method for treating water | |
US20060254984A1 (en) | Hollow Fiber Membrane Adsorber and Process for the Use Thereof | |
JPH03288533A (en) | Microporous membrane | |
JPH05329339A (en) | Filtration system | |
JPH04145929A (en) | Cross-flow filter | |
Othman et al. | Ultrafiltration membrane for water treatment | |
Michaels | Fifteen years of ultrafiltration: problems and future promises of an adolescent technology | |
JPH06102136B2 (en) | Backwash method in cross-flow type microfiltration | |
Liu et al. | Membranes: technology and applications | |
Higuchi et al. | Rejection of single stranded and double stranded DNA by porous hollow fiber membranes | |
JPH04190834A (en) | Cross-flow type filter | |
JPS63126511A (en) | Cross flow type precision filtering method | |
JPH04150930A (en) | Cross flow filtering apparatus | |
Scott | Overview of the application of synthetic membrane processes | |
JPH04118032A (en) | Jet flow type filter | |
JPH04271818A (en) | Hollow yarn membrane filtering system |