JPH0328841A - Schlieren device - Google Patents
Schlieren deviceInfo
- Publication number
- JPH0328841A JPH0328841A JP16268489A JP16268489A JPH0328841A JP H0328841 A JPH0328841 A JP H0328841A JP 16268489 A JP16268489 A JP 16268489A JP 16268489 A JP16268489 A JP 16268489A JP H0328841 A JPH0328841 A JP H0328841A
- Authority
- JP
- Japan
- Prior art keywords
- light
- observation
- disc
- concave mirror
- observation windows
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005259 measurement Methods 0.000 claims description 15
- 238000002474 experimental method Methods 0.000 claims description 5
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 230000000007 visual effect Effects 0.000 abstract 3
- 230000035939 shock Effects 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
Landscapes
- Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
Abstract
Description
【発明の詳細な説明】
く産業上の利用分野〉
この発明は,エンジン及び飛行体等の風洞実験を行なう
際.衝撃波の形成等を観測.撮影するために用いられる
シュリーレン装置に関する。[Detailed Description of the Invention] Industrial Application Fields This invention is applicable to wind tunnel experiments on engines, aircraft, etc. Observation of shock wave formation, etc. This invention relates to a Schlieren device used for photographing.
(従来の技術)
まず.従来のシュリーレン装置について第3図を参照し
て説明する。(Conventional technology) First. A conventional schlieren device will be explained with reference to FIG.
真空状態に保持された計7111胴体11にはノズル1
2及びディフユーザ13が備えられ.計測胴体】1の側
面にはそれぞれ第4図に示すように円形の第1及び第2
の観測窓14及び15が互いに対向して形成されている
。Nozzle 1 is installed on the 7111 fuselage 11 that is kept in a vacuum state.
2 and a diff user 13 are provided. [Measurement fuselage] On the sides of 1, there are circular first and second holes, respectively, as shown in Figure 4.
Observation windows 14 and 15 are formed facing each other.
第1の観測窓14側には,図示のように,第1の固定型
反射鏡16,第1の固定型凹面鏡17が順次配置され,
第1の固定型凹面鏡17に対向して先R18が配置され
ている。同様にして,第2の観測窓15には,第2の固
定型反射鏡19,第2の固定型凹面!20が順次配置さ
れ,第2の固定型凹面鏡20に対向して絞り機構を有す
るナイフエツジ21を介して受光器22が配置されてい
る。そして,上記の光学系によってシュリーレン装置が
構成されている。On the first observation window 14 side, as shown in the figure, a first fixed reflecting mirror 16 and a first fixed concave mirror 17 are sequentially arranged.
A tip R18 is arranged opposite to the first fixed concave mirror 17. Similarly, the second observation window 15 includes a second fixed reflecting mirror 19 and a second fixed concave mirror! 20 are arranged one after another, and a light receiver 22 is arranged opposite to the second fixed concave mirror 20 via a knife edge 21 having an aperture mechanism. The above optical system constitutes a Schlieren device.
計AIJ L体11内にはエンジンまたは機体等の供試
体23が第1及び第2の観測窓14及び15から見える
位置に配置され,ノズル12から高速気流が計flF1
胴体11に噴出される。そして,この高速気流はディフ
ユーザ13で減速排気される。A test object 23 such as an engine or an airframe is placed in the AIJ L body 11 at a position where it can be seen from the first and second observation windows 14 and 15, and a high-speed airflow flows from the nozzle 12 into the AIJ L body 11.
It is ejected into the fuselage 11. Then, this high-speed airflow is decelerated and exhausted by the diff user 13.
この際,光源18から発光された光(光束)は,第1の
固定型凹面鏡17で反射され,平行光として第1の固定
型反射鏡16に与えられる。この平行光は第1の固定型
反射鏡16で直角に反射され,この結果,第1の観測窓
14に対して平行光が垂直に入射される。この平行光は
計測胴体を通過して第2の観測窓15から第2の固定型
反射鏡19で直角に反射され,第2の固定型凹面鏡20
に与えられる。第2の固定型凹面鏡20で平行光が反射
集束され,集束光としてナイフ・エッジ21を介して受
光器22に入射される。なお,ナイフ・エツジ21は集
束光の焦点位置,つまり,第2の固定型凹面鏡20の焦
点位置に配置されている。At this time, the light (luminous flux) emitted from the light source 18 is reflected by the first fixed concave mirror 17 and provided to the first fixed reflecting mirror 16 as parallel light. This parallel light is reflected at right angles by the first fixed reflecting mirror 16, and as a result, the parallel light is perpendicularly incident on the first observation window 14. This parallel light passes through the measurement body, is reflected from the second observation window 15 at a right angle by the second fixed reflecting mirror 19, and is reflected at a right angle by the second fixed concave mirror 20.
given to. The parallel light is reflected and focused by the second fixed concave mirror 20 and enters the light receiver 22 via the knife edge 21 as a focused light. Note that the knife edge 21 is placed at the focal point of the focused light, that is, at the focal point of the second fixed concave mirror 20.
受光器22に入射される集束光は供試体23で一部遮ぎ
られることになるから,受光器22からの出力に基づい
て供試体22の回りに形成された衝撃波を観測すること
ができる。つまり,衝撃波をブラウン管上に映し出して
観測するとともにビデオ撮影及びカメラ撮影を行なう。Since the focused light incident on the light receiver 22 is partially blocked by the specimen 23, it is possible to observe the shock wave formed around the specimen 22 based on the output from the light receiver 22. In other words, the shock waves are projected onto a cathode ray tube for observation, and video and camera photography are also performed.
く発明が解決しようとする課題〉
ところで上述のシュリーレン装置で,供試体例えば,飛
行体の風洞実験を行う場合,飛行体の形状が長細いため
,飛行体回りの衝撃波の形成状況を観測するためには,
第1及び第2の観測窓を飛行体に合わせて大きくしなけ
ればならない。さらに1風洞実験の精度を高めるため,
供試体のサイズを大きくする必要がある場合にも第1及
び第2の観ill窓を大きくしなければならない。Problems to be Solved by the Invention> By the way, when using the above-mentioned Schlieren apparatus to conduct wind tunnel experiments on a test object, such as an aircraft, since the shape of the aircraft is long and narrow, it is difficult to observe the formation of shock waves around the aircraft. for,
The first and second observation windows must be enlarged to fit the aircraft. Furthermore, in order to improve the accuracy of the wind tunnel experiment,
If it is necessary to increase the size of the specimen, the first and second illumination windows must also be increased.
上述の第1及び第2の観測窓は,極めて高精度に作成す
る必要があり,窓口径が大きくなると,H料及び研磨加
工等により高価格となる。例えば,口径50c+nの観
測窓の価格は口径40cmの2倍程度となる。このため
.大きな観測窓を備えるシュリーレン装置は,必然的に
高価となる。さらに,長細い飛行体の形状をカバーする
惰円形もしくは長方形の観察窓は長径もしくは長辺を口
径とした大きな観測窓と同程度高価格となってしまう。The above-mentioned first and second observation windows need to be created with extremely high precision, and the larger the window diameter, the higher the cost due to the H material and polishing process. For example, the price of an observation window with a diameter of 50c+n is about twice that of a window with a diameter of 40cm. For this reason. Schlieren instruments with large observation windows are necessarily expensive. Furthermore, a circular or rectangular observation window that covers the shape of a long and slender aircraft will be as expensive as a large observation window with the long axis or long side as the aperture.
加えて,l!測窓のサイズが大きくなると,反射鏡及び
凹面鏡を大きくしなければならず,この結果シュリーレ
ン装置として高価格となる。例えば口径50cmの装置
全体の価格は,口径40cmの2倍以上となる。In addition, l! As the size of the measuring window increases, the reflecting mirror and concave mirror must be made larger, resulting in a higher price for the Schlieren device. For example, the price of the entire device with a diameter of 50 cm is more than twice that of a device with a diameter of 40 cm.
なお,供試体のサイズが大きい場合,供試体の特に観測
したい箇所を限定して,第5図に示すように複数の観測
窓をそれぞれ計測胴体の両側面に設けて衝撃波の観測を
行う場合があるが,この場合には観測窓間に位置する供
試体の部分は観測できず,しかも一側面に複数の観測窓
を設けているから高価になってしまう。When the size of the specimen is large, shock waves may be observed by setting multiple observation windows on both sides of the measurement body, as shown in Figure 5, by limiting the part of the specimen that is particularly desired for observation. However, in this case, the parts of the specimen located between the observation windows cannot be observed, and moreover, multiple observation windows are provided on one side, making it expensive.
本発明の目的は,供試体のサイズが細長い等サイズが大
きい場合においても低価格で衝撃波を精度よく観側でき
るシュリーレン装置を提供することにある。An object of the present invention is to provide a Schlieren apparatus that can accurately observe shock waves at a low cost even when the specimen is large in size, such as long and narrow.
(課題を解決するための手段)
本発明によれば,対象物が配置される計測胴体を用いて
風洞実験を行う際に用いられ,前記計測胴体の両側面に
形成された円形の開口部に回転可能にはめ込まれた第1
及び第2の円板部材と,該第1及び第2の円板部材に該
円板部材中心に偏心した位置に形成された第1及び第2
の透明窓と,前記第1及び第2の円板部材を同期して回
転させるための駆動手段と,光源と,該光源からの光を
反1・jシて平行光とする第1の凹面鏡と,前記第1の
円板部材に対応して配置され,前記平行光を前記第1の
円板部材方向に照射する第1の反射鏡と,前記第2の円
板部材に対応して配置され,前記第2の円板部材方向か
らの光を所定の方向に反射光として反射する第2の反射
鏡と,前記反射光を反射して集束光とする第2の凹面鏡
と,該第2の凹面鏡の焦点位置に配置され,絞り機構を
有するナイフ・エッジ部と,該ナイフ・エッジ部を通過
した光を受光する受光器と,前記第1及び第2の反射鏡
を前記計測胴体の側面に沿う方向で移動させるための移
動手段とを有し,前記光源から光を照!!.j Lた際
,前記第1及び第2の円板部材を回転させるとともに該
回転に同期して前記第1及び第2の反射鏡と前記第1及
び第2の透明窓とがそれぞれ対向するように前記第1及
び第2の反射鏡を連動して移動させるようにしたことを
特徴とするシュリーレン装置が得られる。(Means for Solving the Problems) According to the present invention, it is used when conducting a wind tunnel experiment using a measurement body in which a target object is placed, and a circular opening formed on both sides of the measurement body is used. The first rotatably fitted
and a second disc member, and first and second discs formed on the first and second disc members at positions eccentric to the center of the disc member.
a transparent window, a driving means for synchronously rotating the first and second disk members, a light source, and a first concave mirror that converts the light from the light source into parallel light and a first reflecting mirror arranged corresponding to the first disc member and irradiating the parallel light in the direction of the first disc member, and a first reflecting mirror arranged corresponding to the second disc member. a second reflecting mirror that reflects the light from the direction of the second disc member in a predetermined direction as reflected light; a second concave mirror that reflects the reflected light into convergent light; a knife edge section that is disposed at the focal point of the concave mirror and has an aperture mechanism; a light receiver that receives the light that has passed through the knife edge section; and a moving means for moving the light source in a direction along the light source. ! .. j L, the first and second disc members are rotated and, in synchronization with the rotation, the first and second reflecting mirrors and the first and second transparent windows are respectively opposed to each other; There is obtained a Schlieren device characterized in that the first and second reflecting mirrors are moved in conjunction with each other.
く作用〉
本発明においては,計4llj胴体に設置された第1及
び第2の円板部材を駆動手段よって同期して回転させる
ことにより,第1及び第2の円板部材の中心と偏った位
置に設置された第1及び第2の観7lpt窓(透明窓)
を供試体回りの任意の観測視野に移動させ,第1及び第
2の観測窓の位置に対して,第1及び第2の反射鏡を移
動させ,平行光を垂直に照射しているから第1及び第2
の観測窓でサイズの大きい供試体全体を観測できる。つ
まり,一対の小さな観測窓で一対の大きな観測窓と同等
の観測視野が得られる。Effect> In the present invention, by rotating the first and second disc members installed in the total 4llj fuselage synchronously by the driving means, the center of the first and second disc members is rotated. The first and second view 7lpt windows (transparent windows) installed at
is moved to an arbitrary observation field of view around the specimen, and the first and second reflecting mirrors are moved relative to the positions of the first and second observation windows, and parallel light is irradiated perpendicularly. 1st and 2nd
The entire large specimen can be observed using the observation window. In other words, a pair of small observation windows can provide the same observation field as a pair of large observation windows.
く実施例〉 以下本発明について実施例によって説明する。Example The present invention will be explained below with reference to Examples.
第1図及び第2図を参照して,本実施例では第3図に示
す従来例と同一の構戊要素については同一の番号を付し
,説明を省略する。Referring to FIGS. 1 and 2, in this embodiment, the same structural elements as those in the conventional example shown in FIG. 3 are designated by the same numbers, and the explanation thereof will be omitted.
計δPJ胴体11の側面には大径の円形開口部が互いに
対向して形威され,この開口部には円形部材(以下フラ
ンジという)24及び25がその外周面を開口部の内周
面に密接して配置されている。Large-diameter circular openings are formed in the side faces of the total δPJ fuselage 11, facing each other, and circular members (hereinafter referred to as flanges) 24 and 25 are attached to the openings with their outer circumferential surfaces aligned with the inner circumferential surfaces of the openings. are placed closely together.
これらフランジ24及び25はその中心Pを回転中心と
して計測胴体11に対して回転可能となっている。These flanges 24 and 25 are rotatable relative to the measurement body 11 about the center P thereof.
フランジ23にはその中心から所定maだけ偏心した位
置に中心Qを有する円形開口部が形成され,この円形開
口部には透明の観測窓24aがはめ込まれている。さら
に,計測胴体11の外側面にはフランジ回転装置26が
取り付けられ,フランジ23はフランジ回転装置26に
連結されている。つまり,フランジ24はその中心と偏
心した位置に中心を有する観測窓24aを備えている。A circular opening having a center Q is formed in the flange 23 at a position eccentric from the center by a predetermined ma, and a transparent observation window 24a is fitted into this circular opening. Further, a flange rotation device 26 is attached to the outer surface of the measurement body 11, and the flange 23 is connected to the flange rotation device 26. That is, the flange 24 is provided with an observation window 24a whose center is eccentric from the center of the flange 24.
同様にして,フランジ25にもその中心から所定Jll
aだけ偏心した位置に中心を有する円形開口部が形成さ
れ,この円形開口部に観測窓25aがはめ込まれている
。そして,フランジ25は計Al1胴体11の外側面に
取り付けられたフランジ回転装置27に連結されている
。Similarly, the flange 25 also has a predetermined distance from its center.
A circular opening having its center at a position offset by a distance a is formed, and an observation window 25a is fitted into this circular opening. The flange 25 is connected to a flange rotating device 27 attached to the outer surface of the Al1 body 11.
フランジ24に対応するようにして,計測胴体11の外
側には,第1の移動型反射鏡28が配置され,この第1
−の移動型反射t!t28は移動装置29に連結され・
,これによって第1の移動型反射鏡28は計測胴体11
の外側側面に沿って移動可能となっている。A first movable reflector 28 is arranged on the outside of the measurement body 11 so as to correspond to the flange 24.
- moving reflection t! t28 is connected to the moving device 29.
, whereby the first movable reflector 28 is moved to the measurement body 11.
It is movable along the outer side of the
同様にして,フランジ25に対応するようにして,計測
胴体11の外側には1第2の移動型反射鏡30が配置さ
れ,この第1の移動型反射鏡30は移動装置31に配置
され,これによって第2の移動型反射鏡30は計測胴体
11の外側側面に沿って移動可能となっている。Similarly, a second movable reflector 30 is arranged on the outside of the measurement body 11 so as to correspond to the flange 25, and this first movable reflector 30 is disposed on the moving device 31. This allows the second movable reflecting mirror 30 to move along the outer side surface of the measurement body 11.
供試体23の前部(第1図において左側)を観測蜆野を
とする場合には,第2図に示す位置に第1及び第2の観
測窓24a及び25aがくるようにフランジ回転装置に
よってフランジ24及び26を同期回転して(第2図に
実線矢印で示す方向)第1及び第2の観測窓24aおよ
び25aを供試体23の前部に対応させる。その後,光
源18からの光を用いて供試体23の前部を観測する。If the front part of the specimen 23 (the left side in Fig. 1) is to be used as the observation field, use a flange rotating device to position the first and second observation windows 24a and 25a in the positions shown in Fig. 2. The flanges 24 and 26 are rotated synchronously (in the direction shown by the solid arrow in FIG. 2) so that the first and second observation windows 24a and 25a correspond to the front part of the specimen 23. Thereafter, the front part of the specimen 23 is observed using the light from the light source 18.
次に供試体23の後部(第1図において右側)を観測視
野とする場合,フランジ回転装置26及゜び27によっ
てそれぞれフランジ24及び25を第2図に実線矢印で
示す方向に回転角で180度同期回転させる。これによ
って,観測窓24a及び25aはそれぞれフランジ24
及び25の中心を中心として公転運動を行ない。供試体
23の後部に対応することになる。Next, when the rear part of the specimen 23 (the right side in Fig. 1) is to be the observation field, the flanges 24 and 25 are rotated by 180° in the direction shown by the solid line arrow in Fig. 2 using the flange rotation devices 26 and 27, respectively. Rotate synchronously. As a result, the observation windows 24a and 25a are connected to the flange 24, respectively.
and revolves around the center of 25. This corresponds to the rear part of the specimen 23.
フランジ24及び25の回転に連動して,移動装置29
及び31によって,第1図に実線矢印で示す方向に1反
射鏡28及び30を移動させ,観Ap1窓24a及び2
5aに対応させる。これによって,光源18からの光(
平行光)が観測窓24aに垂直に照射される。In conjunction with the rotation of the flanges 24 and 25, the moving device 29
and 31, the first reflecting mirrors 28 and 30 are moved in the direction shown by the solid arrow in FIG. 1, and the viewing Ap1 windows 24a and 2 are
5a. As a result, the light from the light source 18 (
(parallel light) is irradiated perpendicularly to the observation window 24a.
なお,光の照射による衝撃波等の観測は従来と同様であ
るので省略する。Note that the observation of shock waves, etc. caused by light irradiation is the same as in the conventional method, and will therefore be omitted.
このように,観測窓を公転させ,しかも観測窓の公転に
合わせて,観測窓へ平行光を与える反射鏡を移動させて
いるから,一対の小さな観測窓で一対の大きな観測窓と
同等の観測視野を得ることができるばかりでなく,反射
鏡及び凹面鏡のサイズを小さくできる。In this way, the observation window is revolved, and the reflecting mirror that provides parallel light to the observation window is moved in accordance with the revolution of the observation window, so a pair of small observation windows can perform the same observation as a pair of large observation windows. Not only can a field of view be obtained, but also the size of the reflecting mirror and concave mirror can be reduced.
更に,極端に細長い供試体を観測する場合,フランジ中
心からの偏心量が大きくかつ,口径の小さな観測窓を追
加することにより実質的に供試体全体を観測できる。Furthermore, when observing an extremely elongated specimen, by adding an observation window with a large eccentricity from the flange center and a small diameter, it is possible to observe virtually the entire specimen.
く発明の効果〉
以上説明したように,本発明では,一対の観測窓を公転
移動させるとともに一対の移動型反射鏡を移動させるよ
うにしているから,広範囲の視野(観測窓の半径と偏心
量の加算の2乗に円周率πを掛けた視野)を観M1する
ことができ,しかも観測窓は一対で済むから.低価格の
シュリーレン装置を提供できる。Effects of the Invention> As explained above, in the present invention, a pair of observation windows are moved around the orbit and a pair of movable reflectors are moved, so that a wide field of view (radius and eccentricity of the observation windows) M1 can be observed (the field of view obtained by multiplying the square of the addition of π by pi), and only one pair of observation windows is required. We can provide low-cost schlieren equipment.
つまり,観測視野の拡大に対して,低価格の小口径観測
窓を一対だけ用いているので,観測視野を広くとれしか
も低価格ですむ。また.観測窓のサイズを小さくするこ
とは反射鏡,凹面鏡のサイズが小さくてすみ,シュリー
レン装置自体を高精度として大幅に低価格にできる。In other words, since only one pair of low-cost, small-diameter observation windows is used to expand the observation field of view, the observation field of view can be widened and the cost is low. Also. Reducing the size of the observation window means that the size of the reflecting mirror and concave mirror can be reduced, making the Schlieren device itself highly accurate and significantly lower in price.
供試体のサイズが大きくなった場合においても,概設の
シュリーレン装置を全面取換えすることなく,上述の偏
心量を大きくシ,かつ,一対の反射鏡の移動量を大きく
すれば対応できるという拡張性も有している。Even if the size of the specimen becomes larger, this can be handled by increasing the amount of eccentricity mentioned above and increasing the amount of movement of the pair of reflecting mirrors, without completely replacing the general Schlieren apparatus. It also has gender.
第1図は本発明によるシュリーレン装置の一実施例を示
す平面図,第2図は第1図に示す計測胴体側面から示す
図,第3図は従来のシュリーレン装置の一例を示す平面
図,第4図は第3図に示す計瀾胴体を側面から示す図,
第5図は従来のシュリーレン装置に用いられる計計1胴
体の他の例を側面から示す図である。
11・・・計測胴体,12・・・ノズル,13・・・デ
イフユーザ,14.15・・・透明観察窓,16.19
・・・反射鏡,17.20・・・凹面鏡,18・・・光
源,21・・・ナイフ・エッジ,22・・・受光器。FIG. 1 is a plan view showing an embodiment of the schlieren device according to the present invention, FIG. 2 is a side view of the measuring body shown in FIG. 1, and FIG. 3 is a plan view showing an example of the conventional schlieren device. Figure 4 is a side view of the fuselage shown in Figure 3;
FIG. 5 is a side view showing another example of the scale 1 fuselage used in the conventional Schlieren device. 11...Measurement body, 12...Nozzle, 13...Diff user, 14.15...Transparent observation window, 16.19
... Reflector, 17.20... Concave mirror, 18... Light source, 21... Knife edge, 22... Light receiver.
Claims (1)
う際に用いられ、前記計測胴体の両側面に形成された円
形の開口部に回転可能にはめ込まれた第1及び第2の円
板部材と、該第1及び第2の円板部材に該円板部材中心
に偏心した位置に形成された第1及び第2の透明窓と、
前記第1及び第2の円板部材を同期して回転させるため
の駆動手段と、光源と、該光源からの光を反射して平行
光とする第1の凹面鏡と、前記第1の円板部材に対応し
て配置され、前記平行光を前記第1の円板部材方向に照
射する第1の反射鏡と、前記第2の円板部材に対応して
配置され、前記第2の円板部材方向からの光を所定の方
向に反射光として反射する第2の反射鏡と、前記反射光
を反射して集束光とする第2の凹面鏡と、該第2の凹面
鏡の焦点位置に配置され、絞り機構を有するナイフ・エ
ッジ部と、該ナイフ、エッジ部を通過した光を受光する
受光器と、前記第1及び第2の反射鏡を前記計測胴体の
側面に沿う方向で移動させるための移動手段とを有し、
前記光源から光を照射した際、前記第1及び第2の円板
部材を回転させるとともに該回転に周期して前記第1及
び第2の反射鏡と前記第1及び第2の透明窓とがそれぞ
れ対向するように前記第1及び第2の反射鏡を連動して
移動させるようにしたことを特徴とするシュリーレン装
置。1. First and second circles used when conducting a wind tunnel experiment using a measurement body in which a target object is placed, and rotatably fitted into circular openings formed on both sides of the measurement body a plate member; first and second transparent windows formed in the first and second disc members at positions eccentric to the center of the disc member;
a driving means for synchronously rotating the first and second disc members, a light source, a first concave mirror that reflects light from the light source into parallel light, and the first disc a first reflecting mirror arranged corresponding to the member and irradiating the parallel light in the direction of the first disc member; and a first reflecting mirror arranged corresponding to the second disc member and irradiating the parallel light in the direction of the first disc member; a second reflecting mirror that reflects light from the direction of the member in a predetermined direction as reflected light; a second concave mirror that reflects the reflected light into focused light; and a second concave mirror arranged at a focal position of the second concave mirror. , a knife edge portion having an aperture mechanism; a light receiver for receiving light passing through the knife and the edge portion; and a light receiver for moving the first and second reflecting mirrors in a direction along a side surface of the measurement body. has a means of transportation,
When the light source emits light, the first and second disk members are rotated and the first and second reflective mirrors and the first and second transparent windows are rotated periodically with the rotation. A Schlieren device characterized in that the first and second reflecting mirrors are moved in conjunction with each other so as to face each other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16268489A JP2654990B2 (en) | 1989-06-27 | 1989-06-27 | Schlieren device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16268489A JP2654990B2 (en) | 1989-06-27 | 1989-06-27 | Schlieren device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0328841A true JPH0328841A (en) | 1991-02-07 |
JP2654990B2 JP2654990B2 (en) | 1997-09-17 |
Family
ID=15759334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16268489A Expired - Lifetime JP2654990B2 (en) | 1989-06-27 | 1989-06-27 | Schlieren device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2654990B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109489935A (en) * | 2018-12-29 | 2019-03-19 | 中国空气动力研究与发展中心高速空气动力研究所 | A kind of schlieren support system in wind-tunnel |
CN112683486A (en) * | 2020-12-11 | 2021-04-20 | 中国人民解放军国防科技大学 | Shape-preserving side window structure refraction and reflection type schlieren instrument |
CN113639955A (en) * | 2021-10-15 | 2021-11-12 | 中国空气动力研究与发展中心计算空气动力研究所 | Device for measuring concave panel boundary layer disturbance |
-
1989
- 1989-06-27 JP JP16268489A patent/JP2654990B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109489935A (en) * | 2018-12-29 | 2019-03-19 | 中国空气动力研究与发展中心高速空气动力研究所 | A kind of schlieren support system in wind-tunnel |
CN109489935B (en) * | 2018-12-29 | 2024-02-13 | 中国空气动力研究与发展中心高速空气动力研究所 | Schlieren instrument supporting system used in wind tunnel |
CN112683486A (en) * | 2020-12-11 | 2021-04-20 | 中国人民解放军国防科技大学 | Shape-preserving side window structure refraction and reflection type schlieren instrument |
CN113639955A (en) * | 2021-10-15 | 2021-11-12 | 中国空气动力研究与发展中心计算空气动力研究所 | Device for measuring concave panel boundary layer disturbance |
CN113639955B (en) * | 2021-10-15 | 2022-01-04 | 中国空气动力研究与发展中心计算空气动力研究所 | Device for measuring concave panel boundary layer disturbance |
Also Published As
Publication number | Publication date |
---|---|
JP2654990B2 (en) | 1997-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01131407A (en) | Apparatus and method for measuring angle of reflecting cone | |
CN110657960B (en) | Image stabilization precision detection optical path system of large-view-field space astronomical telescope | |
US3816741A (en) | Infrared scanning system | |
US5299252A (en) | Fluorescent X-ray film thickness measuring apparatus | |
CN106017864A (en) | Testing device and testing method for characteristic parameters of swing mirror | |
US5598263A (en) | Light-backscatter measurement device suitable for use on board a craft | |
JPH0328841A (en) | Schlieren device | |
CN112763187A (en) | Film material transmission optical performance testing system and method based on telescopic light path | |
CN209689751U (en) | Fast illuminated spectrum imaging system based on micro reflector array | |
JP3075243B2 (en) | Optical characteristic measuring unit, transmission characteristic measuring device, reflection characteristic measuring device, ellipsometer, transmission characteristic measuring method and reflection characteristic measuring method | |
US4776672A (en) | Multi-paned polygonal lighthouse assembly with improved corner configuration | |
RU2289223C1 (en) | Scanning laser positioner for x-radiation | |
US3453043A (en) | Image rotating device | |
US3517447A (en) | Optical-reimaging system | |
JPH1035600A (en) | Vacuum chamber | |
RU2289222C1 (en) | Laser positioner for x-radiator | |
RU2224243C1 (en) | Laser autocollimation centering mount for x-ray radiator | |
RU2241976C2 (en) | Laser localizer for x-ray emitter | |
JPS6219966Y2 (en) | ||
JP2000230883A (en) | Decentering measuring apparatus and its adjusting method | |
JP3050588B2 (en) | Lens eccentricity measuring device | |
JPH0262801B2 (en) | ||
JPS60169705A (en) | Apparatus for measuring accuracy of mirror surface of surface shaped antenna | |
JPS63169612A (en) | Optical scanner | |
JP3540054B2 (en) | Straightness interferometer |