JPH03288217A - Semiconductor integrated circuit device - Google Patents
Semiconductor integrated circuit deviceInfo
- Publication number
- JPH03288217A JPH03288217A JP2089512A JP8951290A JPH03288217A JP H03288217 A JPH03288217 A JP H03288217A JP 2089512 A JP2089512 A JP 2089512A JP 8951290 A JP8951290 A JP 8951290A JP H03288217 A JPH03288217 A JP H03288217A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- circuit
- power supply
- internal
- external power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 11
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 230000007257 malfunction Effects 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 16
- 239000003990 capacitor Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Control Of Electrical Variables (AREA)
- Dram (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は電源電圧を所定値だけ降下して内部回路に与
える電圧変換回路を有する半導体集積回路装置に関する
。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor integrated circuit device having a voltage conversion circuit that lowers a power supply voltage by a predetermined value and applies the voltage to an internal circuit.
半導体集積回路の素子を1/Kに微細化しても外部電源
電圧をそのままにしておくと電界かに倍になってしまう
。また電流密度及び消費電力密度はK 倍となる。その
ため、半導体集積回路において、エレクトロマイグレー
ションによる信頼性の問題や、発熱による破壊など問題
が顕在化する。Even if the elements of a semiconductor integrated circuit are miniaturized to 1/K, if the external power supply voltage is left unchanged, the electric field will double. Further, the current density and power consumption density are K times higher. Therefore, problems such as reliability problems due to electromigration and destruction due to heat generation become apparent in semiconductor integrated circuits.
特に、電源電圧か5vのままNMO8FETのチャネル
長をサブミクロンにするとドレイン近傍に高電界が発生
し、そこで加速されることにより高いエネルギーを得た
ホットキャリアがNMO5FETのしきい値電圧なとを
変動させるといういわゆるホットキャリア問題は外部電
源電圧を一定にして素子を微細化する場合大きな問題と
なる。In particular, if the channel length of the NMO8FET is set to submicron while the power supply voltage is 5V, a high electric field will be generated near the drain, and the hot carriers that are accelerated there and gain high energy will fluctuate the threshold voltage of the NMO5FET. This so-called hot carrier problem becomes a major problem when miniaturizing elements while keeping the external power supply voltage constant.
これらの問題点を解決するため外部電源電圧よりも低い
電圧を内部回路に与えるための電圧変換回路が設けられ
ている。In order to solve these problems, a voltage conversion circuit is provided to apply a voltage lower than the external power supply voltage to the internal circuit.
第6図は上記のような電圧変換回路(降圧回路)が設け
られている半導体集積回路装置を示すブロック図である
。電源バッド71に印加された外部電源電圧V。0は降
圧回路72によりあらかじめ定められた内部電圧vio
tまで降圧され内部回路73に与えられる。FIG. 6 is a block diagram showing a semiconductor integrated circuit device provided with a voltage conversion circuit (step-down circuit) as described above. External power supply voltage V applied to power supply pad 71. 0 is the internal voltage vio determined in advance by the step-down circuit 72.
The voltage is stepped down to t and applied to the internal circuit 73.
第7図は従来の降圧回路の回路図である。抵抗81.8
2は電源バッド71とGNDとの間に直列に接続されて
いる。抵抗81.82の共通接続点は差動増幅回路86
の十人力に接続されている。FIG. 7 is a circuit diagram of a conventional voltage step-down circuit. Resistance 81.8
2 is connected in series between the power supply pad 71 and GND. The common connection point of resistors 81 and 82 is the differential amplifier circuit 86
It is connected to the power of ten people.
また、この共通接続点とGNDとの間にはダイオード接
続されたnMOsトランジスタ83,84゜85が直列
に接続されている。nMOsトランジスタ83,84.
85は抵抗81.82の共通接続点の電位を一定値に保
つクランプ回路を構成する。降圧用nMO5)ランジス
タ87は、ゲートが差動増幅回路86の出力に、ドレイ
ンが電源バッド71に各々接続され、ソースが差動増幅
回路86の一人力に接続されるとともに内部回路73に
も接続されている。Furthermore, diode-connected nMOS transistors 83, 84 and 85 are connected in series between this common connection point and GND. nMOS transistors 83, 84 .
85 constitutes a clamp circuit that maintains the potential at a common connection point of resistors 81 and 82 at a constant value. The step-down nMO5) transistor 87 has its gate connected to the output of the differential amplifier circuit 86, its drain connected to the power supply pad 71, and its source connected to the single power of the differential amplifier circuit 86 and also to the internal circuit 73. has been done.
第8図は差動増幅回路86の一構成例を示す回路図であ
る。41は定電流源、42及び43は各々−人力、十人
力からゲートに入力電圧が印加される人力用nMOsト
ランジスタである。n M OSトランジスタ42.4
3のソースは互いに接続されている。44.45は負荷
用のpMOSトランジスタである。pMOSトランジス
タ44は、ドレインがゲートに接続されるとともに、n
M OSトランジスタ42のドレインに接続され、ソ
スが電源電圧vccに接続されている。pMOSトラン
ジスタ45は、ゲートがpMOSトランジスタ44のゲ
ートに、ソースが電源電圧Vccに、ドレインがnMO
3)ランジスタ43のドレインに各々接続されている。FIG. 8 is a circuit diagram showing an example of the configuration of the differential amplifier circuit 86. 41 is a constant current source, and 42 and 43 are human-powered nMOS transistors to which input voltages are applied to the gates from human power and human power, respectively. nM OS transistor 42.4
The three sources are connected together. 44 and 45 are PMOS transistors for load. The pMOS transistor 44 has a drain connected to a gate and an n
It is connected to the drain of the MOS transistor 42, and its source is connected to the power supply voltage vcc. The pMOS transistor 45 has a gate connected to the gate of the pMOS transistor 44, a source connected to the power supply voltage Vcc, and a drain connected to the nMOS transistor 44.
3) They are each connected to the drain of the transistor 43.
nMO3)ランジスタ43と9MO3)ランジスタ45
のドレイン共通接続点は、pMO5)ランジスタ46と
nMO5)ランジスタ47から成るCMOSインバータ
300の入力に接続されている。このように構成された
差動増幅回路86の出力は、−人力への入力電圧を基準
にして十人力への入力電圧が低いと低レベルとなり、十
人力への入力電圧が高いと高しヘルとなる。このように
2人力間の入力端子の差が増幅される。nMO3) transistor 43 and 9MO3) transistor 45
The common drain connection point of is connected to the input of a CMOS inverter 300 consisting of a pMO5) transistor 46 and an nMO5) transistor 47. The output of the differential amplifier circuit 86 configured in this way will be at a low level when the input voltage to the ten-man power is low, and will be at a high level when the input voltage to the ten-man power is high, with reference to the input voltage to the ten-man power. becomes. In this way, the difference in input terminals between two human forces is amplified.
次に第7図に示した回路の動作について説明する。抵抗
81.82の共通接続点には電源バッド71に与えられ
ている電源電圧V。0と抵抗81゜82の抵抗比で決定
される基準電圧V か発生ef
する。ダイオード接続されたnMO3)ランジスタ83
,84.85により構成されるクランプ回路により基準
電圧V の上限は一定値にクランef
プされる。差動増幅回路86の十人力には基準電圧V
が、−人力には内部電圧Vintが与えらer
れている。従って、内部電圧Vintが基準電圧V
よりも低いと、差動増幅回路86の出力型ref’
圧は高くなり、これに伴いnMO5)ランジスタ87の
ソース電流が大きくなり、内部電圧vIntが高くなる
。逆に内部電圧V が基準電圧nt
■ よりも高いと差動増幅回路86の出力電圧ev
は低くなり、これに伴いnMO5)ランジスタ87のソ
ース電流が小さくなり内部電圧V か小nt
さくなる。つまり、基準電圧V と内部電圧ef
Vintの電圧差に応してnMO3)ランジスタ87の
ソース・ドレイン間抵抗が変化し、基準電圧vrerに
相当する内部電圧V が内部回路73nt
に供給される。Next, the operation of the circuit shown in FIG. 7 will be explained. The power supply voltage V applied to the power supply pad 71 is connected to the common connection point of the resistors 81 and 82. A reference voltage V ef determined by the resistance ratio of 0 and the resistors 81 and 82 is generated. Diode connected nMO3) transistor 83
, 84.85, the upper limit of the reference voltage V is clamped to a constant value. The reference voltage V is applied to the differential amplifier circuit 86.
However, the internal voltage Vint is applied to the human power. Therefore, the internal voltage Vint is the reference voltage V
If it is lower than , the output type ref' voltage of the differential amplifier circuit 86 becomes high, and accordingly, the source current of the nMO5) transistor 87 becomes large, and the internal voltage vInt becomes high. Conversely, when the internal voltage V is higher than the reference voltage nt (2), the output voltage ev of the differential amplifier circuit 86 becomes low, and accordingly, the source current of the nMO5) transistor 87 becomes small and the internal voltage V nt becomes small. That is, the source-drain resistance of the nMO transistor 87 changes in accordance with the voltage difference between the reference voltage V 1 and the internal voltage ef Vint, and the internal voltage V 2 corresponding to the reference voltage vrer is supplied to the internal circuit 73nt.
ところで、半導体集積回路装置において、電源投入時、
内部電圧V の電源電圧V。0への依存+nt
性が大きい(電源電圧V。0の変化に対する内部電圧V
、 の変化が大きい、つまり電源電圧V のInt
cC上昇に対する内部
電圧V、 の上昇が急峻であるInt
(第9図の点線))と、内部回路73において、CMO
3型O3回路におけるラッチアップが発生したり、内部
のフリップフロップ回路が誤動作したりするという問題
が生じる。従って、電源投入時には内部電圧viotの
電源電圧V。0への依存性が小さい(電源電圧V の変
化に対する内部電圧C
vjntの変化が小さい、つまり電流電圧Vccの上昇
に対する内部電圧V、。、の上昇が緩やがである(第9
図の実線))方か望ましい。By the way, in a semiconductor integrated circuit device, when the power is turned on,
Power supply voltage V for internal voltage V. 0 dependence +nt is large (power supply voltage V. Internal voltage V with respect to change of 0
, has a large change, that is, the Int of the power supply voltage V
Int (dotted line in FIG. 9)), where the internal voltage V rises steeply with respect to the rise in cC, and in the internal circuit 73, CMO
Problems arise in that latch-up occurs in the 3-type O3 circuit and that the internal flip-flop circuit malfunctions. Therefore, when the power is turned on, the power supply voltage V is the internal voltage viot. 0 (the change in the internal voltage C vjnt with respect to the change in the power supply voltage V is small, that is, the internal voltage V increases slowly with respect to the increase in the current voltage Vcc) (No. 9
The solid line in the figure)) is preferable.
一方、内部回路73の動作時においては、内部電圧V
の電源電圧Vccへの依存性が小さいと、int
電源電圧■。0が比較的低い電圧で変化した場合、(例
えば第9図に示すa点からb点に変化した場+nt
から■ へ降下す
合)内部電圧V、 は■ret’ ref’bる
ことになり内部電圧V、 のマージンが低下す1nす
るという問題点がある。内部電圧V の電源型nt
圧vcoへの依存性が大きい場合(第9図の点線)には
電源電圧vccかa点からb点へ変化しても内部電圧V
は基準電圧V から変化しない。On the other hand, when the internal circuit 73 is operating, the internal voltage V
If the dependence of int on the power supply voltage Vcc is small, then int the power supply voltage ■. 0 changes at a relatively low voltage (for example, when changing from point a to point b shown in FIG. 9 +nt
When the internal voltage V, decreases from (1) to (2), the internal voltage V, becomes (ret'ref'b), and there is a problem that the margin of the internal voltage V, decreases to 1n. If the dependence of the internal voltage V on the power supply voltage Vco is large (dotted line in Figure 9), even if the power supply voltage VCC changes from point a to point B, the internal voltage V
does not change from the reference voltage V.
int ref
従って、内部回路73の動作時においては内部電圧V、
の電源電圧V。0への依存性は大きい方がint
望ましい。なお、第9図の一点鎖線は降圧回路72がな
い場合の電源電圧のV と内部電圧v1ntC
との関係を示す。int ref Therefore, when the internal circuit 73 is operating, the internal voltage V,
The power supply voltage V. It is desirable for int to have a large dependence on 0. Incidentally, the dashed line in FIG. 9 shows the relationship between the power supply voltage V 1 and the internal voltage v1ntC in the case where the step-down circuit 72 is not provided.
この発明は上記のような問題点を解決するためになされ
たもので、内部回路へ与えられる電圧を、電源投入時か
ら内部回路が動作するまでの期間は電源電圧への依存性
が小さい電圧とし、内部回路の動作時は電源電圧への依
存性が大きい電圧となるような半導体集積回路装置を得
ることを目的とするO
〔課題を解決するための手段〕
この発明に係る半導体集積回路装置は、外部電源の投入
時から一定期間は第1の初期化信号を、前記一定期間経
過後は第2の初期化信号を出力する初期化信号発生手段
と、前記外部電源の電圧を変換して内部回路に与える電
圧変換回路とを備え、前記電圧変換回路は、前記外部電
源の電圧への依存性が比較的小さい第1の電圧を発生す
る第1の電圧発生手段と、前記外部電源の電圧への依存
性が比較的大きい第2の電圧を発生する第2の電圧発生
手段と、前記第1の初期化信号に応答して前記第1の電
圧を、前記第2の初期化信号に応答して前記第2の電圧
を選択的に前記内部回路に与える選択手段を備えている
。This invention was made to solve the above-mentioned problems, and the voltage applied to the internal circuit is set to a voltage that has little dependence on the power supply voltage during the period from when the power is turned on until the internal circuit operates. , it is an object of the present invention to obtain a semiconductor integrated circuit device in which the voltage is highly dependent on the power supply voltage during operation of the internal circuit. , an initialization signal generating means for outputting a first initialization signal for a certain period from when the external power supply is turned on and a second initialization signal after the elapse of the certain period; a voltage conversion circuit for supplying a voltage to the circuit, the voltage conversion circuit comprising a first voltage generating means for generating a first voltage having a relatively small dependence on the voltage of the external power supply; a second voltage generating means for generating a second voltage having a relatively large dependence on the second voltage; and selective means for selectively applying the second voltage to the internal circuit.
この発明における電圧集積回路は、外部電源の投入時か
ら一定期間の間は、第1の初期化信号に応答して外部電
源の電圧への依存性が比較的小さい第1の電圧を内部回
路に与え、これにより内部回路の誤動作が回避され、ま
た、外部電源の投入時から一定期間経過後は、第2の初
期化信号に応答して外部電源の電圧への依存性が比較的
大きいの第2の電圧を内部回路に与え、これに対する内
部電圧のマージンか大きくなる。The voltage integrated circuit according to the present invention supplies a first voltage that is relatively small in dependence on the voltage of the external power source to the internal circuit in response to the first initialization signal for a certain period of time after turning on the external power source. This avoids malfunction of the internal circuit, and after a certain period of time has elapsed since the external power supply is turned on, the second initialization signal, which is relatively dependent on the voltage of the external power supply, is A voltage of 2 is applied to the internal circuit, and the internal voltage margin for this increases.
第1図はこの発明に係る半導体集積回路における降下回
路の一実施例を示す回路図である。図において、第7図
に示した従来の降下回路との相違点は、初期化信号発生
回路100.インバータ56、nMOSトランジスタ9
0及び抵抗89を新たに設けたことである。初期化信号
発生回路100は初期化信号63をインバータ56を介
してnMOSトランジスタ90のゲート与える。抵抗8
9は抵抗88と接地間に接続されている。n M OS
トランジスタ90のゲートとドレインは各々抵抗8つの
両端に接続されている。その他の構成は従来回路と同様
である。FIG. 1 is a circuit diagram showing an embodiment of a drop-down circuit in a semiconductor integrated circuit according to the present invention. In the figure, the difference from the conventional drop-down circuit shown in FIG. 7 is that the initialization signal generation circuit 100. Inverter 56, nMOS transistor 9
0 and resistor 89 are newly provided. Initialization signal generation circuit 100 provides initialization signal 63 to the gate of nMOS transistor 90 via inverter 56 . resistance 8
9 is connected between resistor 88 and ground. n M OS
The gate and drain of transistor 90 are each connected to both ends of eight resistors. The other configurations are the same as the conventional circuit.
第2図は初期化信号発生回路100の一構成例を示す回
路図である。抵抗51とコンデンサ52は電源電圧V。FIG. 2 is a circuit diagram showing an example of the configuration of the initialization signal generation circuit 100. The resistor 51 and capacitor 52 are connected to the power supply voltage V.
0と接地間に直列午接続されている。It is connected in series between 0 and ground.
抵抗51とコンデンサ52との共通接続点はpMOSト
ランジスタ53及びnMOSトランジスタ54て構成さ
れるCMOSインバータ200の入力に接続されている
。CMOSインバータ200の出力は駆動用インバータ
55を介してインペラ56へ与えられる。A common connection point between the resistor 51 and the capacitor 52 is connected to the input of a CMOS inverter 200 composed of a pMOS transistor 53 and an nMOS transistor 54. The output of CMOS inverter 200 is given to impeller 56 via drive inverter 55.
まず、初期化信号発生回路100の動作を第3図を用い
ながら説明する。第3図は、横軸を時間t、縦軸を電圧
Vとしており、図中、61は電源電圧V 62は抵
抗51とコンデンサ51とのCO2
共通接続点の電圧、63は初期化信号である。電源を投
入すると、電源電圧V は立ち上がる。まC
た、電圧62も抵抗51とコンデンサ52の値によって
決まる時定数をもってゆっくり立ち上がる。First, the operation of the initialization signal generation circuit 100 will be explained with reference to FIG. In FIG. 3, the horizontal axis is time t and the vertical axis is voltage V. In the figure, 61 is the power supply voltage V, 62 is the voltage at the CO2 common connection point of the resistor 51 and capacitor 51, and 63 is the initialization signal. . When the power is turned on, the power supply voltage V rises. Furthermore, the voltage 62 also rises slowly with a time constant determined by the values of the resistor 51 and capacitor 52.
この電圧62がCMOSインバータ2aOのしきい値V
tを越えると、CMOSインバータ200の出力が反転
し、この出力か駆動用インバータ55を介して初期化信
号63として出力される。初期化信号63は、第3図に
示すように電源投入時から一定時間経過後に立ち上がる
。This voltage 62 is the threshold value V of the CMOS inverter 2aO.
When t is exceeded, the output of the CMOS inverter 200 is inverted, and this output is output as the initialization signal 63 via the driving inverter 55. The initialization signal 63 rises after a certain period of time has elapsed since the power was turned on, as shown in FIG.
第1図に戻って、nMO3hランジスタ90のゲートに
は初期化信号63の反転信号が与えられるため、初期化
信号63か低レベルのときはnMO3)ランジスタ90
は導通状態になり、初期化信号63が高レベルのときは
nMO3)ランジスタ90は非導通状態になる。初期化
信号63は前述のように電源投入時から一定期間は低レ
ベル、その後は高レベルとなるため、nMOSトランジ
スタ90は電源投入時から一定期間は導通状態、その後
非導通状態になる。その結果、内部電圧V の電源電
圧V。0への依存性は、電源投入時nt
より一定期間は、抵抗81の抵抗値R81と抵抗88の
抵抗値R88の比R81/R88で決まり、一定期間経
過後の内部回路73の動作時では抵抗81の抵抗値R8
1と、抵抗88の抵抗値R88と抵抗8つの抵抗値R8
9との和の比R81/(R88+R89)で決定される
。この場合の電源電圧V と内部電圧Vjotとの関係
を第4図にC
示す。電源投入時より一定期間は実線31のような関係
となる。つまり、電源投入時より一定期間では内部電圧
V の電源電圧vccへの依存性がnt
小さくなり(すなわち電源電圧V。0の変化に対する内
部電圧■、 の変化が小く、内部電圧vintnt
の上昇は緩やかとなる)、電源投入時に、CMO8型O
8回路でのラッチアップの発生、内部のフリップフロッ
プ誤動作という不都合が回避できる。Returning to FIG. 1, since the inverted signal of the initialization signal 63 is applied to the gate of the nMO3h transistor 90, when the initialization signal 63 is at a low level, the nMO3h transistor 90
becomes conductive, and when the initialization signal 63 is at a high level, the nMO3) transistor 90 becomes non-conductive. As described above, the initialization signal 63 is at a low level for a certain period of time after the power is turned on, and then is at a high level, so that the nMOS transistor 90 is in a conductive state for a certain period of time after the power is turned on, and then becomes a non-conductive state. As a result, the supply voltage V of the internal voltage V. The dependence on 0 is determined by the ratio R81/R88 of the resistance value R81 of the resistor 81 and the resistance value R88 of the resistor 88 for a certain period after the power is turned on, and when the internal circuit 73 operates after a certain period of time, the resistance 81 resistance value R8
1, the resistance value R88 of resistor 88, and the resistance value R8 of resistor 8
It is determined by the ratio R81/(R88+R89) of the sum with 9. The relationship between the power supply voltage V and the internal voltage Vjot in this case is shown in FIG. For a certain period of time from the time the power is turned on, the relationship is as shown by the solid line 31. In other words, for a certain period of time from when the power is turned on, the dependence of the internal voltage V on the power supply voltage vcc becomes small (that is, the change in the internal voltage V with respect to a change in the power supply voltage V.0 is small, and the increase in the internal voltage vint ), when the power is turned on, CMO8 type O
Inconveniences such as the occurrence of latch-up in the 8 circuits and malfunction of internal flip-flops can be avoided.
一方、前記一定期間経過後は(内部回路73の動作時)
実線32のような関係となる。つまり、電源投入時から
一定期間経過後は、内部電圧V の電源電圧V。0へ
の依存性が大きくなりnt
(すなわち電源電圧V。0の変化に対する内部電圧V、
の変化が大きく、内部電圧vintの上昇はnt
急峻となる)、内部回路73の動作時に、電源電圧V。On the other hand, after the certain period of time has elapsed (when the internal circuit 73 is operating)
The relationship is as shown by the solid line 32. In other words, after a certain period of time has passed since the power was turned on, the power supply voltage V is the internal voltage V. The dependence on 0 increases and nt (i.e., the power supply voltage V. Internal voltage V with respect to a change in 0,
When the internal circuit 73 is operating, the power supply voltage V.
0が比較的低い範囲(例えばa点とb点の間)で変動し
ても内部電圧V に変動が生じず、電nt
圧マージンが実線31の場合より大きくなる。Even if 0 fluctuates in a relatively low range (for example, between points a and b), the internal voltage V 1 does not fluctuate, and the voltage nt voltage margin becomes larger than in the case of the solid line 31.
第5図はこの発明における降圧回路の他の実施例を示す
図である。この実施例では基準電圧■ を発生させる
ための回路(基準電圧発生口ef
路)を差動増幅回路86の十人力側に2つ並列に設け、
初期化信号63のレベルに応して2つの基準電圧発生回
路のうちの一方を選択的に差動増幅回路86の十人力に
接続するようにしている。FIG. 5 is a diagram showing another embodiment of the voltage step-down circuit according to the present invention. In this embodiment, two circuits (reference voltage generation port ef circuit) for generating the reference voltage (2) are provided in parallel on the 10-power side of the differential amplifier circuit 86.
Depending on the level of the initialization signal 63, one of the two reference voltage generating circuits is selectively connected to the differential amplifier circuit 86.
抵抗21と22は電源電圧V。0と接地間に直列に接続
されている。抵抗21.22の共通接続点と接地との間
には、ダイオード接続されたnMOSトランジスタ23
,24.25が直列に接続されている。抵抗21.22
の共通接続点と差動増幅回路86の十人力との間にはn
MO3)ランジスタ27が接続され、そのゲートにはイ
ンバータ28を介して初期化信号63か与えられる。抵
抗81.82の共通接続点と差動増幅回路86の十人力
との間にはnMO3)ランジスタ26が接続され、その
ゲートには初期化信号63が直接与えられている。その
他の構成は第7図の従来回路と同様である。Resistors 21 and 22 are connected to the power supply voltage V. connected in series between 0 and ground. A diode-connected nMOS transistor 23 is connected between the common connection point of the resistors 21 and 22 and the ground.
, 24, 25 are connected in series. Resistance 21.22
There is n between the common connection point and the power of the differential amplifier circuit 86.
MO3) A transistor 27 is connected, and an initialization signal 63 is applied to its gate via an inverter 28. An nMO3) transistor 26 is connected between the common connection point of the resistors 81 and 82 and the terminal of the differential amplifier circuit 86, and the initialization signal 63 is directly applied to its gate. The other configurations are the same as the conventional circuit shown in FIG.
次に動作について説明する。初期化信号63が低レベル
の場合(電源投入時から一定期間)、nMOSトランジ
スタ26か非導通状態、nMOSトランジスタ27が導
通状態となり、差動増幅回路86の十人力には電源電圧
V。0と抵抗21,22の抵抗値の比で決まる基準電圧
V か与えらer2
れる。一方、初期化信号63か高レベルの場合(前記一
定期間経過後、内部回路73の動作時)、nMOSトラ
ンジスタ26か導通状態、n M OSトランジスタ2
7が非導通状態となり、差動増幅回路86の十人力には
電源電圧■。0と抵抗8182の抵抗値の比で決まる基
準電圧■ が与えefl
られる。ここで、抵抗21と22の抵抗値の比を抵抗8
1と82の抵抗値の比よりも大きく設定しておくと、上
記実施例と同様の効果が得られる。Next, the operation will be explained. When the initialization signal 63 is at a low level (for a certain period of time after the power is turned on), the nMOS transistor 26 is non-conductive, the nMOS transistor 27 is conductive, and the differential amplifier circuit 86 is supplied with the power supply voltage V. A reference voltage V determined by the ratio of the resistance values of the resistors 21 and 22 to er2 is given. On the other hand, when the initialization signal 63 is at a high level (when the internal circuit 73 is operating after the certain period of time has elapsed), the nMOS transistor 26 is in a conductive state, and the nMOS transistor 2 is in a conductive state.
7 becomes non-conductive, and the differential amplifier circuit 86 receives the power supply voltage ■. 0 and the resistance value of the resistor 8182 is applied. Here, the ratio of the resistance values of resistors 21 and 22 is determined by resistor 8
If it is set larger than the ratio of resistance values of 1 and 82, the same effect as in the above embodiment can be obtained.
なお、第1図に示した実施例では、抵抗8つ。In the embodiment shown in FIG. 1, there are eight resistors.
nMOSトランジスタ90を抵抗88と接地間に設けた
が、抵抗81と電源電圧vcoとの間に設けてもよい。Although the nMOS transistor 90 is provided between the resistor 88 and the ground, it may also be provided between the resistor 81 and the power supply voltage vco.
この場合、インバータ56は不要である。In this case, inverter 56 is not necessary.
また、第5図に示した実施例では基準電圧発生回路自体
を2つ設けこの切り換えを行うようにしたが、nMOs
)ランジスタ23,24.25より成るクランプ回路と
nMOs)ランシズタ8384.85より成るクランプ
回路とを共用し、この共用のクランプ回路を差動増幅回
路86の十人力とnMOs)ランジスタ26,27との
接続点に接続するようにしても上記実施例と同様の効果
が得られる。Further, in the embodiment shown in FIG. 5, two reference voltage generation circuits are provided to perform this switching, but the nMOS
) A clamp circuit consisting of transistors 23, 24, 25 (nMOs) and a clamp circuit consisting of transistors 8384.85 (nMOs) are shared, and this shared clamp circuit is connected to the differential amplifier circuit 86 and nMOs) transistors 26, 27. Even if it is connected to a connection point, the same effect as in the above embodiment can be obtained.
以上のようにこの発明によれば、外部電源の電圧への依
存性が比較的小さい第1の電圧を発生する第1の電圧発
生手段と、外部電源の電圧への依存性が比較的大きい第
2の電圧を発生する第2の電圧発生手段と、第1の初期
化信号に応答して第1の電圧を、第2の初期化信号に応
答して第2の電圧を選択的に内部回路に与える選択手段
を備えた電源電圧変換回路を設けたので、電源投入時に
内部回路が誤動作することがないとともに、内部回路の
動作時に内部電圧のマージンか大きくなるという効果が
ある。As described above, according to the present invention, the first voltage generating means generates the first voltage that has a relatively small dependence on the voltage of the external power source, and the first voltage generating means that generates the first voltage that has a relatively high dependence on the voltage of the external power source. an internal circuit that selectively generates the first voltage in response to the first initialization signal and the second voltage in response to the second initialization signal; Since the power supply voltage converter circuit is provided with a selection means for selecting the voltage, the internal circuit does not malfunction when the power is turned on, and the margin of the internal voltage increases when the internal circuit operates.
第1図はこの発明に係る半導体集積回路装置の一実施例
を示す回路図、第2図は初期化信号発生回路の一構成例
を示す回路図、第3図は第2図に示した回路の動作を示
すための図、第4図は第1図に示した装置の動作を説明
するための図、第5図はこの発明の他の実施例を示す回
路図、第6図は半導体集積回路装置の概略構成図、第7
図は従来の降圧回路を示す回路図、第8図は差動増幅回
路の一構成例を示す回路図、第9図は第7図に示した回
路の動作を説明するための図である。
図において、73は内部回路、81.88及び89は抵
抗、86は差動増幅回路、87は降圧用nMO3)ラン
ジスタ、90はnMOs)ランジスタ、100は初期化
信号発生回路である。
なお、各図中同一符号は同一または相当部分を示す。FIG. 1 is a circuit diagram showing an embodiment of a semiconductor integrated circuit device according to the present invention, FIG. 2 is a circuit diagram showing an example of the configuration of an initialization signal generation circuit, and FIG. 3 is a circuit diagram showing an example of the configuration of an initialization signal generation circuit. 4 is a diagram for explaining the operation of the device shown in FIG. 1, FIG. 5 is a circuit diagram showing another embodiment of the invention, and FIG. 6 is a semiconductor integrated circuit diagram. Schematic configuration diagram of circuit device, seventh
8 is a circuit diagram showing a conventional voltage step-down circuit, FIG. 8 is a circuit diagram showing an example of the configuration of a differential amplifier circuit, and FIG. 9 is a diagram for explaining the operation of the circuit shown in FIG. 7. In the figure, 73 is an internal circuit, 81, 88 and 89 are resistors, 86 is a differential amplifier circuit, 87 is a step-down nMO3) transistor, 90 is an nMOs) transistor, and 100 is an initialization signal generation circuit. Note that the same reference numerals in each figure indicate the same or corresponding parts.
Claims (1)
号を、前記一定期間経過後は第2の初期化信号を出力す
る初期化信号発生手段と、 前記外部電源の電圧を変換して内部回路に与える電圧変
換回路とを備え、 前記電圧変換回路は、 前記外部電源の電圧への依存性が比較的小さい第1の電
圧を発生する第1の電圧発生手段と、前記外部電源の電
圧への依存性が比較的大きい第2の電圧を発生する第2
の電圧発生手段と、前記第1の初期化信号に応答して前
記第1の電圧を、前記第2の初期化信号に応答して前記
第2の電圧を選択的に前記内部回路に与える選択手段を
備えた半導体集積回路装置。(1) Initialization signal generation means that outputs a first initialization signal for a certain period of time from the time when the external power supply is turned on, and outputs a second initialization signal after the elapse of the certain period of time, and converts the voltage of the external power supply. and a voltage conversion circuit that supplies the voltage to the internal circuit, and the voltage conversion circuit includes: a first voltage generating means that generates a first voltage that has relatively low dependence on the voltage of the external power source; a second voltage generating a second voltage having a relatively large voltage dependence;
voltage generating means, and selection for selectively applying the first voltage to the internal circuit in response to the first initialization signal and the second voltage in response to the second initialization signal. A semiconductor integrated circuit device equipped with means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2089512A JPH03288217A (en) | 1990-04-03 | 1990-04-03 | Semiconductor integrated circuit device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2089512A JPH03288217A (en) | 1990-04-03 | 1990-04-03 | Semiconductor integrated circuit device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03288217A true JPH03288217A (en) | 1991-12-18 |
Family
ID=13972838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2089512A Pending JPH03288217A (en) | 1990-04-03 | 1990-04-03 | Semiconductor integrated circuit device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03288217A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5260643A (en) * | 1992-07-16 | 1993-11-09 | National Semiconductor Corporation | Programmable reference voltage generator |
JP2006099507A (en) * | 2004-09-30 | 2006-04-13 | Citizen Watch Co Ltd | Constant voltage generator |
-
1990
- 1990-04-03 JP JP2089512A patent/JPH03288217A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5260643A (en) * | 1992-07-16 | 1993-11-09 | National Semiconductor Corporation | Programmable reference voltage generator |
JP2006099507A (en) * | 2004-09-30 | 2006-04-13 | Citizen Watch Co Ltd | Constant voltage generator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3773718B2 (en) | Semiconductor integrated circuit | |
US5811861A (en) | Semiconductor device having a power supply voltage step-down circuit | |
JPH05198176A (en) | Voltage supplying circuit, voltage generating and supplying circuit, voltage regulator and band-gap-voltage-reference generator | |
JP2869791B2 (en) | Semiconductor integrated circuit device and electronic device using the same | |
JPH0447591A (en) | Semiconductor integrated circuit device | |
US20190312575A1 (en) | Biasing cascode transistors of an output buffer circuit for operation over a wide range of supply voltages | |
JPH03132812A (en) | Bipolar/cmos regulator circuit | |
JPH04351791A (en) | Data input buffer for semiconductor memory device | |
JP2724872B2 (en) | Input circuit for semiconductor integrated circuit | |
JP3807799B2 (en) | Semiconductor device | |
US7348833B2 (en) | Bias circuit having transistors that selectively provide current that controls generation of bias voltage | |
US6885237B2 (en) | Internal step-down power supply circuit | |
KR19980025156A (en) | Semiconductor devices | |
JPH05114291A (en) | Generating circuit of reference voltage | |
JP3875285B2 (en) | Intermediate voltage generation circuit for semiconductor integrated circuit | |
KR20050041592A (en) | Internal voltage generation device capable of temperature compensation | |
JPH03288217A (en) | Semiconductor integrated circuit device | |
JPH05507576A (en) | Low standby current intermediate DC voltage generator | |
JPH06196989A (en) | Power on reset circuit | |
US6459329B1 (en) | Power supply auxiliary circuit | |
JPH03288218A (en) | Semiconductor integrated circuit device | |
JPH0554673A (en) | Reference potential generating circuit | |
JP3865283B2 (en) | Semiconductor integrated circuit | |
JPH09181266A (en) | Leakage current control system for low-voltage cmos circuit | |
JPH04274504A (en) | Power supply voltage dropping circuit |