JPH03287088A - Manufacture of magnetic sensor - Google Patents
Manufacture of magnetic sensorInfo
- Publication number
- JPH03287088A JPH03287088A JP8851890A JP8851890A JPH03287088A JP H03287088 A JPH03287088 A JP H03287088A JP 8851890 A JP8851890 A JP 8851890A JP 8851890 A JP8851890 A JP 8851890A JP H03287088 A JPH03287088 A JP H03287088A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic sensor
- substrate
- garnet
- ggg
- total reflection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measuring Magnetic Variables (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明はファラデー効果を利用して光学的に磁場の強さ
を測定する磁気センサの製作方法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a magnetic sensor that optically measures the strength of a magnetic field using the Faraday effect.
従来の技術
従来、この種の磁気センサは第3図に示すような構成で
あった。図に示すように、光の入射側かう光ファイバ6
a、ロンドレンズ付セラミック5a。2. Description of the Related Art Conventionally, this type of magnetic sensor has had a configuration as shown in FIG. As shown in the figure, the optical fiber 6 on the light incidence side
a, Ceramic 5a with Rondo lens.
偏光子3、ファラデー効果を有するガーネット結晶膜1
b、ガドリニウム・ガリウム・ガーネット(以下GGG
と略す)基板2C、ファラデー効果を有するガーネット
結晶膜1C1全反射ミラー7検光子4+ロッドレンズ付
セラミック6b、光ファイバ6bの順に構成され、ガー
ネット結晶膜1b、1eとGGG基板2との間取外は全
て接着剤で固着されていた。ガーネット結晶膜1b、1
cを磁場中に置くと、ファラデー効果により入射光の偏
光面が回転し、検光子4を通過する光量が変化する。こ
の光量の変化を検知することによシ磁場の強さを計測す
るものである。Polarizer 3, garnet crystal film 1 with Faraday effect
b. Gadolinium gallium garnet (hereinafter referred to as GGG)
) A substrate 2C, a garnet crystal film 1C having a Faraday effect, a total reflection mirror 7, an analyzer 4 + a ceramic 6b with a rod lens, and an optical fiber 6b are arranged in this order, and the gap between the garnet crystal films 1b and 1e and the GGG substrate 2 can be removed. All were fixed with adhesive. Garnet crystal film 1b, 1
When C is placed in a magnetic field, the plane of polarization of the incident light rotates due to the Faraday effect, and the amount of light passing through the analyzer 4 changes. The strength of the magnetic field is measured by detecting changes in the amount of light.
この磁気センサの組立て方法は、第3図に示すように1
ず5厚さ数百μmの光学研磨されたGGG基板2Cの両
面に、液晶エピタキシャル成長法(以下LPEと略す。The method of assembling this magnetic sensor is as shown in Figure 3.
First, a liquid crystal epitaxial growth method (hereinafter abbreviated as LPE) was applied to both sides of an optically polished GGG substrate 2C having a thickness of several hundred μm.
)によシ厚さ数十μmのガーネット結晶膜1bと10を
生成させ、その表面を光学研磨する。このようにして作
成されたファラデー素子の両面に偏光子3および全反射
ミラー7を、熱硬化性エポキシ樹脂で接着して組立てら
れる。さらに、第3図に示すように、他の光学部品も同
様に熱硬化性エポキシ樹脂で接着して組立て、磁気セン
サを作成していた。) Garnet crystal films 1b and 10 with a thickness of several tens of micrometers are formed, and the surfaces thereof are optically polished. A polarizer 3 and a total reflection mirror 7 are adhered to both surfaces of the Faraday element thus prepared using a thermosetting epoxy resin, thereby assembling the faraday element. Furthermore, as shown in FIG. 3, other optical components were similarly bonded and assembled using thermosetting epoxy resin to create a magnetic sensor.
発明が解決しようとする課題
このような従来の構成では1部品点数が多いことや接着
剤による接続箇所が多いことが原因で、磁気センサとし
ての歩留シが低く、製造コストが高くなるという間Mが
あった。Problems to be Solved by the Invention Due to the large number of parts and the large number of adhesive connections in a conventional configuration, the yield rate for magnetic sensors is low and manufacturing costs are high. There was M.
また、ファラデー素子を構成するGGG基板2Cはガー
ネット結晶膜1b、1cの成長時のみ必要なもので1本
来、磁気センサには不必要で。Further, the GGG substrate 2C constituting the Faraday element is necessary only when growing the garnet crystal films 1b and 1c, and is not originally necessary for the magnetic sensor.
その厚さはできるだけ薄い方が望ましい。しかし、感度
の高い磁気センサを構成するには、ガーネット結晶膜1
b、1cの膜厚を厚くして、ファラデ回転角を大きくす
る必要があり、厚いガーネット膜を作成するためには、
GGG基板2Cの割れを防ぐため、厚いQGG基板が必
要となる。その結果、2つのガーネット膜がGGG基板
2cの厚さだけ離れて存在するため、磁場検知方向に長
す磁気センサとなシ、微小なヌベースの磁場の測定には
不利になシ、センサの小型化も困難になるという問題が
あった。It is desirable that the thickness be as thin as possible. However, in order to construct a highly sensitive magnetic sensor, a garnet crystal film 1
It is necessary to increase the Faraday rotation angle by increasing the film thickness of b and 1c, and in order to create a thick garnet film,
In order to prevent the GGG substrate 2C from cracking, a thick QGG substrate is required. As a result, the two garnet films are separated by the thickness of the GGG substrate 2c, which makes it difficult to create a magnetic sensor that extends in the magnetic field detection direction. There was a problem that it became difficult to
本発明はこのような課題を解決するもので1歩留りがよ
く、低コストで、小型高感度の光学式磁気センサを提供
することを目的とするものである。The present invention solves these problems, and aims to provide a compact, highly sensitive optical magnetic sensor with a high yield and low cost.
課題を解決するための手段
この課題を解決するために本発明は、厚いGGG基板の
両面にファラデー効果を有するガーネット結晶膜をLP
E法で成長させた後、GGG基板を斜45°にカットす
ることによう2個のファラデー素子を作成し、さらにG
GG基板を全反射ミラーとしても使用できるようにした
ものである。Means for Solving the Problem In order to solve this problem, the present invention provides LP garnet crystal films having a Faraday effect on both sides of a thick GGG substrate.
After growing using the E method, two Faraday elements were created by cutting the GGG substrate at an angle of 45°, and then growing using the G method.
The GG substrate can also be used as a total reflection mirror.
作用
この構成によシ、全反射ミラーを省略することができる
ので、磁気センサを構成するのに必要な部品点数が減少
し、接着剤による接着箇所も減少するので、磁気センサ
の組立て工数が減少するとともに製造コストも低減する
。さらに、接着箇所で発生する熱膨張率の差による応力
により、ファラデー回転角が影響を受けるという現象も
、接着箇所が減少しただけ解消される。Effect: This configuration allows the total reflection mirror to be omitted, reducing the number of parts required to construct the magnetic sensor, and reducing the number of adhesive bonding points, reducing the number of man-hours required to assemble the magnetic sensor. At the same time, manufacturing costs are also reduced. Furthermore, the phenomenon in which the Faraday rotation angle is affected by the stress caused by the difference in thermal expansion coefficients generated at the bonding points is also eliminated as the number of bonding points is reduced.
渣た、厚いGGG基板を使用するので、厚いガーネット
膜を安定に成長させることができ、ファラデー回転角を
大きくできるので、磁気センサの感度が向上することと
なる。Since a thick GGG substrate is used, a thick garnet film can be grown stably, and the Faraday rotation angle can be increased, resulting in improved sensitivity of the magnetic sensor.
実施例
第1図ふ・よび第2図に本発明の一実施例の磁気センサ
の構成全示す。1ず、第1図(a)に示すように、厚さ
数−の厚い円型のGGG基板2の両面に。Embodiment FIGS. 1 and 2 show the entire structure of a magnetic sensor according to an embodiment of the present invention. First, as shown in FIG. 1(a), on both sides of a thick circular GGG substrate 2 with a thickness of -.
LPE法によシ厚さ数十μmのファラデー効果を有する
ガーネット結晶膜1を成長させ、第1図(b)のように
立方体に切断する。ガーネット結晶膜1aの面に垂直に
入射した光が直角に全反射されるよう、第1図(c)の
ようにGGG基板2&をガーネット結晶膜1aの而に対
し、45°の角度になるよう切断し、光学研磨する。こ
のようにして、1箇の部材から2箇のGGG基板全反射
ミラー2b付ガーネット結晶膜1dを作成する。このG
GG基板全反射ミラー2b付ガーネット結晶膜1al用
いて第2図に示すように、磁気センサを組立てる。すな
わち、光の入射側から、光フアイバ6aロツドレンズ付
セラミツク5a、偏光子3、ガネット結晶膜1a、GG
G基板全反射ミラー2b検光子4 、ロッドレンズ付セ
ラミック5b、光ファイz<6bの順に構成されている
。この磁気センサは、ガーネット結晶膜1aとGGG基
板全5:、剖ミラー2bとの間板外の部材間は、すべて
熱硬化性エポキシ樹脂で接着されている。検光子4とロ
ッドレンズ付セラミックとの間のみ光軸合せ作業を要し
、それ以外の接合は、各部材の面精度で接着される。オ
た、GGG基板全反剖ミラー2bは。A garnet crystal film 1 having a Faraday effect having a thickness of several tens of μm is grown by the LPE method and cut into cubes as shown in FIG. 1(b). The GGG substrate 2& is set at an angle of 45° with respect to the surface of the garnet crystal film 1a, as shown in FIG. Cut and optically polish. In this way, two garnet crystal films 1d with GGG substrate total reflection mirrors 2b are created from one member. This G
As shown in FIG. 2, a magnetic sensor is assembled using the GG substrate and the garnet crystal film 1al with the total reflection mirror 2b. That is, from the light incident side, the optical fiber 6a, the ceramic with rod lens 5a, the polarizer 3, the gannet crystal film 1a, and the GG
It is constructed in this order: a G-substrate total reflection mirror 2b, an analyzer 4, a rod lens-equipped ceramic 5b, and an optical fiber z<6b. In this magnetic sensor, the garnet crystal film 1a, the GGG substrate 5, and the autopsy mirror 2b are all bonded together with thermosetting epoxy resin. Optical axis alignment work is required only between the analyzer 4 and the rod lens-equipped ceramic, and the other parts are bonded with the surface accuracy of each member. Oh, the GGG board full autopsy mirror 2b.
検光子4との接合面も光学研磨が必要で、第1図(c)
の全反射ミラー研磨と同時に研磨される。Optical polishing is also required for the joint surface with analyzer 4, as shown in Figure 1(c).
Polished at the same time as total reflection mirror polishing.
このような磁気センサを交流あるいは直流の磁場中に置
くと、ファラデー効果を示すガーネット結晶膜1a中を
、偏光子3で偏光された光が通過すると、磁場の強さに
比例して偏光面が回転する。When such a magnetic sensor is placed in an AC or DC magnetic field, when light polarized by the polarizer 3 passes through the garnet crystal film 1a exhibiting the Faraday effect, the plane of polarization changes in proportion to the strength of the magnetic field. Rotate.
予め、偏光子3と偏光面が直交するように配置された検
光子4を、前記の偏光面が回転した光が通過するとき、
磁界の強さに比例して検光子4を通過する光量が増加す
る。この光量を計測することにより磁場の強さと磁場の
強さの変化を求めることができる。When the light with the polarization plane rotated passes through the analyzer 4, which is arranged in advance so that the polarization plane is orthogonal to the polarizer 3,
The amount of light passing through the analyzer 4 increases in proportion to the strength of the magnetic field. By measuring this amount of light, the strength of the magnetic field and changes in the strength of the magnetic field can be determined.
発明の効果
以上の実施例の説明からも明らかなように、本発明によ
れば、ガーネット結晶膜成長用のGGGを活用して、全
反射ミラー一体型ガーネット結晶膜からなるファラデー
素子を用いることによシ。Effects of the Invention As is clear from the description of the embodiments above, according to the present invention, by utilizing GGG for growing a garnet crystal film, a Faraday element made of a garnet crystal film integrated with a total reflection mirror can be used. Yosi.
独立の全反射ミラーが不要となる。この結果、磁気セン
サの構成部品点数と接着箇所が減少し、接着不良による
磁気センサの歩留り低下を防止し。An independent total reflection mirror is not required. As a result, the number of magnetic sensor components and bonding locations are reduced, preventing a drop in magnetic sensor yield due to poor bonding.
製造コストの低減が可能となる。It is possible to reduce manufacturing costs.
また、磁場に感応してファラデー効果を示すガーネット
結晶膜は5片面のみが接着剤で接着されているので、接
着剤の硬化収縮や接着剤とガーネット結晶膜との熱膨張
率の差により発生する応力の影響が減少し、磁気センサ
の温度特性も改善される。In addition, since the garnet crystal film, which exhibits the Faraday effect in response to magnetic fields, is bonded with adhesive on only one side, this phenomenon occurs due to curing shrinkage of the adhesive or the difference in thermal expansion coefficient between the adhesive and the garnet crystal film. The effects of stress are reduced and the temperature characteristics of the magnetic sensor are also improved.
さらに、厚いGGG基板基板金石ので、ガーネット結晶
膜の膜厚を厚く成長させることが可能となり、高感度の
磁気センサを実現できる。また、厚いGGG基板部を斜
にカットして、2箇のファラデー素子を得ることができ
るので、ファラデー素子の生産性が高くなり、コストダ
ウンが可能になるという効果が得られる。Furthermore, since the GGG substrate is made of goldstone, it is possible to grow a thick garnet crystal film, and a highly sensitive magnetic sensor can be realized. Further, since two Faraday elements can be obtained by cutting the thick GGG substrate portion diagonally, the productivity of Faraday elements is increased and costs can be reduced.
第1図は本発明の一実施例であるガーネット結晶膜の製
造方法を示す斜視図、第2図は同磁気センサの構成を示
す斜視図、第3図は従来の磁気センサの構成を示す斜視
図である。
1.1a・・・・・・ガーネット結晶膜、2a・・・・
・・GGG基板、2b・・・・・・C1GG基板全反射
ミラー、3・・・・・・偏光子、4・・・・・・検光子
、5a、5b・・・・・・ロッドレンズ付セラミックy
−,ea、eb・・・・・・光ファイバ。FIG. 1 is a perspective view showing a method for manufacturing a garnet crystal film according to an embodiment of the present invention, FIG. 2 is a perspective view showing the structure of the same magnetic sensor, and FIG. 3 is a perspective view showing the structure of a conventional magnetic sensor. It is a diagram. 1.1a...Garnet crystal film, 2a...
...GGG board, 2b...C1GG board total reflection mirror, 3...Polarizer, 4...Analyzer, 5a, 5b...With rod lens ceramic y
-, ea, eb... Optical fiber.
Claims (1)
膜と、ミラーと、検光子とからなるファラデー効果を用
いる磁気センサの製作方法であって、ガドリニウム・ガ
リウム・ガーネット単結晶から切り出した基板上にファ
ラデー効果をもつガーネット単結晶膜を液晶エピタキシ
ャル成長法により形成し、ガドリニウム・ガリウム・ガ
ーネット単結晶板の部分で斜45゜に切断して、切断面
を光子研磨し全反射ミラーとして用いる磁気センサの製
作方法。A method for manufacturing a magnetic sensor using the Faraday effect, which includes a polarizer, a garnet crystal grown film having the Faraday effect, a mirror, and an analyzer, the Faraday effect being formed on a substrate cut from a gadolinium-gallium-garnet single crystal. A method for manufacturing a magnetic sensor in which a garnet single crystal film having a 100% oxide film is formed by a liquid crystal epitaxial growth method, the gadolinium gallium garnet single crystal plate is cut at an angle of 45 degrees, and the cut surface is photon-polished to be used as a total reflection mirror.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8851890A JP2616124B2 (en) | 1990-04-03 | 1990-04-03 | How to make a magnetic sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8851890A JP2616124B2 (en) | 1990-04-03 | 1990-04-03 | How to make a magnetic sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03287088A true JPH03287088A (en) | 1991-12-17 |
JP2616124B2 JP2616124B2 (en) | 1997-06-04 |
Family
ID=13945052
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8851890A Expired - Fee Related JP2616124B2 (en) | 1990-04-03 | 1990-04-03 | How to make a magnetic sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2616124B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0568992A2 (en) * | 1992-05-08 | 1993-11-10 | Mitsubishi Gas Chemical Company, Inc. | Magnetooptic sensor head |
-
1990
- 1990-04-03 JP JP8851890A patent/JP2616124B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0568992A2 (en) * | 1992-05-08 | 1993-11-10 | Mitsubishi Gas Chemical Company, Inc. | Magnetooptic sensor head |
EP0568992A3 (en) * | 1992-05-08 | 1994-06-15 | Mitsubishi Gas Chemical Co | Magnetooptic sensor head |
US5493222A (en) * | 1992-05-08 | 1996-02-20 | Mitsubishi Gas Chemical Company, Ltd. | Reflection type magnetooptic sensor head with faraday rotator |
Also Published As
Publication number | Publication date |
---|---|
JP2616124B2 (en) | 1997-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5029988A (en) | Birefringence diffraction grating type polarizer | |
US4871226A (en) | Mounting of optical fibers to integrated optical chips | |
US5040863A (en) | Optical isolator | |
JPS62139504A (en) | Coupler for connecting optical fiber to ingegrated optical unit | |
JPH0718889B2 (en) | Optical parts | |
JPH03287088A (en) | Manufacture of magnetic sensor | |
JPH10133146A (en) | Capillary optical isolator | |
JP2003075679A (en) | Receptacle with optical isolator and method of assembling the same | |
JP2521537B2 (en) | Assembling method of voltage sensor | |
JPS60218623A (en) | Magnetooptic converting device | |
JP3954510B2 (en) | Embedded optical component, method for manufacturing the same, and optical circuit using the embedded optical component | |
JPH05313094A (en) | Optical isolator | |
JP2000249983A (en) | Production of optical non-reciprocal device | |
WO2003001276A1 (en) | Optical isolator | |
JP4263957B2 (en) | Optical isolator | |
JPH02188715A (en) | Optical isolator | |
JPH03171029A (en) | Production of optical isolator | |
JP2570830B2 (en) | Method of forming optical isolator | |
JP2893013B1 (en) | Optical magnetic field sensor | |
JPH09211093A (en) | Optical part for optical magnetic-field sensor | |
JPH04235524A (en) | Optical isolator for semiconductor laser module | |
JPH0215228A (en) | Optical fiber type fabry-perot resonator | |
JPH08166561A (en) | Optical element for optical isolator and optical isolator | |
JPH0215232A (en) | Optical fiber type polarized wave separator | |
JPH03249606A (en) | Polarization beam splitter with magnetooptic element and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |