[go: up one dir, main page]

JPH0328704B2 - - Google Patents

Info

Publication number
JPH0328704B2
JPH0328704B2 JP57213429A JP21342982A JPH0328704B2 JP H0328704 B2 JPH0328704 B2 JP H0328704B2 JP 57213429 A JP57213429 A JP 57213429A JP 21342982 A JP21342982 A JP 21342982A JP H0328704 B2 JPH0328704 B2 JP H0328704B2
Authority
JP
Japan
Prior art keywords
substrate
aluminum substrate
charge generation
charge
generation layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57213429A
Other languages
Japanese (ja)
Other versions
JPS59104651A (en
Inventor
Masakazu Kato
Yoichi Nishioka
Katsuaki Umibe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP21342982A priority Critical patent/JPS59104651A/en
Publication of JPS59104651A publication Critical patent/JPS59104651A/en
Publication of JPH0328704B2 publication Critical patent/JPH0328704B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0525Coating methods

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】 (技術分野) 本発明は電子写真用感光体の製造方法、特に機
能分離型電子写真用感光体の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method for manufacturing an electrophotographic photoreceptor, and particularly to a method for manufacturing a functionally separated type electrophotographic photoreceptor.

(従来技術) 従来の有機顔料または有機染料を電荷発生層と
する機能分離型感光体は、第1図のようにアルミ
ニウム等の導電性基板11の上に電荷発生層12
として有機顔料または有機染料の薄膜を真空蒸着
法あるいは溶液をコーテイングする方法で形成
し、この電荷発生層12の上に有機物電荷輸送層
13をドクターブレード等の溶液コーテイング法
で形成している。
(Prior Art) A conventional functionally separated photoreceptor using an organic pigment or an organic dye as a charge generation layer has a charge generation layer 12 on a conductive substrate 11 made of aluminum or the like, as shown in FIG.
A thin film of an organic pigment or organic dye is formed by a vacuum evaporation method or a solution coating method, and an organic charge transport layer 13 is formed on this charge generation layer 12 by a solution coating method such as a doctor blade.

この形式の機能分離型感光体に用いる導電性基
板11は一般的に陽極酸化処理を行つたアルミニ
ウム材料を用いており、またこの陽極酸化処理皮
膜は封孔処理が施されている。さらに電荷発生層
12はフタロシアニン系またはメロシアニン系の
有機材料を真空蒸着により形成した厚さ0.1〜
0.5μmの薄膜、またはクロロダイアンブルー,ス
クウアリリウム酸誘導体,トリフエニルメタン系
色素などの有機材料を有機溶媒に溶解したものを
ドクターブレード法などの溶液コーテイングによ
り形成した薄膜であり、その乾燥厚さは1〜3μ
mが普通である。電荷輸送層13はポリビニルカ
ルバゾール(PVK),ポリカーボネート樹脂と混
合したピラゾリン誘導体またはアクリル樹脂と混
合したヒドラゾン誘導体などの溶液を溶液コーテ
イングにより形成した乾燥厚さ10〜20μmの薄膜
である。
The conductive substrate 11 used in this type of functionally separated photoreceptor is generally made of an aluminum material that has been anodized, and the anodized film is sealed. Furthermore, the charge generation layer 12 is made of a phthalocyanine-based or merocyanine-based organic material formed by vacuum evaporation, and has a thickness of 0.1 to 100 ml.
A thin film of 0.5 μm, or a thin film formed by solution coating such as the doctor blade method using an organic material such as chlorodiane blue, squaryllic acid derivative, or triphenylmethane dye dissolved in an organic solvent, and its dry thickness is 1~3μ
m is normal. The charge transport layer 13 is a thin film with a dry thickness of 10 to 20 μm formed by solution coating of a solution of polyvinylcarbazole (PVK), a pyrazoline derivative mixed with a polycarbonate resin, or a hydrazone derivative mixed with an acrylic resin.

この第1図のような構成の感光体を製造する
際、特に電荷発生層12を形成する方法のうち真
空蒸着法は、均一な0.1〜0.5μmの極く薄い膜で
も容易に得られるが、大がかりな真空装置を使用
しなければならず、その作業は非常に繁雑であ
り、消費電力も大きくコスト高になる欠点があ
る。また溶液コーテイング法においては、電荷発
生体用材料だけでは膜を形成する能力がないので
少量の結着および成膜用樹脂材料を添加する必要
がある。しかし、この方法により形成した電荷発
生層は均一な0.1μm程度の極く薄い膜を作成する
ことは非常に難しく1μm以上厚くなりがちであ
る。そして、この方法で製造した感光体の電子写
真特性は樹脂材料の添加と膜厚が大のため残留電
位が大であつたり、インダクシヨン効果、すなわ
ち感光体の使用始めから安定するまでかなり時間
を要する現像が生じたり、膜厚が大のため、この
電荷発生層の部分の強度が弱く、この部分からは
がれやすいという欠点があつた。
When manufacturing a photoreceptor having the structure shown in FIG. 1, the vacuum evaporation method is particularly used to form the charge generation layer 12, and even an extremely thin uniform film of 0.1 to 0.5 μm can be easily obtained. This method requires the use of a large-scale vacuum device, which is very complicated and requires a large amount of power, resulting in high costs. Furthermore, in the solution coating method, since the charge generator material alone does not have the ability to form a film, it is necessary to add a small amount of binding and film-forming resin material. However, the charge generation layer formed by this method tends to be thicker than 1 μm because it is very difficult to create a uniform extremely thin film of about 0.1 μm. The electrophotographic properties of the photoreceptor manufactured using this method are such that due to the addition of resin materials and the large film thickness, the residual potential is large, and due to the induction effect, it takes a considerable amount of time for the photoreceptor to stabilize from the beginning of use. There are disadvantages in that the required development occurs, and because the film is thick, the strength of this charge generating layer is low and it is easy to peel off from this part.

(発明の開示) そこで、本発明者等は鋭意検討を重ねた結果、
陽極酸化処理により表面に陽極酸化膜を形成した
アルミニウム基板を、封孔処理せずに活性な
まゝ、電荷発生材料の染料又は顔料を吸着させる
ことが容易に極く薄い電荷発生層を形成する方法
であるとの知見を得、本発明に到達した。
(Disclosure of the Invention) Therefore, as a result of extensive studies, the present inventors found that
An aluminum substrate with an anodized film formed on its surface by anodizing treatment can easily adsorb dyes or pigments as charge generating materials while remaining active without sealing to form an extremely thin charge generating layer. The present invention was achieved based on the knowledge that this method is a method.

すなわち、本発明は、導電性基板上に電荷発生
層を形成し、この上に電荷輸送層を形成した機能
分離型電子写真用感光体において、前記導電性基
板にアルミニウム基板を用い、該アルミニウム基
板を陽極酸化処理して該基板表面に陽極酸化膜を
形成し、該陽極酸化膜に封孔処理を施さずに、前
記基板表面を染料あるいは顔料の溶液に浸漬し、
前記基板表面に染料あるいは顔料を吸着させ電荷
発生層を形成するようにしたことを特徴とする電
子写真用感光体の製造方法である。
That is, the present invention provides a functionally separated electrophotographic photoreceptor in which a charge generation layer is formed on a conductive substrate and a charge transport layer is formed thereon, in which an aluminum substrate is used as the conductive substrate, and the aluminum substrate is forming an anodized film on the surface of the substrate by anodizing, and immersing the surface of the substrate in a dye or pigment solution without performing a sealing treatment on the anodic oxide film,
This method of manufacturing an electrophotographic photoreceptor is characterized in that a dye or pigment is adsorbed onto the surface of the substrate to form a charge generation layer.

なお、電荷発生材料として使用可能な有機物染
料あるいは顔料としては、アンスラキノン系,ニ
トロソ系,モノアゾ系,ビスアゾ系,ザンセン
系,ピラゾロン系,トリフエニルメタル系などが
あげられる。
Examples of organic dyes or pigments that can be used as charge-generating materials include anthraquinone, nitroso, monoazo, bisazo, xanthene, pyrazolone, and triphenylmetal dyes.

(実施例) 以下本発明の実施例を図面を参照して説明す
る。第2図は実施例の概略工程図である。この図
に示すように、まず始めにアルミニウム基板の脱
脂処理を行つた(工程A)。この脱脂処理は2回
行つた。まず、あらかじめ50℃の界面活性剤を添
加した10%硫酸にアルミニウム基板を浸漬して第
1回目の脱脂を行い、これを水洗し、次に水酸化
ナトリウム溶液に浸漬して第2回目の脱脂を行つ
た。このあと希硝酸に浸漬し水洗いした。このよ
うにしてアルミニウム基板の脱脂処理を行つた
後、アルミニウム基板を陽極側として、10%硫酸
中で電流密度2A/dm2で電解した(工程B)。こ
の時の陽極酸化膜の生成速度は0.3μm/分であつ
た。このようにしてアルミニウム基板を70分間電
解し約20μmの陽極酸化膜を形成したのち、アル
ミニウム基板を水洗い、乾燥した。このあと、ア
ルミニウム基板を真空中に保管した。
(Example) Examples of the present invention will be described below with reference to the drawings. FIG. 2 is a schematic process diagram of the example. As shown in this figure, first, the aluminum substrate was degreased (Step A). This degreasing treatment was performed twice. First, the aluminum substrate is immersed in 10% sulfuric acid to which a surfactant has been added at 50°C for the first degreasing process, then washed with water, and then immersed in a sodium hydroxide solution for the second degreasing process. I went to After that, it was immersed in dilute nitric acid and washed with water. After degreasing the aluminum substrate in this way, electrolysis was carried out in 10% sulfuric acid at a current density of 2 A/dm 2 with the aluminum substrate as the anode (Step B). The rate of formation of the anodic oxide film at this time was 0.3 μm/min. After electrolyzing the aluminum substrate for 70 minutes to form an anodic oxide film of about 20 μm in this manner, the aluminum substrate was washed with water and dried. After this, the aluminum substrate was stored in a vacuum.

次に、この真空中に保管したアルミニウム基板
を電荷発生層材料の溶液(処理液)に浸漬した。
(工程C)。ここで、電荷発生材料としては、次の
一般式 で表わされる、中心金属がAl(アルミニウム)で
このAlに1ケのCl(塩素)が結合し、フタロシア
ニン環のまわりのベンゼン環の水素の一部分をCl
で置換したもの(以下AlClPc(Cl)と略記する)
を用いた。なお、このAlClPc(Cl)はフタロニト
リル法により合成し、充分精製したものを使用し
た。また、このAlClPc(Cl)を無水エチルアルコ
ールに0.5wt%溶解して処理液を作成し、この処
理液に、陽極酸化処理を行なつた活性な表面を有
するアルミニウム基板を10分間浸漬した。この
時、処理液の温度は35℃であつた。このようにし
てアルミニウム基板上にAlClPc(Cl)を吸着させ
電荷発生層を形成した。
Next, the aluminum substrate stored in vacuum was immersed in a solution (processing liquid) of the charge generation layer material.
(Step C). Here, as a charge generating material, the following general formula is used. The central metal is Al (aluminum), and one Cl (chlorine) is bonded to this Al, and a portion of the hydrogen in the benzene ring around the phthalocyanine ring is converted into Cl.
(hereinafter abbreviated as AlClPc(Cl))
was used. Note that this AlClPc (Cl) was synthesized by the phthalonitrile method and sufficiently purified. Further, a treatment solution was prepared by dissolving 0.5 wt% of this AlClPc (Cl) in anhydrous ethyl alcohol, and an aluminum substrate having an active surface that had been anodized was immersed in this treatment solution for 10 minutes. At this time, the temperature of the treatment liquid was 35°C. In this way, AlClPc (Cl) was adsorbed onto the aluminum substrate to form a charge generation layer.

しかる後、AlClPc(Cl)を吸着させたアルミニ
ウム基板を処理液から引き上げ、これを十分乾燥
した。この乾燥されたアルミニウム基板に形成さ
れたAlClPc(Cl)膜の厚さは約0.1μmであつた。
Thereafter, the aluminum substrate on which AlClPc (Cl) was adsorbed was removed from the treatment solution and thoroughly dried. The thickness of the AlClPc (Cl) film formed on this dried aluminum substrate was about 0.1 μm.

このあと、この電荷発生層が形成されたアルミ
ニウム基板をテトラヒドロフラン(THF)蒸気
中に24時間曝露し溶媒処理を行つた(工程D)。
次に、PVKのTHF溶液をドクターブレードを用
いて、乾燥厚さが16μmになるようにコーテイン
グすることにより、電荷輸送層を形成した(工程
E)。
Thereafter, the aluminum substrate on which the charge generation layer was formed was exposed to tetrahydrofuran (THF) vapor for 24 hours for solvent treatment (Step D).
Next, a charge transport layer was formed by coating a THF solution of PVK using a doctor blade so that the dry thickness was 16 μm (Step E).

最後に、このようにして作成した感光体を80℃
の空気恒温槽で3時間加熱して、含有している溶
媒をほぼ完全に除去した。
Finally, the photoreceptor prepared in this way was heated to 80°C.
The solvent was almost completely removed by heating in an air constant temperature bath for 3 hours.

以上説明したように、実施例では染料又は顔料
を含む処理液に陽極酸化処理したアルミニウム基
板を浸漬するだけで極く薄い電荷発生層を容易に
形成することができる。
As described above, in the embodiment, an extremely thin charge generation layer can be easily formed by simply immersing an anodized aluminum substrate in a treatment solution containing a dye or pigment.

また、実施例により作成した電子写真用感光体
の電荷特性を測定した結果、コロナ電圧−6KV
の時初期表面電位(V0)が−600Vであり、この
V0を半分にするのに必要な露光量は、800nmの
照射光を用いた場合1.5cm2/μJであり非常に高感
度であつた。また残留電位は50V以下と小さかつ
た。比較のために、本実施例の処理液を用いた電
荷発生層の形成法の代わりに、従来用いられてい
る真空蒸着法を用いてAlClPc(Cl)の電荷発生層
を陽極酸化処理したアルミニウム基板上に0.1μm
形成した後、第2図と全く同じようにした感光体
を作成したものの帯電特性を測定した。その結果
は、コロナ電圧−6KVの時、初期表面電位(V0
が−700Vであり、このV0を半分にするのに必要
な露光量は、800nmの照射光を用いた場合2.0
cm2/μJであつた。また残留電位は30V以下であつ
た。これから明らかなように、本実施例による処
理液を用いる方法と、従来の真空蒸着を用いた方
法で作成した2種の感光体の帯電特性は殆ど同じ
であり、両方ともインダクシヨン効果もなかつ
た。つまり、処理液を用いる方法で作成した感光
体は蒸着法で作成した感光体に劣らず非常に優れ
た特性を示した。
In addition, as a result of measuring the charge characteristics of the electrophotographic photoreceptor produced according to the example, the corona voltage was -6KV.
When , the initial surface potential (V 0 ) is −600V, and this
The exposure amount required to halve V 0 was 1.5 cm 2 /μJ when using 800 nm irradiation light, indicating extremely high sensitivity. In addition, the residual potential was small at less than 50V. For comparison, an aluminum substrate was prepared in which an AlClPc (Cl) charge generation layer was anodized using the conventional vacuum evaporation method instead of the charge generation layer formation method using the treatment solution of this example. 0.1μm on top
After the formation, a photoreceptor was prepared in exactly the same manner as shown in FIG. 2, and its charging characteristics were measured. The result is that when the corona voltage is -6KV, the initial surface potential (V 0 ) is
is −700V, and the exposure amount required to halve this V 0 is 2.0 when using 800nm irradiation light.
It was cm 2 /μJ. Moreover, the residual potential was 30V or less. As is clear from this, the charging characteristics of the two types of photoreceptors prepared by the method using the processing solution according to this example and the method using the conventional vacuum evaporation are almost the same, and both had no induction effect. . In other words, the photoreceptor produced by the method using the treatment liquid exhibited very excellent characteristics, comparable to those produced by the vapor deposition method.

また、本実施例の感光体は、前記のように電荷
発生層が極く薄いことにより、機械的強度も高い
ものが得られた。
In addition, the photoreceptor of this example had a very thin charge generation layer as described above, so that it had high mechanical strength.

(発明の効果) 以上のように本発明による製造方法によれば、
陽極酸化処理により表面に陽極酸化膜を形成した
アルミニウム基板を、封孔処理せずに活性なまゝ
の状態の表面の性質を利用して有機電荷発生材料
を吸着させることにより電荷発生層を形成したの
で、機械的強度の高い特性のよい電子写真用感光
体を容易に製造することができる。
(Effect of the invention) As described above, according to the manufacturing method of the present invention,
A charge generation layer is formed by adsorbing an organic charge generation material on an aluminum substrate that has an anodized film formed on its surface through anodization treatment, using the properties of the active surface without sealing. Therefore, an electrophotographic photoreceptor with high mechanical strength and good properties can be easily produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は機能分離型感光体の断面図、第2図は
本発明の電子写真用感光体の製造方法の実施例を
示す概略工程図である。
FIG. 1 is a sectional view of a functionally separated photoreceptor, and FIG. 2 is a schematic process diagram showing an embodiment of the method for manufacturing an electrophotographic photoreceptor of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 導電性基板上に電荷発生層を形成し、この上
に電荷輸送層を形成した機能分離型電子写真用感
光体において、前記導電性基板にアルミニウム基
板を用い、該アルミニウム基板を陽極酸化処理し
て該基板表面に陽極酸化膜を形成し、該陽極酸化
膜に封孔処理を施さずに、前記基板表面を染料あ
るいは顔料の溶液に浸漬し、前記基板表面に染料
あるいは顔料を吸着させ電荷発生層を形成するよ
うにしたことを特徴とする電子写真用感光体の製
造方法。
1. In a functionally separated electrophotographic photoreceptor in which a charge generation layer is formed on a conductive substrate and a charge transport layer is formed thereon, an aluminum substrate is used as the conductive substrate, and the aluminum substrate is anodized. an anodic oxide film is formed on the surface of the substrate, and the surface of the substrate is immersed in a dye or pigment solution without sealing the anodic oxide film, and the dye or pigment is adsorbed onto the substrate surface to generate a charge. A method for producing an electrophotographic photoreceptor, characterized in that a layer is formed.
JP21342982A 1982-12-07 1982-12-07 Manufacture of electrophotographic sensitive body Granted JPS59104651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21342982A JPS59104651A (en) 1982-12-07 1982-12-07 Manufacture of electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21342982A JPS59104651A (en) 1982-12-07 1982-12-07 Manufacture of electrophotographic sensitive body

Publications (2)

Publication Number Publication Date
JPS59104651A JPS59104651A (en) 1984-06-16
JPH0328704B2 true JPH0328704B2 (en) 1991-04-19

Family

ID=16639076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21342982A Granted JPS59104651A (en) 1982-12-07 1982-12-07 Manufacture of electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS59104651A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727266B2 (en) * 1986-11-04 1995-03-29 ミノルタ株式会社 Multilayer photoconductor
JPH0727265B2 (en) * 1986-11-04 1995-03-29 ミノルタ株式会社 Multilayer photoconductor
JPH0727263B2 (en) * 1986-11-04 1995-03-29 ミノルタ株式会社 Multilayer photoconductor
JPH0727264B2 (en) * 1986-11-04 1995-03-29 ミノルタ株式会社 Multilayer photoconductor
JP2708435B2 (en) * 1987-10-28 1998-02-04 昭和アルミニウム株式会社 Electrophotographic photoreceptor
JP2661572B2 (en) * 1994-12-27 1997-10-08 日本電気株式会社 Electrophotographic photoreceptor and method of manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330497B2 (en) * 1973-12-06 1978-08-28
JPS5729051A (en) * 1980-07-30 1982-02-16 Fuji Electric Co Ltd Pretreatment of substrate of electrophotographic receptor

Also Published As

Publication number Publication date
JPS59104651A (en) 1984-06-16

Similar Documents

Publication Publication Date Title
JPH0328704B2 (en)
JPH0328705B2 (en)
JPH01243066A (en) Electrophotographic sensitive body
US5166020A (en) Electrophotographic photoreceptor
US5132200A (en) Electrophotographic photoreceptor with porous anodized Al layer and process for producing the same
JPH03109569A (en) Electrophotographic sensitive body and manufacture of the same
JP2003055796A (en) Aluminum material, production method therefor, photosensitive body for electrophotography and aluminum material for electrolytic capacitor electrode
JPH03109563A (en) Electrophotographic sensitive body and manufacture of the same
JP2622758B2 (en) Electrophotographic photoreceptor and method of manufacturing the same
JP2663647B2 (en) Electrophotographic photoreceptor and method of manufacturing the same
JP3048349B2 (en) Image member comprising binary metal layer substrate and metal oxide layer
JP2757393B2 (en) Manufacturing method of electrophotographic photoreceptor
US3877937A (en) Polyrhodanine sensitizers for organic photoconductors
JPH0784391A (en) Method for producing support for electrophotographic photoreceptor and electrophotographic photoreceptor
JPS63116163A (en) Laminated photosensitive body
JP2622757B2 (en) Electrophotographic photoreceptor and method of manufacturing the same
JP3538482B2 (en) Manufacturing method of photoreceptor for electrophotography
JPH05142806A (en) Method for manufacturing electrophotographic photoreceptor
JPH07238382A (en) Production of thin film
JPS61272756A (en) Electrophotographic sensitive body
JP2000063696A (en) Method for producing oxotitanium phthalocyanine crystal and laminated electrophotographic photoreceptor obtained using the same
JPH02293851A (en) Electrostatic recording body
JPH01188860A (en) Laminated photosensitive body
CN1862395B (en) Anodizing methods and layers produced therefrom
JPH08262774A (en) Electrophotographic photoreceptor