JPH03286399A - Image processing type traffic flow measuring device - Google Patents
Image processing type traffic flow measuring deviceInfo
- Publication number
- JPH03286399A JPH03286399A JP8492290A JP8492290A JPH03286399A JP H03286399 A JPH03286399 A JP H03286399A JP 8492290 A JP8492290 A JP 8492290A JP 8492290 A JP8492290 A JP 8492290A JP H03286399 A JPH03286399 A JP H03286399A
- Authority
- JP
- Japan
- Prior art keywords
- vehicle
- shadow
- road surface
- luminance
- measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012545 processing Methods 0.000 title claims abstract description 16
- 238000001514 detection method Methods 0.000 claims description 7
- 238000005070 sampling Methods 0.000 abstract 2
- 238000005259 measurement Methods 0.000 description 46
- 238000000034 method Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Landscapes
- Traffic Control Systems (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野1
本発明は、工業用テレビ(ITV)カメラ等を用いて画
像処理により車両を検出する画像処理式の交通流計測装
置に関し、特に計測対象である車両の周囲に発生する影
を高精度に検出しで影の影響を除去可能にした交通流計
測装置に関する。[Detailed Description of the Invention] [Industrial Application Field 1] The present invention relates to an image processing type traffic flow measuring device that detects vehicles through image processing using an industrial television (ITV) camera, etc. This invention relates to a traffic flow measurement device that can detect shadows that occur around a vehicle with high precision and remove the effects of shadows.
[従来の技術j
この種の交通流計測装置においては、車両の周囲に発生
する紺は、車両の大きさを誤って測定することにより車
種を誤って検出したり、別の車両と誤ることにより測定
車両の個数を誤って検出する原因となる。従って、車両
の周囲に発生する影を正確に検出して、形の影響を除去
する必要がある。[Prior art] In this type of traffic flow measuring device, the dark blue that appears around the vehicle may be caused by incorrectly measuring the size of the vehicle, erroneously detecting the type of vehicle, or mistaking it for another vehicle. This may cause the number of vehicles to be measured to be erroneously detected. Therefore, it is necessary to accurately detect the shadows that appear around the vehicle and remove the influence of the shape.
従来のこの種の交通流計測装置における車両の形の検出
方法としては、車両の影が路面よりち暗く、しかも明る
さの時間的変化がほとんどなく一様であることを利用し
て影を検出する方法が一般に知られている(橋本、熊谷
他、“画像処理交通流計測システムの開発”、住友電気
第127号P59昭和61年9月参照)。The conventional method for detecting the shape of a vehicle in this type of traffic flow measuring device is to detect the shadow by taking advantage of the fact that the shadow of the vehicle is darker than the road surface, and the brightness is uniform with almost no change over time. A method is generally known (see Hashimoto, Kumagai et al., "Development of Image Processing Traffic Flow Measurement System", Sumitomo Electric No. 127, P59, September 1986).
[発明が解決しようとする課題1
しかしながら、従来技術では、上述のように、影部分の
輝度が路面よりも暗いこと、あるいは計測点における輝
度値の時間的変化が一様であることを利用して影を検出
していたため、輝度値が路面基準輝度よりも低い黒い車
両との判別が困難であった。[Problem to be Solved by the Invention 1] However, as mentioned above, the conventional technology does not utilize the fact that the brightness of the shadow area is darker than the road surface or that the temporal change in brightness value at the measurement point is uniform. Because shadows were detected using the 3D image, it was difficult to distinguish the vehicle from a black vehicle whose brightness value was lower than the road surface standard brightness.
本発明の目的は、上述の課題を解決して、影の影響を正
確に除去でき、車種判別精度1台数計測精度の向上が図
れる画像処理式の交通流計測装置を提供することにある
。An object of the present invention is to solve the above-mentioned problems and provide an image processing type traffic flow measurement device that can accurately remove the influence of shadows and improve the accuracy of vehicle type discrimination and single-unit measurement.
[課題を解決するための手段1
上記目的を達成するため、本発明は、路面と、この路面
上に存在する車両とを撮影することにより得られる入力
画像から、路面部分と輝度の異なる部分を特徴点として
抽出することにより前記車両を検出する装置において、
前記路面部分の基準輝度を下回る輝度の前記入力画像の
輝度値と該路面部分の基準輝度値との差分値を算出する
演算手段と、該演算手段で算出された該差分値の分布パ
ターンが前記路面の長手方向または横断方向に沿って順
次変化する部分を、前記車両の動部分として検出する影
検出手段とを具備したことを特徴とする。[Means for Solving the Problems 1] In order to achieve the above-mentioned object, the present invention detects a portion having a different brightness from the road surface portion from an input image obtained by photographing a road surface and a vehicle existing on the road surface. In a device that detects the vehicle by extracting it as a feature point,
a calculation means for calculating a difference value between a brightness value of the input image having a brightness lower than a reference brightness of the road surface portion and a reference brightness value of the road surface portion; and a distribution pattern of the difference value calculated by the calculation means; The vehicle is characterized by comprising a shadow detection means for detecting a portion of the road surface that changes sequentially along the longitudinal direction or the transverse direction as a moving portion of the vehicle.
[作 用1
本発明では、車両の影が車体から遠ざかるに従って薄く
なるという特性に着目して、測定対象の車両の上方から
撮像した入力画像の輝度と路面基準・輝度の差分値の分
布濃度パターンが一定方向に順次変化する部分を車両の
影として検出する。[Function 1] In the present invention, focusing on the characteristic that the shadow of a vehicle becomes thinner as it moves away from the vehicle body, the distribution density pattern of the difference value between the brightness of the input image captured from above the vehicle to be measured and the road surface reference brightness is developed. The area where the shadow changes sequentially in a certain direction is detected as the shadow of the vehicle.
このように本発明では車体から遠ざかるに従って薄くな
るという性質を利用して車両の影を検出するので、走行
車両および静止車両の車体色、形状に関係なく安定して
形を検出でき、形が隣接車線上にのびたような場合でも
影を黒い車両と誤検知することがない。従って、本発明
により影の影響を効果的に除去でき、車種判別精度5台
数計測精度の向上が図れる。In this way, the present invention detects the shadow of a vehicle by taking advantage of the property that it becomes thinner as it moves away from the vehicle body, so it is possible to stably detect the shadow regardless of the body color or shape of moving or stationary vehicles. Even if the shadow extends over the lane, it will not be mistakenly detected as a black vehicle. Therefore, according to the present invention, the influence of shadows can be effectively removed, and the accuracy of vehicle type discrimination and five vehicle count measurement accuracy can be improved.
[実施例]
以下、図面を参照して本発明の実施例を詳細に説明する
。[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.
第1図は本発明の一実施例の画像処理式交通流計測装置
の要部回路構成を示す。本図において、1は道路上を走
行する車両を撮像する撮像手段としてのI丁■カメラの
ようなカメラ部(固定カメラ)、2はカメラ部lの出力
画像信号を画像処理して車両の周囲に発生する影を検出
する画像計θ1j部である。画像計測部2はA/D
(アナログ・デジタル)変換部211画像記憶部221
画像3値化処理部23.車体検出部24.影判定部25
.車両計測部26および出力部27とから構成される。FIG. 1 shows the main circuit configuration of an image processing type traffic flow measuring device according to an embodiment of the present invention. In this figure, 1 is a camera unit (fixed camera) such as an I-D camera as an imaging means for capturing an image of a vehicle traveling on a road, and 2 is a camera unit that processes the output image signal of the camera unit 1 to capture images of the surroundings of the vehicle. This is the imager θ1j section that detects shadows that occur in the image. Image measurement section 2 is A/D
(analog/digital) conversion section 211 image storage section 221
Image ternarization processing unit 23. Vehicle body detection section 24. Shadow determination section 25
.. It is composed of a vehicle measuring section 26 and an output section 27.
A/D変換部21はカメラ部1の出力画像信号をデジタ
ル化する1画像記憶部22はRAM (ランダムアク
セスメモリ)等から成り、デジタル化された画像信号を
輝度信号として撮像画面単位で記憶する。画像3値化処
理23は記憶された輝度信号を用いて計測サンプル点毎
の3値化(1,O,−1)を行う。車体検出部24は計
測サンプル点の輝度の偏移から車体を検出する。影判別
部25は入力画像の輝度値と路面基準輝度値との差分値
の分布パターンを基に後述のように車両の影を判定する
。The A/D conversion unit 21 digitizes the output image signal of the camera unit 1. The 1-image storage unit 22 is comprised of a RAM (random access memory), etc., and stores the digitized image signal as a luminance signal in units of imaging screens. . Image ternarization processing 23 performs ternarization (1, O, -1) for each measurement sample point using the stored luminance signal. The vehicle body detection unit 24 detects the vehicle body from the luminance shift of the measurement sample points. The shadow determination unit 25 determines the shadow of the vehicle as described below based on the distribution pattern of the difference value between the brightness value of the input image and the road surface reference brightness value.
車両計測部26は影判定部25かも得られる車両の影デ
ータを用いて車両を識別し、影の影響のない各種の交通
流計測データを算出し、出力部27からこの計測データ
を遠隔の交通管制用中実装置へ送出する。The vehicle measurement unit 26 identifies the vehicle using the vehicle shadow data obtained from the shadow determination unit 25, calculates various traffic flow measurement data that is not affected by shadows, and outputs this measurement data from the output unit 27 to the remote traffic flow. Send to solid control device.
第2図は第1図のカメラ部1と画像計測部2の実際の取
付は設置状態の一例を示す。カメラ部1は多車線道路4
の路側5に立てた支柱(ボール)3の上部アーム部に固
定され、画像計測部2は支柱3の胴部の所定位置に固定
される。カメラ部1は一定の高さから多車線道路4の所
定の範囲を計測領域6として一定の角度で撮像し、画像
計測部2はカメラ部1で撮像した画像データから車両の
感知処理を行う0本実施例では、−例として片側3車線
の場合を考える。なお、7は中央線(中央分離帯〉を示
す。FIG. 2 shows an example of how the camera section 1 and image measurement section 2 shown in FIG. 1 are actually installed. Camera part 1 is multi-lane road 4
The image measurement unit 2 is fixed to the upper arm part of a pillar (ball) 3 erected on the roadside 5 of , and the image measurement unit 2 is fixed at a predetermined position on the trunk of the pillar 3. The camera unit 1 images a predetermined range of the multi-lane road 4 from a certain height at a certain angle as a measurement area 6, and the image measurement unit 2 performs vehicle sensing processing from the image data captured by the camera unit 1. In this embodiment, a case where there are three lanes on each side will be considered as an example. Note that 7 indicates the center line (median strip).
第3図は上述の影判定部25における判定動作の原理を
示す。車体の影は第3図(A)に示すように、その発生
場所により前影と横形に分けられるが、それぞれ縦ある
いは横の長さが車長あるいは車幅長に等しいので、形状
で車両と影を分離することは難しい。しかし、第3図(
B)および同図(C)に示すように、車体の影は前影、
横形とも車体から遠ざかるに従って薄くなる。影判定部
25はこの現象を利用して、以下のようにして車体の影
を検出する。この検出手順は前影の場合も横形の場合も
同じであるので、−例として前影の場合について説明す
る。FIG. 3 shows the principle of the determination operation in the shadow determination section 25 described above. As shown in Figure 3 (A), vehicle body shadows can be divided into front shadows and horizontal shadows depending on where they occur, but since the length or width of each is equal to the length or width of the vehicle, they are different from the vehicle in terms of shape. It is difficult to separate the shadows. However, in Figure 3 (
As shown in (B) and (C) of the same figure, the shadow of the vehicle body is the front shadow,
Both sides become thinner as they move away from the car body. The shadow determination unit 25 utilizes this phenomenon to detect the shadow of the vehicle body in the following manner. This detection procedure is the same for both foreshadow and horizontal shapes, so the foreshadow case will be described as an example.
まず、それぞれの計測サンプル点を車両進行方向と道路
横断方向に結んで計測ラインを作る。従って、計測点は
計測領域4において格子状に配置される。前影の場合に
は、車両進行方向の計測ライン(a)を用いる。車両進
行方向の計測ラインにおいである区間連続して入力輝度
が路面基準輝度よりも暗い部分を検出する。検出された
区間に含まれる各計測サンプル点について路面基準輝度
と入力輝度の差分値を求め、例えば道路下流側から上流
側に向かって計測ライン(a)を走査すると、上記の差
分値がある傾きをもってだんだん値が大きくなる場合に
、影の候補として抽出する。First, a measurement line is created by connecting each measurement sample point in the vehicle traveling direction and the road crossing direction. Therefore, the measurement points are arranged in a grid pattern in the measurement area 4. In the case of a front shadow, the measurement line (a) in the vehicle traveling direction is used. A portion where the input luminance is darker than the road surface reference luminance in a certain continuous section on the measurement line in the vehicle traveling direction is detected. The difference value between the road surface reference brightness and the input brightness is calculated for each measurement sample point included in the detected section. For example, when the measurement line (a) is scanned from the downstream side of the road toward the upstream side, the slope with the above difference value is calculated. If the value gradually increases with , it is extracted as a shadow candidate.
次に計測ラインを道路断面方向に1つずつずらして上記
と同様の処理を繰返して行い、影の候補が複数計測ライ
ンにわたって存在することにより、平面領域として抽出
されればこの領域を影(前影)として検出する。Next, the measurement lines are shifted one by one in the direction of the road cross section and the same process as above is repeated. If a shadow candidate exists across multiple measurement lines and is extracted as a plane area, this area is used as a shadow (front). Detected as a shadow).
さらに、第4図のフローチャートを参照して本発明の実
施例の動作を詳細に説明する。Further, the operation of the embodiment of the present invention will be explained in detail with reference to the flowchart of FIG.
カメラ部lからのアナログ画像信号は、A/D変換部2
1によって例えば256階調のディジタル輝度データに
変換され、画像記憶部22に画面単位で記録される(ス
テップSL)。そして、画素抽出により計測点における
画素ごとの輝度データが抽出された後に、輝度演算によ
って路面基準輝度との差(差分値)が画素ごとに算出さ
れる(ステップS2)、このようにして得られた画素ご
との差分値データは、画像3値化処理部23においてr
+lJ (路面より明るい)、rOJ(路面と同じ)
、r−1ノ(路面より暗い)の3値化データに変換され
る(ステップS3)。すなわち、路面は通常はほぼ一定
の短い輝度を有しており、この輝度(路面基準輝度)は
ある一定の短い時間間隔では変化するものでなく、また
計測領域により固定されるものである。そこで、この基
準輝度をあらかじめ、または随時に求めておき、これと
各計測点の輝度データとを比較する。そして、例えば
路面より一定以上輝度の高い画素 ・・・+1路面と
ほぼ同一の輝度の画素 ・・・0路面より一定以
上輝度の低い画素 ・・・−1として3値化する。The analog image signal from the camera section l is sent to the A/D converter section 2.
1, it is converted into digital luminance data of, for example, 256 gradations, and is recorded in the image storage unit 22 on a screen-by-screen basis (step SL). After the luminance data for each pixel at the measurement point is extracted by pixel extraction, the difference (difference value) from the road surface reference luminance is calculated for each pixel by luminance calculation (step S2). The difference value data for each pixel is processed by r in the image ternarization processing unit 23.
+lJ (brighter than the road surface), rOJ (same as the road surface)
, r-1 (darker than the road surface) (step S3). That is, the road surface normally has a short, almost constant brightness, and this brightness (road surface reference brightness) does not change over a certain short time interval, and is fixed depending on the measurement area. Therefore, this reference brightness is determined in advance or at any time, and compared with the brightness data of each measurement point. Then, for example, a pixel whose luminance is higher than the road surface by a certain level...+1 a pixel whose luminance is almost the same as that of the road surface...0 a pixel whose luminance is lower than the road surface by a certain level or more...-1 is converted into three values.
次に、各画素の3値化データが路面よりも暗いか否か検
出する。 (ステップ゛S4)、すなわち、本実施例の
場合には、路面部分の3値化データは「0」となってい
るので、3値化データが「−l」の部分が検出されるこ
とになる。そして、このようにして検出された暗い部分
が縦方向および横方向に連続しているか否かを調べる(
ステップS5) 、、続いて、その連続している暗い部
分に対し道路下流から上流に向かって計測ライン(al
を走査し、各計測サンプル点について行った路面基準輝
度と入力輝度の差分値が道路下流がら上流に向がっであ
る傾きをちってだんだん値が大きくなる場合を車両の前
影として認識する(ステップS6)。Next, it is detected whether the ternary data of each pixel is darker than the road surface. (Step S4) That is, in the case of this embodiment, since the ternary data of the road surface part is "0", the part where the ternary data is "-l" is detected. Become. Then, check whether the dark areas detected in this way are continuous in the vertical and horizontal directions (
Step S5) ,,Subsequently, a measurement line (al
is scanned, and the difference value between the road surface reference brightness and the input brightness performed for each measurement sample point gradually increases with a certain slope from downstream to upstream of the road, which is recognized as a vehicle foreshadow ( Step S6).
ここで、車両が路面をカメラ部1の方向に向かって走行
しているか、または停止しているものと仮定すると、ボ
ンネットは前影の後方において必ず出現し、屋根はボン
ネットの後方において必ず出現するものである。また、
ボンネット、屋根の輝度は前影の輝度よりも高く、また
路面の輝度よりも高いことが多い。ただし、その輝度は
路面の輝度に比べて一定していない。そこで、前影の次
に輝度の高いパターン、輝度の乱れるパターンがあるか
否かを調べることにより、車両のボンネット部および屋
根部を検出できる。これらの検出結果は、次の車両計測
部26に送られる(ステップS7)、そして、検出され
た車両の前影、ボンネット部、屋根部が横方向の一定範
囲内に現れているか否かの判定がなされる(ステップS
8)。すなわち第3図(A)に示す如く各車両ごとの前
影。Here, assuming that the vehicle is running on the road in the direction of camera unit 1 or is stopped, the hood will always appear behind the front shadow, and the roof will always appear behind the hood. It is something. Also,
The brightness of the hood and roof is higher than the brightness of the front shadow, and is often higher than the brightness of the road surface. However, its brightness is not constant compared to the brightness of the road surface. Therefore, the bonnet and roof of the vehicle can be detected by checking whether there is a pattern with the highest brightness next to the foreshadow or a pattern with disordered brightness. These detection results are sent to the next vehicle measurement unit 26 (step S7), and it is determined whether the front shadow, bonnet, and roof of the detected vehicle appear within a certain range in the lateral direction. is done (step S
8). That is, the front shadow of each vehicle as shown in FIG. 3(A).
ボンネット部、屋根部は、それぞれ横方向の一定範囲内
に現れるはずであるので、これにより1台の車両として
認識することができることになる(ステップ511)。Since the hood and roof should each appear within a certain range in the lateral direction, they can be recognized as one vehicle (step 511).
一方、ボンネット、屋根の横幅が一定範囲内でない場合
は、一般に車両の横形がある場合であるので、車体の横
側に路面よりも暗い部分が縦方向および横方向に連続し
ているか否かを調べる(ステップS9)、続いて、その
連続している暗い部分に対して道路の路側5かも中央線
7に向かって計測ライン(b)を走査し、各計測サンプ
ル点について行った路面基準輝度と入力輝度の差分値が
路側5から中央線7に向かっである傾きをもってだんだ
ん値が小くなる(または大きくなる)場合な車両の横形
として認識しくステップ51op、以上の計測結果を基
に1台の車両として認識する(ステップ511)。On the other hand, if the width of the bonnet or roof is not within a certain range, this generally means that the vehicle has a horizontal shape, so check to see if there are parts on the side of the vehicle that are darker than the road surface and are continuous in both the vertical and horizontal directions. Then, the measurement line (b) is scanned toward the road side 5 or the center line 7 of the continuous dark part, and the road surface reference brightness and the road surface reference brightness performed for each measurement sample point are examined. If the difference value of the input luminance gradually decreases (or increases) with a certain slope from the road side 5 toward the center line 7, it is recognized as the horizontal shape of the vehicle.In step 51op, based on the above measurement results, It is recognized as a vehicle (step 511).
以上の処理が終了した後には、車両計測部26で車両の
追跡、車線の判定、車両の計測等がなされる。そして、
計測の結果は出力部27から遠隔の交通管制用中実装置
へ送られ出力表示されることになる。After the above processing is completed, the vehicle measurement unit 26 performs vehicle tracking, lane determination, vehicle measurement, etc. and,
The measurement results are sent from the output unit 27 to a remote solid device for traffic control and are output and displayed.
すなわち、車両計測部26では形判定部25で検出した
車両の影をノイズとして画像記憶部22のデータから影
の部分を除去して車体のみを認識する。That is, the vehicle measuring section 26 uses the shadow of the vehicle detected by the shape determining section 25 as noise, removes the shadow portion from the data in the image storage section 22, and recognizes only the vehicle body.
この車体認識は例えば、計測領域内の車両データの立上
りと立下りを検出することにより行う。すなわち、計測
領域内を上流区域と下流区域に分け、下流区域での車両
データの立上りで通過車両として交通量をカウントし、
また下流区域での車両データの立上りと車両データの立
下りの距離から車長を計測して大型、小型の車種判定を
行い、さらに車両の移動距離と移動時間から車両の速度
(車速)を算出する。これらの交通流計測データは出力
部27から遠隔の中実装置へ送出される。This vehicle body recognition is performed, for example, by detecting the rise and fall of vehicle data within the measurement area. That is, the measurement area is divided into an upstream area and a downstream area, and the traffic volume is counted as passing vehicles at the start of vehicle data in the downstream area.
In addition, the length of the vehicle is measured from the distance between the rise of the vehicle data and the fall of the vehicle data in the downstream area, and the type of vehicle is determined as large or small.Furthermore, the speed of the vehicle (vehicle speed) is calculated from the travel distance and travel time of the vehicle. do. These traffic flow measurement data are sent from the output unit 27 to a remote solid device.
従って、画像計測部2からは影の影響を受けない正確な
車種判別データ、通過台数計測データ等が得られる。Therefore, the image measurement unit 2 can obtain accurate vehicle type discrimination data, passing vehicle number measurement data, etc. that are not affected by shadows.
なお、本発明は上記の実施例に限定されるものではなく
、種々の変形が可能である。Note that the present invention is not limited to the above embodiments, and various modifications are possible.
実施例では車両のバンパー下部の影を検出するようにし
ているが、これに限られるものではない。例えば、走行
する車両を後方がらカメラによって撮影し、車両後方に
できる形を検出するようにしてもよい。さらに、車両は
路面上を走行するものに限らず、路側に駐車され、ある
いは駐車場に駐車されているものであってもよい。In the embodiment, the shadow under the bumper of the vehicle is detected, but the invention is not limited to this. For example, a moving vehicle may be photographed from the rear using a camera, and shapes formed behind the vehicle may be detected. Furthermore, the vehicle is not limited to one that runs on a road surface, but may be one that is parked on the roadside or in a parking lot.
カメラ1としては、例えばCCTVカメラを用いること
ができるが、これに限られるものではなく、また画像記
憶部22を用いることも必須ではない。As the camera 1, for example, a CCTV camera can be used, but it is not limited to this, and it is not essential to use the image storage section 22.
すなわち、カメラと画像処理装置を直結し、オンライン
・リアルタイムで処理することもできる。In other words, it is also possible to directly connect the camera and the image processing device and perform online real-time processing.
輝度データは2’= 256階調のものに限られず、2
’=16階調、 2’=64IN調などのいがなるもの
でもよい。また、輝度データは3値化するものに限らず
、2値化、4値化、5値化などのいかなるものでもよい
。Luminance data is not limited to 2'=256 gradations, but can also be
It is also possible to use a different tone such as '=16 gradations, 2'=64 IN tones, etc. Furthermore, the luminance data is not limited to ternary data, and may be any data such as binarized, quaternary, or quinarized data.
【発明の効果J
以上説明したように、本発明によれば、車両の影が前影
・横形とも車体から遠ざかるに従って薄くなるという性
質を利用して、測定対象の車両の上方から撮像した入力
画像の輝度と路面基準輝度の差分値の分布濃度パターン
が車両進行方向または道路横断方向に対して順次変化す
るものを車両の前影または横形として検出するようにし
たので、走行車両の車体色、形状に関係なく安定して正
確に影を検出できるので車種の判定(大型車/小型車の
車種判別)の精度を向上させるとともに、影が隣接車線
上にのびたような場合でも影を黒い車両と誤検知するこ
とがないので交通量計測の精度を向上させることができ
る効果が得られる。[Effects of the Invention J] As explained above, according to the present invention, the input image captured from above the vehicle to be measured takes advantage of the property that the shadow of the vehicle becomes thinner as it moves away from the vehicle body, both in front and sideways. The difference value distribution density pattern between the luminance of Shadows can be detected stably and accurately regardless of the vehicle type, improving the accuracy of vehicle type determination (large/small vehicle type discrimination), and even when shadows extend onto adjacent lanes, they can be mistakenly detected as black vehicles. Since there is nothing to do, it is possible to improve the accuracy of traffic volume measurement.
また、本発明では複数の車線にわたって車両の形の部分
を検出し、これによって個々の車両を識別しながらボン
ネット部などの球出と組み合わせて車両を認識すること
により、2本の車線にまたがって、あるいは車線を変更
しながら走行する車両があったとしても、また複数の車
線に2以上の車両が並走しているときにも、これらを正
確に認識できる。In addition, the present invention detects vehicle-shaped parts across multiple lanes, and uses this to identify individual vehicles, while also recognizing vehicles in combination with protruding parts such as the bonnet. , or even if there is a vehicle traveling while changing lanes, or if two or more vehicles are running parallel to each other in multiple lanes, these can be accurately recognized.
3・・・支柱、 21・・・A/D変換部、 22・・・画像記憶部、 23・・・画像3値化処理部、 24・・・車体検出部、 25・・・影判定部、 26・・・車両計測部、 27・・・出力部。3... Prop, 21...A/D conversion section, 22... image storage unit, 23... Image ternarization processing unit, 24...Vehicle body detection section, 25...Shadow determination section, 26...Vehicle measurement section, 27...Output section.
第1図は本発明実施例の回路構成を示すブロック図、
第2図は第1図の装置の設置例を示す斜視図、第3図(
A)、(B)および(C)は車両の形の性質とその影の
判別動作を説明する説明図、
第4図は本発明実施例の動作内容を示すフローチャート
である。Fig. 1 is a block diagram showing the circuit configuration of an embodiment of the present invention, Fig. 2 is a perspective view showing an installation example of the device shown in Fig. 1, and Fig. 3 (
A), (B) and (C) are explanatory diagrams illustrating the nature of the shape of a vehicle and the operation of determining its shadow. FIG. 4 is a flowchart showing the operation details of the embodiment of the present invention.
Claims (1)
とにより得られる入力画像から、路面部分と輝度の異な
る部分を特徴点として抽出することにより前記車両を検
出する装置において、 前記路面部分の基準輝度を下回る輝度の前記入力画像の
輝度値と該路面部分の基準輝度値との差分値を算出する
演算手段と、 該演算手段で算出された該差分値の分布パターンが前記
路面の長手方向または横断方向に沿って順次変化する部
分を、前記車両の影部分として検出する影検出手段と を具備したことを特徴とする画像処理式交通流計測装置
。[Claims] 1) From an input image obtained by photographing a road surface and a vehicle existing on this road surface, the vehicle is detected by extracting a portion having a different brightness from the road surface portion as a feature point. In the apparatus, a calculation means for calculating a difference value between a brightness value of the input image having a brightness lower than a reference brightness of the road surface portion and a reference brightness value of the road surface portion, and a distribution of the difference value calculated by the calculation means. An image processing type traffic flow measuring device comprising: shadow detection means for detecting a portion where a pattern changes sequentially along the longitudinal direction or the transverse direction of the road surface as a shadow portion of the vehicle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8492290A JP2924063B2 (en) | 1990-04-02 | 1990-04-02 | Image processing type traffic flow measurement device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8492290A JP2924063B2 (en) | 1990-04-02 | 1990-04-02 | Image processing type traffic flow measurement device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03286399A true JPH03286399A (en) | 1991-12-17 |
JP2924063B2 JP2924063B2 (en) | 1999-07-26 |
Family
ID=13844198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8492290A Expired - Fee Related JP2924063B2 (en) | 1990-04-02 | 1990-04-02 | Image processing type traffic flow measurement device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2924063B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011095914A (en) * | 2009-10-28 | 2011-05-12 | Nec Corp | System, method and program for tracking vehicle |
JP2014149776A (en) * | 2013-02-04 | 2014-08-21 | Fuji Heavy Ind Ltd | Vehicle outside environment recognition device and vehicle outside environment recognition method |
US9191634B2 (en) | 2004-04-15 | 2015-11-17 | Magna Electronics Inc. | Vision system for vehicle |
US9555803B2 (en) | 2002-05-03 | 2017-01-31 | Magna Electronics Inc. | Driver assistance system for vehicle |
US10071676B2 (en) | 2006-08-11 | 2018-09-11 | Magna Electronics Inc. | Vision system for vehicle |
-
1990
- 1990-04-02 JP JP8492290A patent/JP2924063B2/en not_active Expired - Fee Related
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9834216B2 (en) | 2002-05-03 | 2017-12-05 | Magna Electronics Inc. | Vehicular control system using cameras and radar sensor |
US11203340B2 (en) | 2002-05-03 | 2021-12-21 | Magna Electronics Inc. | Vehicular vision system using side-viewing camera |
US10683008B2 (en) | 2002-05-03 | 2020-06-16 | Magna Electronics Inc. | Vehicular driving assist system using forward-viewing camera |
US10351135B2 (en) | 2002-05-03 | 2019-07-16 | Magna Electronics Inc. | Vehicular control system using cameras and radar sensor |
US9555803B2 (en) | 2002-05-03 | 2017-01-31 | Magna Electronics Inc. | Driver assistance system for vehicle |
US10118618B2 (en) | 2002-05-03 | 2018-11-06 | Magna Electronics Inc. | Vehicular control system using cameras and radar sensor |
US9643605B2 (en) | 2002-05-03 | 2017-05-09 | Magna Electronics Inc. | Vision system for vehicle |
US10187615B1 (en) | 2004-04-15 | 2019-01-22 | Magna Electronics Inc. | Vehicular control system |
US9191634B2 (en) | 2004-04-15 | 2015-11-17 | Magna Electronics Inc. | Vision system for vehicle |
US9948904B2 (en) | 2004-04-15 | 2018-04-17 | Magna Electronics Inc. | Vision system for vehicle |
US10015452B1 (en) | 2004-04-15 | 2018-07-03 | Magna Electronics Inc. | Vehicular control system |
US11847836B2 (en) | 2004-04-15 | 2023-12-19 | Magna Electronics Inc. | Vehicular control system with road curvature determination |
US10110860B1 (en) | 2004-04-15 | 2018-10-23 | Magna Electronics Inc. | Vehicular control system |
US9609289B2 (en) | 2004-04-15 | 2017-03-28 | Magna Electronics Inc. | Vision system for vehicle |
US11503253B2 (en) | 2004-04-15 | 2022-11-15 | Magna Electronics Inc. | Vehicular control system with traffic lane detection |
US10306190B1 (en) | 2004-04-15 | 2019-05-28 | Magna Electronics Inc. | Vehicular control system |
US9428192B2 (en) | 2004-04-15 | 2016-08-30 | Magna Electronics Inc. | Vision system for vehicle |
US10462426B2 (en) | 2004-04-15 | 2019-10-29 | Magna Electronics Inc. | Vehicular control system |
US9736435B2 (en) | 2004-04-15 | 2017-08-15 | Magna Electronics Inc. | Vision system for vehicle |
US10735695B2 (en) | 2004-04-15 | 2020-08-04 | Magna Electronics Inc. | Vehicular control system with traffic lane detection |
US10787116B2 (en) | 2006-08-11 | 2020-09-29 | Magna Electronics Inc. | Adaptive forward lighting system for vehicle comprising a control that adjusts the headlamp beam in response to processing of image data captured by a camera |
US11148583B2 (en) | 2006-08-11 | 2021-10-19 | Magna Electronics Inc. | Vehicular forward viewing image capture system |
US11396257B2 (en) | 2006-08-11 | 2022-07-26 | Magna Electronics Inc. | Vehicular forward viewing image capture system |
US11623559B2 (en) | 2006-08-11 | 2023-04-11 | Magna Electronics Inc. | Vehicular forward viewing image capture system |
US10071676B2 (en) | 2006-08-11 | 2018-09-11 | Magna Electronics Inc. | Vision system for vehicle |
US11951900B2 (en) | 2006-08-11 | 2024-04-09 | Magna Electronics Inc. | Vehicular forward viewing image capture system |
JP2011095914A (en) * | 2009-10-28 | 2011-05-12 | Nec Corp | System, method and program for tracking vehicle |
JP2014149776A (en) * | 2013-02-04 | 2014-08-21 | Fuji Heavy Ind Ltd | Vehicle outside environment recognition device and vehicle outside environment recognition method |
Also Published As
Publication number | Publication date |
---|---|
JP2924063B2 (en) | 1999-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2917661B2 (en) | Traffic flow measurement processing method and device | |
KR100201739B1 (en) | Method for observing an object, apparatus for observing an object using said method, apparatus for measuring traffic flow and apparatus for observing a parking lot | |
US7899211B2 (en) | Object detecting system and object detecting method | |
CN110298300A (en) | A method of detection vehicle violation crimping | |
JPH08233525A (en) | Vehicle type identification device | |
CN106023594A (en) | Parking stall shielding determination method and device and vehicle management system | |
JPH1186185A (en) | Vehicle-type discriminating device | |
KR102144249B1 (en) | Method And Apparatus for Providing Vehicle Speed Calibration by Using Measured Material | |
JP2924063B2 (en) | Image processing type traffic flow measurement device | |
JP3465531B2 (en) | Object recognition method and apparatus | |
JPH11175883A (en) | Traffic volume measuring instrument and signal control device | |
JP3505362B2 (en) | Vehicle detection method | |
JPH0997335A (en) | Vehicle recognition device and traffic flow measurement device | |
JP3475700B2 (en) | Object recognition method, object recognition device, and vehicle recognition device | |
JP4165966B2 (en) | Object recognition device | |
JP2855770B2 (en) | Image processing type traffic flow measurement device | |
JPH11219493A (en) | Traffic information processing method | |
JP2001283374A (en) | Traffic flow measuring system | |
JPH05312818A (en) | Speed measuring device and method through image processing | |
JP4333683B2 (en) | Windshield range detection device, method and program | |
JPH03276070A (en) | Automatic vehicle number reader with speed measuring function | |
KR20040005299A (en) | Grouping apparatus for automobile and method thereof | |
JP2841652B2 (en) | Image processing type traffic flow measurement device | |
KR100446964B1 (en) | Grouping apparatus for automobile | |
JPH0752480B2 (en) | Vehicle detection device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |