JPH0327862B2 - - Google Patents
Info
- Publication number
- JPH0327862B2 JPH0327862B2 JP58111683A JP11168383A JPH0327862B2 JP H0327862 B2 JPH0327862 B2 JP H0327862B2 JP 58111683 A JP58111683 A JP 58111683A JP 11168383 A JP11168383 A JP 11168383A JP H0327862 B2 JPH0327862 B2 JP H0327862B2
- Authority
- JP
- Japan
- Prior art keywords
- sodium
- gas
- solid electrolyte
- concentration
- electromotive force
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011734 sodium Substances 0.000 claims description 83
- 239000007784 solid electrolyte Substances 0.000 claims description 42
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 36
- 229910052708 sodium Inorganic materials 0.000 claims description 36
- 229910000528 Na alloy Inorganic materials 0.000 claims description 33
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 claims description 28
- 239000010931 gold Substances 0.000 claims description 26
- 238000005259 measurement Methods 0.000 claims description 19
- RPMPQTVHEJVLCR-UHFFFAOYSA-N pentaaluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Na+].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3] RPMPQTVHEJVLCR-UHFFFAOYSA-N 0.000 claims description 12
- 229910000873 Beta-alumina solid electrolyte Inorganic materials 0.000 claims description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910001020 Au alloy Inorganic materials 0.000 claims 1
- 239000007789 gas Substances 0.000 description 67
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 18
- 230000000694 effects Effects 0.000 description 16
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 15
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- 229910052737 gold Inorganic materials 0.000 description 10
- 229910045601 alloy Inorganic materials 0.000 description 9
- 239000000956 alloy Substances 0.000 description 9
- 229910052786 argon Inorganic materials 0.000 description 9
- 230000004043 responsiveness Effects 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 8
- 239000007832 Na2SO4 Substances 0.000 description 7
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 7
- 229910052938 sodium sulfate Inorganic materials 0.000 description 7
- 235000011152 sodium sulphate Nutrition 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 101100066898 Mus musculus Flna gene Proteins 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/406—Cells and probes with solid electrolytes
- G01N27/407—Cells and probes with solid electrolytes for investigating or analysing gases
- G01N27/4073—Composition or fabrication of the solid electrolyte
- G01N27/4074—Composition or fabrication of the solid electrolyte for detection of gases other than oxygen
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Measuring Oxygen Concentration In Cells (AREA)
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、二酸化イオウ用ガスセンサ、特に簡
便で連続測定に適し、工業的用途に使用価値の高
い二酸化イオウ用ガスセンサに関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a gas sensor for sulfur dioxide, and particularly to a gas sensor for sulfur dioxide that is simple, suitable for continuous measurement, and has high utility value in industrial applications.
[従来技術]
二酸化イオウ(以下SO2と言う)ガスの濃度を
測定することは、硫化鉱を乾式処理する非鉄金属
精練や自動車排気等より生ずるSO2ガスによる大
気汚染防止上重要な技術である。[Prior art] Measuring the concentration of sulfur dioxide (hereinafter referred to as SO 2 ) gas is an important technology for preventing air pollution caused by SO 2 gas generated from non-ferrous metal smelting in the dry processing of sulfide ores, automobile exhaust, etc. .
従来SO2ガスの濃度を測定する方法として、は
被検ガス中のSO2を吸収液に捕集して化学分析を
行なう方法(過酸化水素水法、トリン法等)、吸
光光度法で定量する方法(パラロザニン法、よう
素でんぷん法)、吸収液の電気伝導度を測定する
方法、被検ガス自体を赤外線分光計に導入して
SO2の定量を行なう方法等がある。 Conventional methods for measuring the concentration of SO 2 gas include collecting SO 2 in the sample gas in an absorption liquid and performing chemical analysis (hydrogen peroxide method, Torine method, etc.), and quantitative determination using spectrophotometry. methods (pararosanine method, iodine starch method), methods to measure the electrical conductivity of the absorption liquid, and methods to introduce the test gas itself into an infrared spectrometer.
There are methods for quantifying SO 2 .
しかし、これらの方法は操作の煩雑さ、連続測
定の困難さ、装置の複雑さ、応答性等の点から、
それらの測定方法を採用した場合、全体の効率を
低下させる要因の一つとなつている。又、近年マ
イクロコンピユータを利用した各種作業の自動化
においても、前記したような欠点を有する測定方
法、測定装置ではマイクロコンピユータ用のセン
サとしては適用しがたく、SO2ガス濃度測定が作
業上必要な産業において、その自動化の妨げとも
なつていた。 However, these methods are difficult to operate, difficult to perform continuous measurements, complex equipment, responsiveness, etc.
When these measurement methods are adopted, this is one of the factors that reduces the overall efficiency. In addition, in recent years, with the automation of various tasks using microcomputers, the measurement methods and measuring devices that have the above-mentioned drawbacks are difficult to apply as sensors for microcomputers, and SO 2 gas concentration measurement has become necessary for work. It has also become an obstacle to automation in industry.
従来、この問題点を解決する一つの方法とし
て、Na2SO4又はK2SO4等の固体電解質のペレツ
トを用い、その一面に参照極として基準となる濃
度のSO2ガスを接触させ、他の面には測定極とし
て被測定用SO2ガスを接触させ、その濃度差によ
りその両面に生ずる起電力を測定し、被測定SO2
ガスの濃度を決定する方法が提案されている。 Conventionally, one method to solve this problem is to use solid electrolyte pellets such as Na 2 SO 4 or K 2 SO 4 , contact one side with SO 2 gas at a standard concentration as a reference electrode, and The SO 2 gas to be measured is brought into contact with the surface of the SO 2 gas as a measurement electrode, and the electromotive force generated on both sides due to the concentration difference is measured.
Methods have been proposed for determining the concentration of gas.
しかし、この方法は、参照極へ絶えず基準とな
るSO2ガスをその濃度を精密に調節して供給する
ことが必要であり、SO2ガス濃度を測定するため
大規模な設備を必要とするとともに、定期的に基
準となるSO2ガス濃度をも他の測定方法でチエツ
クしなければならなかつた。 However, this method requires constantly supplying standard SO 2 gas to the reference electrode with its concentration precisely adjusted, and requires large-scale equipment to measure the SO 2 gas concentration. However, the standard SO 2 gas concentration had to be checked periodically using other measurement methods.
[発明の目的]
本発明はSO2ガス濃度の測定にあたり、操作が
簡便で、連続測定が可能で装置もコンパクトかつ
精度、応答性もよく、各種自動制御用センサとし
て好適なSO2ガスセンサを提供することを目的と
する。[Objective of the Invention] The present invention provides an SO 2 gas sensor that is easy to operate, allows continuous measurement, is compact, has good accuracy and responsiveness, and is suitable as a sensor for various automatic controls when measuring SO 2 gas concentration. The purpose is to
[発明の構成]
本発明の要旨とするところは、固体電解質上に
設けられた参照極と測定極との間の起電力を測定
することにより測定極の二酸化イオウガス濃度を
測定する二酸化イオウ用固体電解質ガスセンサに
おいて、
固体電解質がナトリウム成分を含み、かつ参照
極がナトリウム又はナトリウム合金であることを
特徴とする二酸化イオウ用固体電解質ガスセンサ
にある。[Structure of the Invention] The gist of the present invention is to provide a solid for sulfur dioxide that measures the sulfur dioxide gas concentration of a measurement electrode by measuring the electromotive force between a reference electrode and a measurement electrode provided on a solid electrolyte. In the electrolyte gas sensor, the solid electrolyte gas sensor for sulfur dioxide is characterized in that the solid electrolyte contains a sodium component and the reference electrode is sodium or a sodium alloy.
ここで、ナトリウム単体が用いられるかわりに
ナトリウム合金を用いることが望ましい。即ち、
ナトリウム単体の場合は、高温で蒸発し易くシー
ルする必要がある。一方、ナトリウムと化学的結
合力の強い他の金属とにより中間化合物をつくれ
ば、ナトリウムの活量を小さくし、蒸発を防止す
ることができる。又、その中間化合物とその金属
を共存させれば、中間化合物一相の場合と比較し
てナトリウムの活量が変化しにくくなり、一定の
ナトリウム活量を示す参照極とすることができる
ので一相の場合より好ましい。 Here, it is desirable to use a sodium alloy instead of using sodium alone. That is,
In the case of pure sodium, it must be sealed because it easily evaporates at high temperatures. On the other hand, if an intermediate compound is created from sodium and another metal with strong chemical bonding strength, the activity of sodium can be reduced and evaporation can be prevented. In addition, if the intermediate compound and the metal coexist, the activity of sodium will be less likely to change compared to the case of a single phase of the intermediate compound, and it can be used as a reference electrode that shows a constant sodium activity. This is more preferable than the case of a phase.
合金としてはNaAu2が物性上好ましく、更に
そのNaAu2とAuとの二相の合金がナトリウムの
活量の安定又、高温における組成の安定上特に好
ましい。 As the alloy, NaAu 2 is preferable in terms of physical properties, and a two-phase alloy of NaAu 2 and Au is particularly preferable in terms of stability of sodium activity and composition at high temperatures.
固体電解質としてはNa2O:Al2O3が1:9〜
1:11の組成を有するβ−アルミナ、Na2O:
Al2O3が1:5〜1:7の組成を有するβ″−アル
ミナ、Na2SO4等のナトリウムを含む固体電解質
が用いられる。 As a solid electrolyte, Na 2 O: Al 2 O 3 is 1:9 ~
β-Alumina, Na 2 O with a composition of 1:11:
A solid electrolyte containing sodium such as β''-alumina and Na 2 SO 4 having a composition of Al 2 O 3 of 1 :5 to 1:7 is used.
上記の固体電解質の内、機械的強度の高さ、電
気電導度の良好さ、成形性の良好さからβ−アル
ミナ、β″−アルミナの使用が好ましく、更にその
内でもβ″−アルミナはNa+の伝導性が特に優れて
いる点から最も好ましい固体電解質である。 Among the solid electrolytes mentioned above, it is preferable to use β-alumina and β″-alumina because of their high mechanical strength, good electrical conductivity, and good formability. It is the most preferred solid electrolyte because it has particularly excellent + conductivity.
固体電解質とナトリウムあるいはナトリウム合
金との接触部分は単に両者を接触させるだけで十
分であるが、ナトリウム又はナトリウム合金を加
熱溶融して固体電解質に密着させてもよく、又、
ナトリウム又はナトリウム合金を粉末状にして固
体電解質と接触させ、接触面積を増加させるよう
にしてもよい。 For the contact portion between the solid electrolyte and the sodium or sodium alloy, it is sufficient to simply bring the two into contact; however, the sodium or sodium alloy may be heated and melted to bring it into close contact with the solid electrolyte;
Sodium or a sodium alloy may be powdered and brought into contact with the solid electrolyte to increase the contact area.
上記のセンサの構造の一例を第1図に示す。こ
こで1は固体電解質、2はナトリウム又はナトリ
リウム合金である。この固体電解質1とナトリウ
ム又はナトリウム合金2とは一面で接触し、界面
3を形成している。 An example of the structure of the above sensor is shown in FIG. Here, 1 is a solid electrolyte, and 2 is sodium or a sodium alloy. This solid electrolyte 1 and sodium or sodium alloy 2 are in contact with each other on one side to form an interface 3.
このように接触した固体電解質1のPt等の電
極をつけた他の面1aを酸素を含む雰囲気のもと
SO2ガスに曝すことにより固体電解質中に起電力
が発生し、固体電解質1の面1aと界面3あるい
はナトリウム又はナトリウム合金2との間に電圧
計4を備えてその起電力を測定すれば、その値か
ら面1aに接触しているSO2ガスの濃度を知るこ
とができる。 The other side 1a of the solid electrolyte 1 that has been in contact with the Pt electrode is placed in an oxygen-containing atmosphere.
An electromotive force is generated in the solid electrolyte by exposure to SO 2 gas, and if the electromotive force is measured by providing a voltmeter 4 between the surface 1a of the solid electrolyte 1 and the interface 3 or the sodium or sodium alloy 2, From this value, the concentration of SO 2 gas in contact with surface 1a can be determined.
一方、ナトリウム又はナトリウム合金が蒸発す
るような高温下で使用する場合、第2図に示すよ
うな構造にして、ナトリウム又はナトリウム合金
の、蒸発による消失を防止してもよい。ここで5
は固体電解質、特にβ−アルミナ、β″−アルミナ
等の機械的強度の高い固体電解質、6はナトリウ
ム又はナトリウム合金である。この固体電解質5
は容器としてナトリウム又はナトリウム合金6を
収納しており、電気絶縁性の蓋体7で密封されて
いる。このことによりナトリウム又はナトリウム
合金6の蒸発を防止している。蓋体7にはナトリ
ウム又はナトリウム合金6と電気的に導通状態に
ある電極8が貫設されている。 On the other hand, when used at a high temperature where sodium or a sodium alloy evaporates, a structure as shown in FIG. 2 may be used to prevent the sodium or sodium alloy from disappearing due to evaporation. here 5
is a solid electrolyte, especially a solid electrolyte with high mechanical strength such as β-alumina or β''-alumina, and 6 is sodium or a sodium alloy.This solid electrolyte 5
contains sodium or sodium alloy 6 as a container, and is sealed with an electrically insulating lid 7. This prevents the sodium or sodium alloy 6 from evaporating. An electrode 8 that is electrically connected to the sodium or sodium alloy 6 is provided through the lid 7 .
このような形態のセンサをその固体電解質5の
外面を酸素を含む雰囲気のもとSO2ガスに曝すこ
とにより、固体電解質5中に起電力が発生し、そ
の外面とナトリウム又はナトリウム合金6と導電
状態にある電極8との間に電圧計4を備えてその
起電力を測定すれば、SO2ガスの濃度を知ること
ができる。上記センサの製造例として電極8を最
初中空の管状とし、固体電解質5、蓋体7からな
る収納容器に、電極8からナトリウム又はナトリ
ウム合金6を溶融状態あるいは粉末状態で注入
し、その後、電極8の中空部分をロウ付け等で封
止して形成してもよい。 When the outer surface of the solid electrolyte 5 of a sensor of this type is exposed to SO 2 gas in an atmosphere containing oxygen, an electromotive force is generated in the solid electrolyte 5, and conductivity between the outer surface and sodium or sodium alloy 6 is generated. By providing a voltmeter 4 between the electrode 8 and measuring the electromotive force, the concentration of SO 2 gas can be determined. As an example of manufacturing the above-mentioned sensor, the electrode 8 is first made into a hollow tube shape, and sodium or sodium alloy 6 is injected from the electrode 8 in a molten state or powder state into a storage container consisting of a solid electrolyte 5 and a lid 7, and then the electrode 8 It may also be formed by sealing the hollow part of by brazing or the like.
このセンサの起電力によるSO2ガスの濃度測定
は、次に述べる原理によつている。 The SO 2 gas concentration measurement using the electromotive force of this sensor is based on the principle described below.
本発明のセンサの起電力は、SO2ガスがSO2+
1/2O2=SO3の反応をすることから、次の構成の
電池を形成していることに起因する。Pt、SO2+
O2+SO3/固体電解質/ナトリウム又はナトリウ
ム合金、Pt
この場合、拡散種がNaイオンなので、生ずる
起電力Eは次の式(1)で与えられる。 The electromotive force of the sensor of the present invention is that SO 2 gas is SO 2 +
This is because the reaction of 1/2O 2 =SO 3 occurs, forming a battery with the following configuration. Pt, SO 2 +
O 2 +SO 3 /Solid electrolyte/Sodium or sodium alloy, Pt In this case, since the diffusion species are Na ions, the generated electromotive force E is given by the following equation (1).
E=RT/Flna2/a1 ……(1)
ここで、a1は固体電解質の左極表面付近での
Naの活量、a2は固体電解質の右極表面付近での
Naの活量を表わす。 E=RT/Flna 2 /a 1 ...(1) Here, a 1 is near the left pole surface of the solid electrolyte.
The activity of Na, a2 , is near the right extreme surface of the solid electrolyte.
Represents the activity of Na.
上記a2はナトリウム又はナトリウム合金中の
Naの活量によつて直接決定される。 The above a 2 is in sodium or sodium alloy.
Directly determined by Na activity.
ナトリウム又はナトリウム合金において、温度
が一定であれば、ナトリウムの活量は一定である
ので、右極のNaの活量a2は一定となる。それ故、
左極表面のNaの活量a1は起電力Eに応じて一義
的に定まる。しかも左極での反応2Na+SO3+
1/2O2=Na2SO4からSO3の濃度は上記a1によつて
決定されるので、結局、起電力Eと空中の酸素濃
度とに基づき反応式SO2+1/2O2=SO3の平衡定
数K=Pso3/Pso2・(Po2)1/2によつてSO2の濃度が定
ま
る。即ちO2の濃度は空気中のO2の濃度であり、
ほぼ一定と考えられるので、起電力Eの値により
一義的にSO2の濃度が決定され得る。 In sodium or a sodium alloy, if the temperature is constant, the activity of sodium is constant, so the activity a 2 of Na at the right pole is constant. Therefore,
The activity a 1 of Na on the left pole surface is uniquely determined according to the electromotive force E. Moreover, the reaction at the left pole is 2Na + SO 3 +
Since the concentration of SO 3 from 1/2O 2 = Na 2 SO 4 is determined by the above a 1 , the reaction formula is SO 2 + 1/2O 2 = SO 3 based on the electromotive force E and the oxygen concentration in the air. The concentration of SO 2 is determined by the equilibrium constant K=Pso 3 /Pso 2・(Po 2 ) 1/2 . That is, the concentration of O 2 is the concentration of O 2 in the air,
Since it is considered to be approximately constant, the concentration of SO 2 can be uniquely determined by the value of the electromotive force E.
[発明の効果]
以上詳述したごとく、本発明の二酸化イオウ用
固体電解質ガスセンサは、
固体電解質上に設けられた参照極と測定極との
間の起電力を測定することにより測定極の二酸化
イオウガス濃度を測定する二酸化イオウ用固体電
解質ガスセンサにおいて、
固体電解質がナトリウム成分を含み、かつ参照
極がナトリウム又はナトリウム合金であることに
より、参照極にSO2ガスを用いないのでコンパク
トで、操作が簡便で、かつ連続測定が可能で精
度、応答性がよく、各種自動制御用センサとして
好適なセンサとすることができる。[Effects of the Invention] As detailed above, the solid electrolyte gas sensor for sulfur dioxide of the present invention has the following features: by measuring the electromotive force between the reference electrode and the measurement electrode provided on the solid electrolyte, the sulfur dioxide gas at the measurement electrode is reduced. In a solid electrolyte gas sensor for sulfur dioxide that measures concentration, the solid electrolyte contains a sodium component and the reference electrode is sodium or sodium alloy, making it compact and easy to operate since SO 2 gas is not used for the reference electrode. Moreover, the sensor can be continuously measured, has good accuracy and responsiveness, and is suitable as a sensor for various automatic controls.
[実施例]
次に実施例に用いられる金とナトリウムとのナ
トリウム合金Au2Naの製造例を示す。[Example] Next, an example of manufacturing a sodium alloy Au 2 Na of gold and sodium used in an example will be shown.
Au2Naの製造にあたつては粒状Au(三菱金属
(株))、98%棒状Na(和光純薬工業(株))を用いた。 When producing Au 2 Na, granular Au (Mitsubishi Metals
Co., Ltd.) and 98% rod-shaped Na (Wako Pure Chemical Industries, Ltd.) were used.
Auが70atomic%、Naが30atomic%になるよ
うにAu25g、Na1.25gを内径13mm、深さ45mmの
ふた付きカーボンるつぼにいれ、それをシリカチ
ユーブに入れてアルゴン雰囲気で500℃、48時間
保持した。 25 g of Au and 1.25 g of Na were placed in a covered carbon crucible with an inner diameter of 13 mm and a depth of 45 mm so that Au was 70 atomic% and Na was 30 atomic%.The crucible was placed in a silica tube and maintained at 500°C for 48 hours in an argon atmosphere. .
炉冷した後取り出したところ、全体的に光沢を
もつた黄土色に変色していた。これをメノウ乳鉢
で粉末状にし、X線デイフラクトメータによつて
Au2Naの存在を確認した。 When I took it out after cooling it in the furnace, I found that it had turned a shiny ocher color overall. This is powdered in an agate mortar and examined using an X-ray diffractometer.
The presence of Au 2 Na was confirmed.
第3図に示したAu−Na系の状態図からわかる
ように、AuとAu2Naとの共存領域が広く、
Au2NaにAuが極く微量含まれるだけで、共存領
域Sが得られる。融点も876℃以上と比較的高温
である。 As can be seen from the phase diagram of the Au-Na system shown in Figure 3, the coexistence region of Au and Au 2 Na is wide;
The coexistence region S can be obtained even if Au 2 Na contains only a very small amount of Au. It also has a relatively high melting point of 876°C or higher.
次に具体的実施例を示す。 Next, specific examples will be shown.
上記ナトリウム合金製造例において製造した、
Au2Na相に微量のAu相を含んだ合金を用い、固
体電解質としてβ″−アルミナを用いて第4図に示
すようなセンサを製作した。 Produced in the above sodium alloy production example,
A sensor as shown in FIG. 4 was fabricated using an alloy containing a trace amount of Au phase in the Au 2 Na phase and β''-alumina as the solid electrolyte.
ここで11は外径15mm、内径13mm、長さ122mm
のβ″−アルミナチユーブであり、その外部底面及
び外側面の下から7mmまでには白金ペーストが薄
く塗られている。このβ″−アルミナチユーブ11
の開口端部にアルミナセメント12を用いて高純
度アルミナ管13を接着し、1000℃で約2時間乾
燥させた。 Here, 11 has an outer diameter of 15 mm, an inner diameter of 13 mm, and a length of 122 mm.
This β''-alumina tube is coated with a thin layer of platinum paste up to 7 mm from the bottom of its external bottom and outer surface.This β''-alumina tube 11
A high-purity alumina tube 13 was adhered to the open end of the tube using alumina cement 12, and the tube was dried at 1000° C. for about 2 hours.
このβ″−アルミナチユーブ11の中にAu2Na
と微量のAuとからなるナトリウム合金14を入
れ、上からアルミナ製のふた15をした。このふ
た15の中央には参照極側の白金のリード線16
を通すために穴15aが穿設されている。 This β″-alumina tube 11 contains Au 2 Na.
A sodium alloy 14 consisting of a small amount of gold and a small amount of Au was placed in the container, and an alumina lid 15 was placed on top. In the center of this lid 15 is a platinum lead wire 16 on the reference electrode side.
A hole 15a is bored through the hole 15a.
上記ふた15は、アルゴンガスの導入管を兼ね
たアルミナ管17を介し、ばね18の付勢力によ
り押さえつけられており、ナトリウム合金14を
β″−アルミナチユーブ11へ密着させている。
又、アルミナ管17はふた15近傍にアルゴンガ
スの抜け穴17aを設けている。 The lid 15 is pressed down by the biasing force of a spring 18 via an alumina tube 17 which also serves as an argon gas introduction tube, and brings the sodium alloy 14 into close contact with the β''-alumina tube 11.
Further, the alumina tube 17 has an argon gas escape hole 17a near the lid 15.
試料極側の白金リード線19は螺旋状に巻いた
別の白金線20によりチユーブ11の外側底面に
押圧され、更にこの白金線20は、ばね21によ
り付勢されたアルミナ管22によりチユーブ11
方向へ押圧されている。 The platinum lead wire 19 on the sample pole side is pressed against the outer bottom surface of the tube 11 by another spirally wound platinum wire 20, and this platinum wire 20 is further pressed against the tube 11 by an alumina tube 22 biased by a spring 21.
being pushed in the direction.
更に上述した構成の全体はアルミナ管23に納
められ、その上端では、被測定用SO2ガスの流出
口24aと白金リード線19の挿入口24bとを
備えたガラスキヤツプ、ばね18の一端を係止し
ているアルミナリング25及びアルゴンガスの流
入口26aとその流出口26bと白金リード線1
6の挿入口26cとを備えたガラスキヤツプ26
がユニチユーブ(日本理化学器機社製接合部材)
によつて順次接続されている。 Further, the entire structure described above is housed in an alumina tube 23, and at its upper end, a glass cap is provided with an outlet 24a for the SO 2 gas to be measured and an insertion port 24b for the platinum lead wire 19, and one end of the spring 18 is engaged. The stopped alumina ring 25, the argon gas inlet 26a and its outlet 26b, and the platinum lead wire 1
Glass cap 26 with 6 insertion openings 26c
is unit tube (joint material manufactured by Nippon Rikagakiki Co., Ltd.)
are sequentially connected by.
一方、アルミナ管23の下端では、ゴムキヤツ
プ28が嵌入され、ばね21の一端を係止すると
ともに、その中心孔にアルミナ管29を貫通させ
ている。上記アルミナ管29には熱電対30の挿
入口31aと被測定用SO2ガスの流入口31bと
を備えたガラスキヤツプ31がユニチユーブ27
により接続されている。熱電対30はその先端を
ほぼβ″−アルミナチユーブ11の外側底面の位置
に配置し、固体電解質としてのアルミナチユーブ
11の温度を正確に捕えるよう構成されている。
上記のごとく構成されたものは、特にβ″−アルミ
ナチユーブ11部分を一定温度に保持するため、
ニクロム線抵抗炉32の中心孔に挿入されてい
る。 On the other hand, a rubber cap 28 is fitted into the lower end of the alumina tube 23 to lock one end of the spring 21 and allow an alumina tube 29 to pass through its center hole. A glass cap 31 having an insertion port 31a for a thermocouple 30 and an inlet 31b for SO 2 gas to be measured is connected to the unit tube 27 in the alumina tube 29.
connected by. The thermocouple 30 has its tip disposed approximately at the outer bottom surface of the β''-alumina tube 11, and is configured to accurately capture the temperature of the alumina tube 11 as a solid electrolyte.
In the structure as described above, in order to maintain the 11 parts of the β''-alumina tube at a constant temperature,
The nichrome wire is inserted into the center hole of the resistance furnace 32.
上記抵抗炉32は上記熱電対30により検出さ
れた温度に基づきほぼ所定温度の±1℃内に保持
される。 The resistance furnace 32 is maintained within approximately ±1° C. of a predetermined temperature based on the temperature detected by the thermocouple 30.
[測定実験]
次に上記のごとく構成したセンサを用いて、
SO2ガスの濃度測定実験を行なつた。[Measurement experiment] Next, using the sensor configured as above,
An experiment was conducted to measure the concentration of SO 2 gas.
第4図に示した装置の系内をロータリーポンプ
で1×10-3Torrの真空に引く。この状態で炉を
100℃に加熱し水分等を蒸発させる。この後ロー
タリーポンプを止めアルゴンガスを徐々に流入す
る。アルゴンガスが完全に置換したら、試料極側
は回路を閉じ1気圧のアルゴンガス雰囲気にす
る。参照極側はアルゴンガスを流しバブラーによ
つてバブリングさせて増圧にする。この状態で炉
を加熱させ、温度が指定の温度で安定した後SO2
ガスを流入する。 The inside of the system shown in Figure 4 is vacuumed to 1 x 10 -3 Torr using a rotary pump. In this state, open the furnace.
Heat to 100℃ to evaporate water etc. After this, the rotary pump is stopped and argon gas is gradually introduced. When the argon gas is completely replaced, the circuit on the sample electrode side is closed to create an argon gas atmosphere of 1 atm. On the reference electrode side, argon gas is passed and bubbled by a bubbler to increase the pressure. The furnace is heated in this state, and after the temperature has stabilized at the specified temperature, SO 2
Gas flows in.
起電力の測定は温度を598℃から835℃まで、ま
た、SO2アグ濃度を1.6p.p.m.から9020p.p.m.まで
変化させて行なつた。 The electromotive force was measured by changing the temperature from 598°C to 835°C and the SO 2 Ag concentration from 1.6ppm to 9020p.pm.
ガスは空気で希釈されたSO2ガスボンベを用い
た。濃度は542p.p.m・、1054p.p.m・、4940p.p.
m.、9020p.p.m.である。また低濃度の実験では空
気で希釈されたSO2ガスボンベとパーミユエーシ
ヨンチユーブ((株)ガステツク)とその希釈ガスと
して空気ボンベ(粟生産業(株))とを用いた。SO2
ガスボンベはSO2濃度が9020p.p.m.と8940p.p.m.
を用い、8940p.p.m.のボンベについては、ガス分
割器(スタンダードテクノロジー(株)製SGD75−
C)を用いて濃度を1.60p.p.m.、11.0p.p.m.、
7.75p.p.m.、50.0p.p.m.の4段階に変化させた。 The gas used was an SO 2 gas cylinder diluted with air. Concentrations are 542p.pm・, 1054p.pm・, 4940p.p.
m., 9020p.pm. In the low-concentration experiment, an SO 2 gas cylinder diluted with air and a permeation tube (Gastetsu Co., Ltd.) were used, and an air cylinder (Ao Sangyo Co., Ltd.) was used as the diluent gas. SO 2
Gas cylinder has SO 2 concentration of 9020p.pm and 8940p.pm
For 8940p.pm cylinders, use a gas divider (SGD75- manufactured by Standard Technology Co., Ltd.).
C) to increase the concentration to 1.60ppm, 11.0ppm,
It was changed to 4 levels: 7.75ppm and 50.0ppm.
パーミユエーシヨンチユーブとは、一定品質の
フツ素樹脂管に液化ガスを封入したものである。
これを恒温槽内に保持することによつて、チユー
ブ内の液化ガスの浸透拡散する量が一定となり、
そこに希釈ガスを定流量送れば任意の濃度のガス
が連続的に得られるというものである。 A permeation tube is a fluororesin tube of a certain quality that is filled with liquefied gas.
By keeping this in a constant temperature bath, the amount of liquefied gas permeating and diffusing inside the tube becomes constant.
If a constant flow of diluent gas is sent there, a gas of any concentration can be obtained continuously.
炉を昇温するにあたり、回路の中をアルゴン雰
囲気にした。また参照極側は、実験中アルゴンガ
スを流した状態にした。アルゴンガスはボンベか
ら得られるガスをシリカゲル、活性アルミナ及び
有効孔径31/2モレキユラーシーブを通して脱水し、
さらにチタン炉を通して脱酸して用いた。 To raise the temperature of the furnace, an argon atmosphere was created inside the circuit. In addition, argon gas was kept flowing on the reference electrode side during the experiment. Argon gas is obtained by dehydrating gas obtained from a cylinder through silica gel, activated alumina, and a 3 1/2 effective pore size molecular sieve.
Furthermore, it was deoxidized through a titanium furnace and used.
[実験結果]
第5図〜第10図に、ナトリウム合金の参照極
を用いた実験で得られた結果を示す。[Experimental Results] Figures 5 to 10 show the results obtained in experiments using a sodium alloy reference electrode.
第5図は、横軸に温度、縦軸に起電力E.M.F.
をとり、用いたガス中のSO2濃度毎にプロツトし
た図である。SO2濃度が1.60p.p.m.から9020p.p.
m.までの8種類のガスを用いて実験を行なつた。
ガスの流量はいずれも100ml/minとした。 Figure 5 shows temperature on the horizontal axis and electromotive force EMF on the vertical axis.
This is a diagram plotting the results for each SO 2 concentration in the gas used. SO 2 concentration from 1.60ppm to 9020p.p.
Experiments were conducted using eight types of gases up to m.
The gas flow rate was 100 ml/min in both cases.
SO3の生成量は温度の関数になるので、それぞ
れのSO2濃度におけるプロツトは、直線関係には
ならない。しかし、同一温度では、SO2濃度の高
いものほど高い起電力が出ていることから、温度
及び起電力より濃度が決定できることを示す。 Since the amount of SO 3 produced is a function of temperature, the plot at each SO 2 concentration does not show a linear relationship. However, at the same temperature, the higher the SO 2 concentration, the higher the electromotive force, indicating that the concentration can be determined from temperature and electromotive force.
平衡起電力の安定性は930K付近が最も良好で、
±1mV以内で、1108Kでは最も悪く±4mVで
あつた。SO2ガスの濃度を変化させた場合も同様
であつた。 The stability of the equilibrium electromotive force is best around 930K,
Within ±1 mV, the worst value was ±4 mV at 1108K. The same thing happened when the concentration of SO 2 gas was changed.
また再現性を見るためにSO2濃度が542p.p.m.
のガスについては3回、50.0p.p.m.、11.0p.p.m.、
1.60p.p.m.のガスについてはそれぞれ2回起電力
を測定した。その結果を第6図にプロツトした。
それぞれの測定に用いたAu、Au2Na合金は、1
回目の測定と2回目の測定とが同時に作成された
もので、3回目の測定は別に作成したものであ
る。930K以上ではかなり良い再現性が得られた。 Also, to check the reproducibility, the SO 2 concentration was 542 p.pm.
3 times, 50.0ppm, 11.0ppm,
For each 1.60 ppm gas, the electromotive force was measured twice. The results are plotted in Figure 6.
The Au and Au 2 Na alloys used for each measurement were 1
The first measurement and the second measurement were created at the same time, and the third measurement was created separately. Very good reproducibility was obtained above 930K.
SO2濃度の変化、及び温度の変化に対する起電
力の応答性は非常に良いものであつた。第7図、
第8図にそれぞれの結果をプロツトする。第7図
は、SO2濃度の変化に対する起電力の応答性を示
した図で、930Kでの結果である。横軸は時間単
位にとられており、各測定点の間隔は5分であ
る。SO2濃度を変化させてから、起電力が平衡に
達するのに要する時間は、反応管内のガスが完全
に置換されるのに必要な時間であると考えられ、
濃度を変化させた場合、起電力は瞬時に濃度変化
に応答するものと推定される。 The responsiveness of the electromotive force to changes in SO 2 concentration and temperature was very good. Figure 7,
The results are plotted in Figure 8. FIG. 7 is a diagram showing the responsiveness of electromotive force to changes in SO 2 concentration, and shows the results at 930K. The horizontal axis is taken in units of time, and the interval between each measurement point is 5 minutes. The time required for the electromotive force to reach equilibrium after changing the SO 2 concentration is considered to be the time required for the gas in the reaction tube to be completely replaced.
When the concentration is changed, it is estimated that the electromotive force responds instantaneously to the change in concentration.
また、第8図は温度の変化に対する起電力の応
答性を示した図で、SO2濃度が11.0p.p.m.の時の
結果である。各測定点の間隔は10分である。温度
変化に対する起電力の応答性も非常に良好である
ことがわかる。 Moreover, FIG. 8 is a diagram showing the responsiveness of electromotive force to changes in temperature, and shows the results when the SO 2 concentration is 11.0 ppm. The interval between each measurement point is 10 minutes. It can be seen that the responsiveness of the electromotive force to temperature changes is also very good.
これらの各応答性は従来のNa2SO4又はK2SO4
等の固体電解質のペレツトと参照極に基準ガスを
用いた測定装置に比較しても同等又はそれ以上の
ものであつた。 Each of these responsivity is compared to conventional Na 2 SO 4 or K 2 SO 4
The performance was equivalent to or better than that of a measuring device using solid electrolyte pellets and a standard gas as a reference electrode.
第9図には、試料極(測定極)側で生成される
Na2SO4中のNaの活量aNa(Na2SO4)の対数を横軸に
とり、得られた起電力の値を、それぞれの温度毎
にプロツトし結果を示した。 Figure 9 shows the
The logarithm of Na activity a Na(Na2SO4) in Na 2 SO 4 is plotted on the horizontal axis, and the obtained electromotive force values are plotted at each temperature to show the results.
ガス極側では次の式(2)の反応によつてNa2SO4
が生成される。 On the gas electrode side, Na 2 SO 4 is generated by the reaction of the following equation (2).
is generated.
2Na+SO3+1/2O2=Na2SO4 ……(2) (2)の平衡定数は式(3)で与えられる。 2Na+SO 3 +1/2O 2 =Na 2 SO 4 ...(2) The equilibrium constant of (2) is given by equation (3).
K(2)=aNa2SO4/(aNa)2・Pso3・(Po2)1/2 ……(3)
したがつて式(2)の生成自由エネルギーから
aNa(Na2SO4)が求められる。K(2)=a Na2SO4 / (a Na ) 2・Pso 3・(Po 2 ) 1/2 ……(3) Therefore, from the free energy of formation in equation (2)
a Na(Na2SO4) is determined.
また、固体電解質の起電力は次の式(4)で表わさ
れる。 Further, the electromotive force of the solid electrolyte is expressed by the following equation (4).
E=RT/FlnaNa(合金)/aNa(Na2SO4) ……(4)
温度を一定にして考えるとAu、Au2Na中の
Naの活量が一定になるので(4)は次の式(5)のよう
に表現できる。 E=RT/Flna Na (alloy)/a Na(Na2SO4) ...(4) Considering that the temperature is constant, Au, Au 2 Na in
Since the activity of Na is constant, (4) can be expressed as the following equation (5).
E=−C1lnaNa(Na2SO4)+C2 ……(5)
ただし、C1=RT/F(定数)
C2=RT/FlnaNa(合金)
式(5)から、lnaNa(Na2SO4)と起電力の関係をプロツ
トすると直線関係が得られるはずである。 E=-C 1 lna Na(Na2SO4) +C 2 ...(5) However, C 1 = RT/F (constant) C 2 = RT/Flna Na ( alloy ) From formula (5), lna Na(Na2SO4) and If you plot the relationship between electromotive force, you should get a linear relationship.
第9図のプロツトはよく直線にのつており、得
られた起電力の値が妥当な値であることを示して
いる。 The plot in FIG. 9 shows a good straight line, indicating that the obtained electromotive force value is a reasonable value.
本実験で得られた起電力の値をもとに、それぞ
れの温度で、Au、Au2Na合金中のNaの活量を
算出した。その対数値を温度の逆数に対してプロ
ツトしたのが、第10図である。 Based on the electromotive force values obtained in this experiment, the activities of Na in Au and Au 2 Na alloys were calculated at each temperature. FIG. 10 shows a plot of the logarithm value against the reciprocal of temperature.
合金中のNaの活量は式(4)に起電力の測定値と、
第9図に示されたaNa(Na2SO4)の計算値を代入し、
温度毎に異なつた濃度から計算したaNa(合金)の値
を求め、それらを平均して、その温度での
aNa(合金)とした。 The activity of Na in the alloy is expressed by formula (4), the measured value of the electromotive force, and
Substituting the calculated value of a Na(Na2SO4) shown in Figure 9,
Obtain the value of a Na ( alloy ) calculated from the different concentrations at each temperature, average them, and calculate the value at that temperature.
a Na ( alloy ) .
各プロツトより最小自乗法を行なつて次のよう
な直線を得た。 Using the least squares method from each plot, we obtained the following straight line.
log aNa(合金)=−4820/T+1.93(±0.179) ……(6)
以上の各データ、式を用いることにより、例え
ば、マイクロコンピユータのリードオンリメモリ
中に温度、及び起電力をパラメータとするマツプ
を作成しておき、実測された温度、起電力に基づ
きマツプを参照すれば、その時のSO2ガスの濃度
を瞬間的にかつ継続的に検出することが可能とな
る。log a Na ( alloy ) = -4820/T+1.93 (±0.179) ...(6) By using the above data and formulas, for example, temperature and electromotive force can be set as parameters in the read-only memory of a microcomputer. By creating a map and referring to the map based on the actually measured temperature and electromotive force, it becomes possible to instantly and continuously detect the concentration of SO 2 gas at that time.
第1図は本発明のセンサ構造の一例の縦断面
図、第2図は本発明のセンサ構造の他の例の縦断
面図、第3図はAu−Na系の状態図、第4図は本
発明センサの具体的構成例を示す縦断面図、第5
図はそのセンサを用いSO2ガス濃度及び雰囲気温
度毎の起電力を示すグラフ、第6図は再現性を見
るためにSO2ガス濃度及び雰囲気温度毎の起電力
を2回又は3回繰り返した結果を示すグラフ、第
7図はSO2ガス濃度変化に対する起電力の応答性
を示すグラフ、第8図は温度変化に対する起電力
の応答性を示すグラフ、第9図は各温度における
試料極(測定極)で生成されるNa2SO4中のNa
の活量と起電力との関係を示すグラフ、第10図
は実験で求められた合金中のNaの活量と温度と
の関係を示すグラフを表わす。
1,5……ナトリウム成分を含む固体電解質、
2,6……ナトリウム又はナトリウム合金、11
……β″−アルミナ(固体電解質)、14……Auを
微量含むAu2Na(ナトリウム合金)。
FIG. 1 is a vertical cross-sectional view of an example of the sensor structure of the present invention, FIG. 2 is a vertical cross-sectional view of another example of the sensor structure of the present invention, FIG. 3 is a state diagram of the Au-Na system, and FIG. Vertical sectional view showing a specific configuration example of the sensor of the present invention, No. 5
The figure is a graph showing the electromotive force for each SO 2 gas concentration and ambient temperature using the sensor, and Figure 6 shows the electromotive force for each SO 2 gas concentration and ambient temperature repeated two or three times to check reproducibility. Graphs showing the results, Figure 7 is a graph showing the responsiveness of electromotive force to changes in SO 2 gas concentration, Figure 8 is a graph showing responsiveness of electromotive force to changes in temperature, and Figure 9 is a graph showing the response of the electromotive force to changes in SO 2 gas concentration. Na in Na 2 SO 4 generated at the measuring electrode)
Figure 10 is a graph showing the relationship between the activity of Na in the alloy and the temperature, which was determined through experiments. 1,5...solid electrolyte containing sodium component,
2,6...sodium or sodium alloy, 11
...β''-alumina (solid electrolyte), 14...Au 2 Na (sodium alloy) containing a trace amount of Au.
Claims (1)
の間の起電力を測定することにより測定極の二酸
化イオウガス濃度を測定する二酸化イオウ用固体
電解質ガスセンサにおいて、 固体電解質がナトリウム成分を含み、かつ参照
極がナトリウム又はナトリウム合金であることを
特徴とする二酸化イオウ用固体電解質ガスセン
サ。 2 ナトリウム合金がナトリウムと金との合金で
ある特許請求の範囲第1項に記載の二酸化イオウ
用固体電解質ガスセンサ。 3 ナトリウムを含む固体電解質がβ−アルミナ
又はβ″−アルミナである特許請求の範囲第1項又
は第2項に記載の二酸化イオウ用固体電解質ガス
センサ。[Claims] 1. A solid electrolyte gas sensor for sulfur dioxide that measures the sulfur dioxide gas concentration at a measurement electrode by measuring the electromotive force between a reference electrode and a measurement electrode provided on a solid electrolyte, wherein the solid electrolyte is A solid electrolyte gas sensor for sulfur dioxide containing a sodium component and characterized in that a reference electrode is sodium or a sodium alloy. 2. The solid electrolyte gas sensor for sulfur dioxide according to claim 1, wherein the sodium alloy is an alloy of sodium and gold. 3. The solid electrolyte gas sensor for sulfur dioxide according to claim 1 or 2, wherein the solid electrolyte containing sodium is β-alumina or β″-alumina.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58111683A JPS603547A (en) | 1983-06-21 | 1983-06-21 | Gas sensor of solid electrolyte for sulfur dioxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58111683A JPS603547A (en) | 1983-06-21 | 1983-06-21 | Gas sensor of solid electrolyte for sulfur dioxide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS603547A JPS603547A (en) | 1985-01-09 |
JPH0327862B2 true JPH0327862B2 (en) | 1991-04-17 |
Family
ID=14567527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58111683A Granted JPS603547A (en) | 1983-06-21 | 1983-06-21 | Gas sensor of solid electrolyte for sulfur dioxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS603547A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2517902A (en) * | 2013-07-26 | 2015-03-11 | Cambridge Entpr Ltd | Method and apparatus for sensing molecular gases |
JP6655515B2 (en) * | 2016-09-23 | 2020-02-26 | 日本碍子株式会社 | Gas sensor |
-
1983
- 1983-06-21 JP JP58111683A patent/JPS603547A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS603547A (en) | 1985-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9028671B2 (en) | Hydrogen sensing apparatus and method | |
Gauthier et al. | Progress in the Development of Solid‐State Sulfate Detectors for Sulfur Oxides | |
EP0544281A1 (en) | Sensor probe for measuring hydrogen concentration in molten metal and method for measuring hydrogen concentration | |
EP0573612A4 (en) | ||
Weppner | Advanced principles of sensors based on solid state ionics | |
US6514394B1 (en) | Sensor for application in molten metals | |
Sadaoka et al. | CO 2 sensing characteristics of a solid-state electrochemical sensor based on a sodium ionic conductor | |
JPH0327862B2 (en) | ||
RU2483300C1 (en) | Solid electrolyte sensor for amperometric measurement of gas mixture moisture | |
US4601810A (en) | Electrochemical probe for measuring magnesium concentration in molten aluminum | |
Hill et al. | Electrochemical Measurement of Oxide Formation | |
US4842698A (en) | Solid state arsenic probe for use in pyrometallurgical processes | |
US5192404A (en) | Method for measuring a minor element in a molten metal | |
JPH0128338B2 (en) | ||
Lantelme et al. | Electrochemistry—I | |
JPH0720082A (en) | Sensor probe for measuring amount of hydrogen dissolution in melted metal | |
Van Norman | A Chronopotentiometric Study of the Silver‐Silver Chloride and Silver‐Silver Bromide Systems | |
JPH0792449B2 (en) | Sensor probe for measuring amount of dissolved hydrogen in molten metal and method for measuring hydrogen concentration | |
Allen | An absolute galvanic detector for nitrogen dioxide | |
Kirchnerova et al. | Silver Beta‐Alumina as a Potentiometric Gas Sensor for Arsenic Oxides, AsOx | |
JP2530076B2 (en) | Sensor probe for measuring the amount of dissolved hydrogen in molten metal and method of using the same | |
Ullmann et al. | Determination of oxygen activities in melts and solid materials by solid electrolyte cells | |
Liu et al. | Carbon Dioxide Gas Sensor Based on Na+-Beta/Beta"-Alumina Solid Electrolytes and Its Cross-Sensitivity with other Gases | |
JPS6058549A (en) | Solid electrolyte gas sensor for sulfur dioxide | |
Janz et al. | Wettability of some carbon surfaces by molten sulfur and polysulfides |