[go: up one dir, main page]

JPH03274753A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPH03274753A
JPH03274753A JP2073314A JP7331490A JPH03274753A JP H03274753 A JPH03274753 A JP H03274753A JP 2073314 A JP2073314 A JP 2073314A JP 7331490 A JP7331490 A JP 7331490A JP H03274753 A JPH03274753 A JP H03274753A
Authority
JP
Japan
Prior art keywords
solder
integrated circuit
semiconductor integrated
circuit element
cap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2073314A
Other languages
Japanese (ja)
Other versions
JP2796401B2 (en
Inventor
Toshihiko Sato
俊彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2073314A priority Critical patent/JP2796401B2/en
Publication of JPH03274753A publication Critical patent/JPH03274753A/en
Application granted granted Critical
Publication of JP2796401B2 publication Critical patent/JP2796401B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap

Landscapes

  • Wire Bonding (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体集積回路装置に関し、特に、気密封止
のためのハンダ接合部と、放熱のためのハンダ接合部と
を有する構造の半導体集積回路装置に適用して有効な技
術に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a semiconductor integrated circuit device, and in particular to a semiconductor integrated circuit device having a structure including a solder joint for hermetic sealing and a solder joint for heat dissipation. The present invention relates to techniques that are effective when applied to integrated circuit devices.

〔従来の技術〕[Conventional technology]

半導体集積回路装置の実装密度の向上などの要請に呼応
した封止形態の一例として、たとえば、第3図に示され
るような構造のものが考えられる。
As an example of a sealing form that meets the demand for increased packaging density of semiconductor integrated circuit devices, for example, a structure as shown in FIG. 3 can be considered.

すなわち、ハンダバンプAを介して半導体集積回路素子
Bを搭載したベースCとキャップDとの間、およびキャ
ップDと半導体集積回路素子Bとの間にハンダEからな
るプリフォーム材を挟持させ、その状態でハンダEの融
点程度に加熱するハンダリフロー処理により、ベースC
とキャップDとの封着、および半導体集積回路素子Bと
キャップDとの間のハンダEによる放熱接合構造の形成
とを同時に行うようにしたものである。
That is, a preform material made of solder E is sandwiched between a base C on which a semiconductor integrated circuit element B is mounted via a solder bump A and a cap D, and between a cap D and a semiconductor integrated circuit element B, and the state is Base C is heated to about the melting point of solder E by solder reflow treatment.
The sealing between the semiconductor integrated circuit element B and the cap D, and the formation of a heat dissipation bonding structure between the semiconductor integrated circuit element B and the cap D using the solder E are performed simultaneously.

そして、このような封止構造の半導体集積回路装置のベ
ースCを、さらに図示しないハンダバンプなどを介して
所望の実装基板などに搭載し、ベースCの内部に形成さ
れた図示しない配線構造およびハンダバンプAを介して
半導体集積回路素子Bと外部との電気信号の授受などを
行わせるものである。
Then, the base C of the semiconductor integrated circuit device having such a sealed structure is further mounted on a desired mounting board or the like via solder bumps (not shown), etc., and the wiring structure (not shown) formed inside the base C and the solder bumps A are attached. This is used to exchange electrical signals between the semiconductor integrated circuit element B and the outside via the semiconductor integrated circuit element B.

ところで、上述の第3図に示される封止構造の場合には
、半導体集積回路素子Bおよびノ\ンダノくンブAなど
に作用する熱応力を軽減するなどの観点から、封止構造
全体の高さ方向における熱膨張のバランスが重要となり
、品種によって定まる半導体集積回路素子Bおよびハン
ダバンプAの径などに応じて、ベースCとキャップDと
の封着部のハンダEの厚さを適切に設定するなどの対策
が取られる。
Incidentally, in the case of the sealing structure shown in FIG. The balance of thermal expansion in the horizontal direction is important, and the thickness of the solder E at the sealing part between the base C and cap D is set appropriately according to the diameters of the semiconductor integrated circuit element B and the solder bumps A, which are determined by the product type. Measures such as these will be taken.

一方、k−スCとキャップDとの封着部のノ1ンダEの
厚さ寸法が大きい場合には、凝固時に幅方向に発生する
収縮孔などに起因して、封着部の気密性が損なわれる場
合があり、この対策としては、封着部のハンダEの厚さ
を小さくして収縮孔の発生を阻止することが考えられる
On the other hand, if the thickness of the nozzle E in the sealed portion between the K-space C and the cap D is large, the airtightness of the sealed portion may be reduced due to shrinkage holes that occur in the width direction during solidification. As a countermeasure to this problem, it is possible to reduce the thickness of the solder E in the sealing portion to prevent the formation of shrinkage holes.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このため、放熱接合構造と封着部とに同じ/%ンダEを
用、)だまま、封着部の気密性の低下の対策として、単
に封着部のノ\ンダEの厚さを小さくしたのでは、厚さ
方向における熱膨張のバランスがくずれた状態でハンダ
リフロー時の冷却過程で当該封着部および放熱接合構造
部のノ\ンダが同時に硬化することとなり、キャップD
とベースCとの間に半導体集積回路素子Bが強く拘束さ
れた状態となる。
Therefore, as a countermeasure for reducing the airtightness of the sealed part, the thickness of the solder E of the sealed part is simply made smaller. If so, the thermal expansion in the thickness direction would be unbalanced, and the sealing part and the solder of the heat dissipation joint structure would harden at the same time during the cooling process during solder reflow, causing the cap D to become unbalanced.
The semiconductor integrated circuit element B is strongly restrained between the base C and the base C.

このため、キャップDと、半導体集積回路素子Bなどと
の熱膨張率の差異によって、たとえば第3図に示される
ように、半導体集積回路素子Bの周辺部に位置するハン
ダバンプAに引張の熱応力が発生し、当該ハンダバンプ
Aが半導体集積回路素子Bから剥離するなどして、半導
体集積回路素子Bと外部との間における電気的な接続状
態が不安定になり、半導体集積回路装置の動作の信頼性
が低下するという問題がある。
For this reason, due to the difference in thermal expansion coefficient between the cap D and the semiconductor integrated circuit element B, for example, as shown in FIG. occurs, and the solder bump A peels off from the semiconductor integrated circuit element B, making the electrical connection between the semiconductor integrated circuit element B and the outside unstable, and reducing the reliability of the operation of the semiconductor integrated circuit device. There is a problem of decreased sexuality.

なお、同様の封止構造における熱応力などのへの対策と
しては、たとえば特公昭60−34813号公報に開示
される技術がある。
As a countermeasure against thermal stress in a similar sealing structure, there is a technique disclosed in Japanese Patent Publication No. 60-34813, for example.

すなわち、ハンダリフロー時に、チップ背面のハンダ層
の表面張力により、チップを基板から持ち上げ、当該基
板とチップとを電気的に接続する接続バンブの溶融形状
を柱状に制御して、通常の樽形の形状の際に発生する当
該接続バンブと基板との接合界面における応力集中を軽
減し、当該接合部の熱疲労特性を改善しようとするもの
であるが、当該技術においては、前述のような封着部に
おける気密性の低下の対策にはなんら言及していない。
In other words, during solder reflow, the surface tension of the solder layer on the back of the chip lifts the chip from the substrate, and controls the melting shape of the connecting bumps that electrically connect the substrate and the chip into a columnar shape, making it more like a normal barrel. This technology aims to reduce the stress concentration at the bonding interface between the connection bump and the substrate that occurs during shaping, and improve the thermal fatigue characteristics of the bond. There is no mention of any measures to prevent airtightness in the area.

そこで、本発明の目的は、ベースと半導体集積回路素子
との間に介在するハンダバンプに作用する熱応力を減少
させて、動作の信頼性を向上させた半導体集積回路装置
を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a semiconductor integrated circuit device in which thermal stress acting on solder bumps interposed between a base and a semiconductor integrated circuit element is reduced to improve operational reliability.

本発明の他の目的は、封着部における気密性の向上と、
ベースと半導体集積回路素子との間に介在するハンダバ
ンプに作用する熱応力の軽減とを両立させることが可能
な半導体集積回路装置を提供することにある。
Another object of the present invention is to improve the airtightness of the sealed portion;
An object of the present invention is to provide a semiconductor integrated circuit device that can reduce thermal stress acting on solder bumps interposed between a base and a semiconductor integrated circuit element.

本発明の前記ならびにその他の目的と新規?;特徴は、
本明細書の記述および添付図面から明らかこなるであろ
う。
The above and other objects and novelties of the present invention? ;feature is,
This will be apparent from the description herein and the accompanying drawings.

〔課題を解決するための手段〕[Means to solve the problem]

本願において開示される発明のうち、代表的なものの概
要を簡単に説明すれば、下記のとおりである。
A brief overview of typical inventions disclosed in this application is as follows.

すなわち、本発明になる半導体集積回路装置は、ハンダ
バンプを介して半導体集積回路素子を搭載したベースに
第1のハンダを介してキャップを封着することにより当
該半導体集積回路素子を封止するとともに、半導体集積
回路素子の背面とキャップとの間を第2のハンダで接続
してなる半導体集積回路装置であって、第2のハンダの
融点を第1のハンダの融点よりも低くしたものである。
That is, the semiconductor integrated circuit device of the present invention seals the semiconductor integrated circuit element by sealing the cap via the first solder to the base on which the semiconductor integrated circuit element is mounted via the solder bump, and This is a semiconductor integrated circuit device in which the back surface of a semiconductor integrated circuit element and a cap are connected by a second solder, and the melting point of the second solder is lower than that of the first solder.

〔作用〕[Effect]

上記した本発明の半導体集積回路装置によれば、たとえ
ば、封止時のハンダリフローにおける冷却過程で、ベー
スとキャップとの封着部に介在する融点のより高い第1
のハンダが、半導体集積回路素子とキャップとの間に介
在する融点のより低い第2のハンダよりも先に凝固する
ため、半導体集積回路素子およびハンダバンプなどが、
ベースとキャップとの間に強く拘束されることがなく、
第1のハンダの凝固時に、依然として溶融または半溶融
状態にある第2のハンダによってキャップや半導体集積
回路素子などの熱変形などが吸収される。
According to the above-described semiconductor integrated circuit device of the present invention, for example, during the cooling process during solder reflow during sealing, the
Since the solder solidifies before the second solder, which has a lower melting point and is interposed between the semiconductor integrated circuit element and the cap, the semiconductor integrated circuit element and the solder bumps, etc.
There is no strong restriction between the base and the cap,
When the first solder solidifies, thermal deformation of the cap, semiconductor integrated circuit element, etc. is absorbed by the second solder which is still in a molten or semi-molten state.

また、第2のハンダの融点は低く、より室温に近いので
、当該第2のハンダの凝固によって発生する熱応力もよ
り小さくなる。
Further, since the second solder has a low melting point and is closer to room temperature, the thermal stress generated by solidification of the second solder is also smaller.

このため、キャップと半導体集積回路素子などとの間に
おける熱膨張率の差などに起因して半導体集積回路素子
およびハンダバンプなどに作用する熱応力が緩和される
ので、ハンダバンプと半導体集積回路素子などとの剥離
の発生などが確実に回避され、ハンダバンプを介した半
導体集積回路素子と外部との間の電気的な接続状態が安
定になり、半導体集積回路装置の動作の信頼性が向上す
る。
Therefore, the thermal stress that acts on the semiconductor integrated circuit element and the solder bump due to the difference in thermal expansion coefficient between the cap and the semiconductor integrated circuit element, etc., is alleviated. The occurrence of peeling and the like is reliably avoided, the electrical connection between the semiconductor integrated circuit element and the outside via the solder bumps is stabilized, and the reliability of the operation of the semiconductor integrated circuit device is improved.

また、半導体集積回路素子およびハンダバンプなどにお
ける熱応力の発生を懸念することなく、たとえばベース
とキャップとの封着部に介在する第1のハンダの厚さを
小さくして当該封着部の気密性の向上を図ることができ
、封着部における気密性の向上と、ベースと半導体集積
回路素子との間に介在するハンダバンプに作用する熱応
力の軽減とを両立させることが可能となる。
In addition, without worrying about the occurrence of thermal stress in semiconductor integrated circuit elements, solder bumps, etc., for example, the thickness of the first solder interposed in the sealing part between the base and the cap can be reduced to improve the airtightness of the sealing part. This makes it possible to improve the airtightness of the sealed portion and to reduce the thermal stress acting on the solder bumps interposed between the base and the semiconductor integrated circuit element.

〔実施例〕〔Example〕

以下、本発明の一実施例である半導体集積回路装置の一
例を図面を参照しながら詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An example of a semiconductor integrated circuit device according to an embodiment of the present invention will be described in detail below with reference to the drawings.

第1図および第2図は、本実施例の半導体集積回路装置
の組立工程における構成の一例を工程順に示したもので
ある。
FIGS. 1 and 2 show an example of the configuration in the assembly process of the semiconductor integrated circuit device of this embodiment in the order of steps.

まず、本実施例の半導体集積回路装置の構成を説明する
First, the configuration of the semiconductor integrated circuit device of this embodiment will be explained.

たとえばセラミックスなどからなるベース1には、たと
えば、Pb−3,6重量%Sn(融点310〜320℃
〉の組成の複数のハンダバンプ2を介して、所望の機能
を有する半導体集積回路構造が形成された半導体集積回
路素子3が搭載されている。
For example, the base 1 made of ceramics etc. has Pb-3.6% by weight Sn (melting point 310-320°C).
A semiconductor integrated circuit element 3, on which a semiconductor integrated circuit structure having a desired function is formed, is mounted via a plurality of solder bumps 2 having the composition.

特に図示しないが、ベースlの内部および表裏両面には
、配線構造が形成されており、当該配線構造およびハン
ダバンプ2を介して、半導体集積回路素子3と外部との
間における動作信号や駆動電力の授受などが行われるよ
うに構成されている。
Although not particularly shown, a wiring structure is formed inside the base l and on both the front and back surfaces, and operating signals and driving power are transmitted between the semiconductor integrated circuit element 3 and the outside via the wiring structure and the solder bumps 2. It is configured so that giving and receiving can take place.

半導体集積回路素子3を搭載したベース1には、後述の
ようなハンダリフロー操作によって形成されるハンダ層
4 (第1のハンダ〉を介して断面が凹形のキャップ5
が封着されており、これによりベースlとキャップ5と
で構成される密閉空間の内部に半導体集積回路素子3が
封入された状態となっている。
A cap 5 having a concave cross section is attached to the base 1 on which the semiconductor integrated circuit element 3 is mounted, through a solder layer 4 (first solder) formed by a solder reflow operation as described below.
The semiconductor integrated circuit element 3 is sealed inside the sealed space formed by the base l and the cap 5.

本実施例の場合、ハンダ層4には、たとえば組成がPb
−10重量%Sn(融点275〜300℃〉のハンダが
用いられている。
In the case of this embodiment, the solder layer 4 has a composition of, for example, Pb.
-10% by weight Sn (melting point: 275 to 300°C) solder is used.

また、特に限定されないが、ベース1とキャップ5との
封着部位には、必要に応じてハンダ層4に対する濡れ性
を向上させるなどの目的で、所望のメタライズ層を形成
しておいてもよい。
Further, although not particularly limited, a desired metallized layer may be formed at the sealing site between the base 1 and the cap 5 for the purpose of improving wettability to the solder layer 4 as necessary. .

この場合、半導体集積回路素子3の背面とキャップ5の
内壁面との間には、たとえば、組成が、In−48重量
%Sn(融点117℃)のハンダからなり、前記ハンダ
層4よりも融点が低くより室温に近いハンダ層6 (第
2のハンダ)が、後述のようにして充満するように形成
されており、半導体集積回路素子3の動作時に発生する
熱が、当該ハンダ層6およびキャップ5を介して外部に
放散される構造となっている。
In this case, between the back surface of the semiconductor integrated circuit element 3 and the inner wall surface of the cap 5, a solder having a composition of In-48% by weight Sn (melting point 117° C.) is formed, for example, and the melting point is lower than that of the solder layer 4. A solder layer 6 (second solder) having a lower temperature and closer to room temperature is formed to fill the solder layer 6 (second solder) as described later, and heat generated during operation of the semiconductor integrated circuit element 3 is transferred to the solder layer 6 and the cap. It has a structure in which it is dissipated to the outside via 5.

このような構造の半導体集積回路装置の組立におけるハ
ンダリフロー処理の一例を説明すると次のようになる。
An example of solder reflow processing in assembling a semiconductor integrated circuit device having such a structure will be explained as follows.

まず、ベース1に複数のハンダバンプ2を介して半導体
集積回路素子3を搭載する。
First, a semiconductor integrated circuit element 3 is mounted on a base 1 via a plurality of solder bumps 2.

次に、第1図に示されるように、半導体集積回路素子3
を搭載したベース1とキャップ5との間に、ハンダ層4
を構成するハンダプリフォーム材4aを挟持させるとと
もに、半導体集積回路素子3の背面とキャップ5との間
にはハンダ層6を構成するハンダプリフォーム材6aを
挟持させた状態で積み重ねる。
Next, as shown in FIG.
A solder layer 4 is placed between the base 1 and the cap 5, which are equipped with
The solder preform material 4a constituting the solder layer 6 is sandwiched therebetween, and the solder preform material 6a constituting the solder layer 6 is sandwiched between the back surface of the semiconductor integrated circuit element 3 and the cap 5 and stacked.

そして、図示しない所望の治具などで所望の荷重で挟圧
しながら、図示しない加熱炉の内部に投入し、ハンダプ
リフォーム材4a()\ンダ層4〉の融点程度の温度に
加熱することにより、ハンダプリフォーム材4aおよび
それよりも融点の低いハンダプリフォーム材6aを溶融
状態にし、これにより、ベース1とキャップ5との間の
封着部、および半導体集積回路素子3の背面とキャップ
5の内壁面との間には、第2図に示されるように溶融し
たハンダ層4およびハンダ層6が充満した状態となる。
Then, while being compressed with a desired load using a desired jig (not shown), the material is placed into a heating furnace (not shown), and heated to a temperature approximately equal to the melting point of the solder preform material 4a ()\ solder layer 4>. , the solder preform material 4a and the solder preform material 6a having a lower melting point are melted, and thereby the sealing portion between the base 1 and the cap 5 and the back surface of the semiconductor integrated circuit element 3 and the cap 5 are melted. As shown in FIG. 2, the space between the solder layer 4 and the inner wall surface of the solder layer 6 is filled with the melted solder layer 4 and the solder layer 6, as shown in FIG.

その後、加熱炉から取り出して冷却し、/%ンダ層4お
よびハンダ層6を凝固させる。
Thereafter, it is taken out from the heating furnace and cooled to solidify solder layer 4 and solder layer 6.

この冷却時において、本実施例の半導体集積回路装置の
場合には、ベース1とキャップ5との間の封着部に介在
するハンダ層4の融点が、半導体集積回路素子3の背面
とキャップ5との間に介在するハンダ層6よりも高いの
で、当該封着部のハンダ層4が完全に凝固した時点でも
、いまだハンダ層6は溶融状態または半溶融状態のまま
である。
During this cooling, in the case of the semiconductor integrated circuit device of this embodiment, the melting point of the solder layer 4 interposed in the sealing portion between the base 1 and the cap 5 is the same as that between the back surface of the semiconductor integrated circuit element 3 and the cap 5. Since the solder layer 6 is higher than the solder layer 6 interposed between the solder layer 6 and the solder layer 6, even when the solder layer 4 of the sealing portion is completely solidified, the solder layer 6 still remains in a molten state or a semi-molten state.

すなわち、従来のように〜、ハンダ層4とハンダ層6と
を同様の組成のハンダで構成し、両者が冷却過程で同時
に凝固する場合には、内部の半導体集積回路素子3およ
びハンダバンプ2は、ベース1とキャップ5との間に強
く拘束された状態となり、キャップ5と半導体集積回路
素子3との熱膨張率の差などによって、半導体集積回路
素子3とハンダバンプ2との間に、たとえば引張の熱応
力が作用することとなる。
That is, when the solder layer 4 and the solder layer 6 are made of solder having the same composition as in the conventional case and both solidify at the same time during the cooling process, the internal semiconductor integrated circuit element 3 and the solder bump 2 are The base 1 and the cap 5 are strongly restrained, and due to the difference in thermal expansion coefficient between the cap 5 and the semiconductor integrated circuit element 3, for example, tension is generated between the semiconductor integrated circuit element 3 and the solder bump 2. Thermal stress will be applied.

ところが、本実施例の場合には、一方のハンダ層6が溶
融または半溶融状態であるため、キャップ5や半導体集
積回路素子3の熱変形などが溶融または半溶融状態にあ
るハンダ層6によって吸収され、当該半導体集積回路素
子3と複数のハンダバンプ2との間に有害な熱応力が作
用することが回避される。
However, in the case of this embodiment, since one of the solder layers 6 is in a molten or semi-molten state, thermal deformation of the cap 5 or the semiconductor integrated circuit element 3 is absorbed by the solder layer 6 that is in a molten or semi-molten state. This prevents harmful thermal stress from acting between the semiconductor integrated circuit element 3 and the plurality of solder bumps 2.

また、ハンダ層6の融点は低く室温に近いので、当該ハ
ンダ層6の凝固から室温までの冷却における温度差が小
さいため、この温度差によって生じる熱応力もより小さ
くなる。
Furthermore, since the melting point of the solder layer 6 is low and close to room temperature, the temperature difference between the solidification of the solder layer 6 and its cooling to room temperature is small, so that the thermal stress caused by this temperature difference is also reduced.

この結果、ハンダリフローなどの加熱・冷却過程におい
て、半導体集積回路素子3とノ\ンダノくンブ2とが熱
応力などを受けて剥離するt工どして、両者の電気的な
接続状態が不安定になるなどの障害の発生が回避され、
半導体集積回路装置の動作の信頼性が確実に向上する。
As a result, during the heating/cooling process such as solder reflow, the semiconductor integrated circuit element 3 and the solder plate 2 may peel off due to thermal stress, etc., and the electrical connection between the two may become unstable. The occurrence of problems such as stability is avoided,
The reliability of the operation of the semiconductor integrated circuit device is certainly improved.

また、このような熱応力の発生を懸念することな(、ハ
ンダ層4の厚さを充分に小さくして、収縮孔の発生など
による封着部の気密性の低下を防止することが可能とな
り、半導体集積回路装置における熱応力の低減と気密性
の向上とを両立させることができる。
In addition, there is no need to worry about the generation of such thermal stress (by making the thickness of the solder layer 4 sufficiently small, it is possible to prevent the deterioration of the airtightness of the sealed portion due to the generation of shrinkage holes, etc.). , it is possible to both reduce thermal stress and improve airtightness in a semiconductor integrated circuit device.

さらに、融点の低い物質は、−級に剛性も低いので、封
止後の半導体集積回路装置の使用中における熱サイクル
などに起因する)\ンダノインブ2とベース1との間な
どに作用する熱応力も緩和され、当該ハンダバンプ2と
ベース1との接合部における疲労寿命も延長される結果
、半導体集積回路装置の動作の信頼性が向上する。
Furthermore, since a substance with a low melting point also has a low rigidity, thermal stress acting between the base 1 and the base 2 (due to thermal cycling during use of the semiconductor integrated circuit device after encapsulation) As a result, the fatigue life of the joint between the solder bump 2 and the base 1 is extended, and as a result, the reliability of the operation of the semiconductor integrated circuit device is improved.

以上本発明者によってなされた発明を実施例に基づき具
体的に説明したが、本発明は前記実施例に限定されるも
のではなく、その要旨を逸脱しない範囲で種々変更可能
であることはいうまでもない。
Although the invention made by the present inventor has been specifically explained above based on Examples, it goes without saying that the present invention is not limited to the Examples and can be modified in various ways without departing from the gist thereof. Nor.

たとえば、第1および第2のハンダの組成としては、前
記実施例に例示されたものに限らず、第2のハンダの融
点がMlのハンダの融点よりも低いという関係にあれば
、他の物質の組み合わせであってもよい。
For example, the compositions of the first and second solders are not limited to those exemplified in the above embodiments, but other materials may be used as long as the melting point of the second solder is lower than the melting point of Ml solder. It may be a combination of

また、半導体集積回路装置の構造は、前記実施例に限定
されない。
Further, the structure of the semiconductor integrated circuit device is not limited to the above embodiment.

〔発明の効果〕〔Effect of the invention〕

本願において開示される発明のうち、代表的なものによ
って得られる効果を簡単に説明すれば、以下のとおりで
ある。
Among the inventions disclosed in this application, the effects obtained by typical inventions are briefly described below.

すなわち、本発明に通る半導体集積回路装置によれば、
ハンダバンプを介して半導体集積回路素子を搭載したベ
ースに第1のハンダを介してキャップを封着することに
より当該半導体集積回路素子を封止するとともに、前記
半導体集積回路素子の背面とキャップとの間を第2のハ
ンダで接続してなる半導体集積回路装置であって、前記
第2のハンダの融点を前記第1のハンダの融点よりも低
くしたので、たとえば、封止時のハンダリフローにおけ
る冷却過程で、ベースとキャップとの封着部に介在する
融点のより高い第1のハンダが、半導体集積回路素子と
キャップとの間に介在する融点のより低い第2のハンダ
よりも先に凝固するため、半導体集積回路素子およびハ
ンダバンプなどが、ベースとキャップとの間に強く拘束
されることがなく、第1のハンダの凝固時に、依然とし
て溶融または半溶融状態にある第2のハンダによってキ
ャップや半導体集積回路素子などの熱変形などが吸収さ
れる。
That is, according to the semiconductor integrated circuit device according to the present invention,
By sealing a cap via a first solder to a base on which a semiconductor integrated circuit element is mounted via a solder bump, the semiconductor integrated circuit element is sealed, and a gap between the back surface of the semiconductor integrated circuit element and the cap is sealed. A semiconductor integrated circuit device in which the melting point of the second solder is lower than the melting point of the first solder, so that, for example, the cooling process during solder reflow during sealing is In this case, the first solder, which has a higher melting point and is present in the sealed portion between the base and the cap, solidifies before the second solder, which has a lower melting point, which is present between the semiconductor integrated circuit element and the cap. , semiconductor integrated circuit elements, solder bumps, etc. are not strongly constrained between the base and the cap, and when the first solder solidifies, the second solder, which is still in a molten or semi-molten state, protects the cap and semiconductor integrated circuit elements. Thermal deformation of circuit elements etc. is absorbed.

また、第2のハンダの融点は低く、より室温に近いので
、当該第2のハンダの凝固によって発生する熱応力もよ
り小さくデ;る。
Furthermore, since the melting point of the second solder is low and closer to room temperature, the thermal stress generated by solidification of the second solder is also smaller.

このため、キャップと半導体集積回路素子などとの間に
おける熱膨張率の差f;どに起因して半導体集積回路素
子およびハンダバンプなどに作用する熱応力が緩和され
るので、ハンダバンプと半導体集積回路素子などとの剥
離の発生などが確実に回避され、ハンダバンプを介した
半導体集積回路素子と外部との間の電気的な接続状態が
安定になり、半導体集積回路装置の動作の信頼性が向上
する。
Therefore, the thermal stress acting on the semiconductor integrated circuit element and the solder bump due to the difference in thermal expansion coefficient f between the cap and the semiconductor integrated circuit element, etc., is alleviated, so that the solder bump and the semiconductor integrated circuit element are The occurrence of peeling from the semiconductor integrated circuit device is reliably avoided, the electrical connection between the semiconductor integrated circuit element and the outside via the solder bumps is stabilized, and the reliability of the operation of the semiconductor integrated circuit device is improved.

また、半導体集積回路素子およびハンダバンプなどにお
ける熱応力の発生を懸念することなく、ベースとキャッ
プとの封着部に介在する第1のハンダの厚さを小さくし
て、邑該封着部の気密性の向上を図ることができ、封着
部における気密性の向上と、ベースと半導体集積回路素
子との間に介在するハンダバンプに作用する熱応力のU
減とを両立させることが可能となる。
In addition, the thickness of the first solder interposed in the sealing part between the base and the cap can be reduced, without worrying about the generation of thermal stress in the semiconductor integrated circuit element and solder bumps, etc., to ensure that the sealing part is airtight. It is possible to improve the airtightness of the sealing part and reduce the thermal stress U that acts on the solder bumps interposed between the base and the semiconductor integrated circuit element.
It becomes possible to achieve both reduction and reduction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、ハンダリフロー前の組立状態の半導体集積回
路装置の一例を示す略断面図、第2図は、ハンダリフロ
ー後の半導体集積回路装置の一例を示す断面図、 第3図は、従来の半導体集積回路装置の槽底の一例を示
す略断面図である。 l・・・ベース、2・・・ハンダバンプ、3・・・半導
体集積回路素子、4・・・ハンダ層(第1のハンダ)、
4a・・・ハンダプリフォーム材(第1のハンダ)、5
・・・キャップ、6・・・ハンダ層(第2のハンダ)、
6a・・・ハンダプリフォーム材(第2のハンダ)。 第1図 3:半導体集積回路素子 6:ハンダ層(第2のハンダ)
FIG. 1 is a schematic sectional view showing an example of a semiconductor integrated circuit device in an assembled state before solder reflow, FIG. 2 is a sectional view showing an example of a semiconductor integrated circuit device after solder reflow, and FIG. 3 is a conventional FIG. 3 is a schematic cross-sectional view showing an example of the tank bottom of the semiconductor integrated circuit device of FIG. l...Base, 2...Solder bump, 3...Semiconductor integrated circuit element, 4...Solder layer (first solder),
4a...Solder preform material (first solder), 5
... Cap, 6... Solder layer (second solder),
6a...Solder preform material (second solder). Figure 1 3: Semiconductor integrated circuit element 6: Solder layer (second solder)

Claims (1)

【特許請求の範囲】 1、ハンダバンプを介して半導体集積回路素子を搭載し
たベースに第1のハンダを介してキャップを封着するこ
とにより当該半導体集積回路素子を封止するとともに、
前記半導体集積回路素子の背面とキャップとの間を第2
のハンダで接続してなる半導体集積回路装置であって、
前記第2のハンダの融点を前記第1のハンダの融点より
も低くしてなる半導体集積回路装置。 2、前記ベースと前記キャップとの間、および前記半導
体集積回路素子と前記キャップとの間に、それぞれ前記
第1および第2のハンダからなる第1および第2のハン
ダプリフォーム材を挟持させた状態で、前記第1のハン
ダの融点程度の加熱および冷却することにより組み立て
られる請求項1記載の半導体集積回路装置。
[Claims] 1. A semiconductor integrated circuit element is sealed by sealing a cap via a first solder to a base on which the semiconductor integrated circuit element is mounted via a solder bump;
A second
A semiconductor integrated circuit device connected with solder,
A semiconductor integrated circuit device in which the melting point of the second solder is lower than the melting point of the first solder. 2. First and second solder preform materials made of the first and second solders are sandwiched between the base and the cap and between the semiconductor integrated circuit element and the cap, respectively. 2. The semiconductor integrated circuit device according to claim 1, wherein the semiconductor integrated circuit device is assembled by heating and cooling to about the melting point of the first solder while the semiconductor integrated circuit device is in a state where the first solder is heated to about the melting point of the first solder and then cooled.
JP2073314A 1990-03-26 1990-03-26 Semiconductor integrated circuit device Expired - Fee Related JP2796401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2073314A JP2796401B2 (en) 1990-03-26 1990-03-26 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2073314A JP2796401B2 (en) 1990-03-26 1990-03-26 Semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPH03274753A true JPH03274753A (en) 1991-12-05
JP2796401B2 JP2796401B2 (en) 1998-09-10

Family

ID=13514590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2073314A Expired - Fee Related JP2796401B2 (en) 1990-03-26 1990-03-26 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JP2796401B2 (en)

Also Published As

Publication number Publication date
JP2796401B2 (en) 1998-09-10

Similar Documents

Publication Publication Date Title
US5982038A (en) Cast metal seal for semiconductor substrates
US5821161A (en) Cast metal seal for semiconductor substrates and process thereof
US6281573B1 (en) Thermal enhancement approach using solder compositions in the liquid state
KR100294968B1 (en) Multilayer Solder Sealing Band for Semiconductor Substrate and Manufacturing Method Thereof
US5981310A (en) Multi-chip heat-sink cap assembly
JP2927010B2 (en) Semiconductor package
US5881944A (en) Multi-layer solder seal band for semiconductor substrates
JP3070579B2 (en) Semiconductor device mounting structure and mounting method
US6828676B2 (en) Semiconductor device manufacturing method, semiconductor device, and semiconductor device unit
JPH0541471A (en) Semiconductor integrated circuit device
JP4899406B2 (en) Flip chip type semiconductor device
JPH01235261A (en) Semiconductor device and its manufacturing method
JP2000124259A (en) Ic chip, semiconductor device, and manufacture of the semiconductor device
JPH03274753A (en) Semiconductor integrated circuit device
JP2709711B2 (en) Semiconductor mounting structure
JPH0347673A (en) Solder surface joining method and semiconductor integrated circuit device using its method
JPH03187247A (en) Semiconductor integrated circuit device and fabrication thereof
JP3055960B2 (en) Method for manufacturing semiconductor device
JP2007317754A (en) Semiconductor device
JPS59117250A (en) Semiconductor device
JPH05206313A (en) Semiconductor integrated circuit device and manufacturing method thereof
JPS63226031A (en) Manufacturing method of composite structure
JPH03108361A (en) Semiconductor integrated circuit device
JPH0483366A (en) Semiconductor integrated circuit device and its manufacturing method
JPH04103149A (en) Package sealing method and semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees