JPH03274248A - Manufacture of ni-ti series intermetallic compound - Google Patents
Manufacture of ni-ti series intermetallic compoundInfo
- Publication number
- JPH03274248A JPH03274248A JP2076472A JP7647290A JPH03274248A JP H03274248 A JPH03274248 A JP H03274248A JP 2076472 A JP2076472 A JP 2076472A JP 7647290 A JP7647290 A JP 7647290A JP H03274248 A JPH03274248 A JP H03274248A
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- mixed powder
- temperature
- niti
- synthesis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Powder Metallurgy (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(産業上の利用分野〉
本発明は粉末冶金によるNiTi系形状記憶合金の製造
方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing a NiTi-based shape memory alloy by powder metallurgy.
(従来の技術および発明が解決しようとする課題)従来
燃焼合成法によるNiTi系形状記憶合金の製造方法と
して、例えば特開昭63−307229号公報に開示さ
れているように、チタニウム粉末とニッケル粉末を混合
して原料混合粉末とし、この原料混合粉末を高真空度下
において原料混合粉末の一部に外部から入熱して合成反
応を開始させ、この合成反応によって生じる反応生成熱
によってその合成反応を原料混合粉末全体に渡って伝播
進行させる自己伝播高温合成法により合成してNiTi
金篇間金倉間化合物した後、高密度化処理を行ってNi
Ti金属間化合物のインゴットを製造する形状記憶合金
の製造方法が提案されている。そして上記公報(実施例
1)において、高密度化処理とは融解凝固状態にあるイ
ンゴットを真空対じして、熱間等方圧加圧(HI P)
するか、または真空中で再溶解して金型に鋳造すること
を述べている。(Prior Art and Problems to be Solved by the Invention) As a method for producing a NiTi-based shape memory alloy by a conventional combustion synthesis method, for example, as disclosed in Japanese Patent Application Laid-Open No. 63-307229, titanium powder and nickel powder are used. A raw material mixed powder is obtained by mixing the raw material mixed powder, and a synthesis reaction is started by externally inputting heat into a part of the raw material mixed powder under a high degree of vacuum, and the synthesis reaction is started by the reaction generated heat generated by this synthesis reaction. NiTi is synthesized by a self-propagating high temperature synthesis method that propagates throughout the raw material mixed powder.
Ni
A method for producing a shape memory alloy has been proposed to produce an ingot of a Ti intermetallic compound. In the above publication (Example 1), the densification treatment refers to hot isostatic pressing (HIP) of an ingot in a molten and solidified state against a vacuum.
or remelted in a vacuum and cast into a mold.
しかし、この熱間等方圧加圧(HIP)は、高密度化の
手段としては好ましい方法であるが、工程そのものが高
価であるとともにバッチ型の非連続処理工程のために生
産性も悪い。また、真空中で再溶解して金型に鋳造する
方法も一旦合金素材を製造した後に再度溶解を行うため
に必然的に製造原価が高くなるという問題点を持ってい
る。However, although hot isostatic pressing (HIP) is a preferable method for achieving high density, the process itself is expensive and the productivity is poor due to the batch type non-continuous processing process. Furthermore, the method of re-melting the alloy material in a vacuum and casting it into a mold also has the problem that the manufacturing cost inevitably increases because the alloy material is once manufactured and then melted again.
(発明が解決しようとする課題)
本発明は、上記従来法の問題点を解決するものであって
、すなわち、HIP処理を採用することなく、融解凝固
状態にあるインゴットを真空熱処理あるいは熱間加工法
により直接高密度化することにより、生産性もよくかつ
安価にすぐれた材質をHするNiTi系形状記憶合金を
製造する方法を提供することを目的とする。(Problems to be Solved by the Invention) The present invention solves the above-mentioned problems of the conventional method, that is, ingots in a melted and solidified state are subjected to vacuum heat treatment or hot processing without employing HIP treatment. An object of the present invention is to provide a method for manufacturing a NiTi-based shape memory alloy that is highly productive, inexpensive, and has excellent material properties by directly densifying it by a method.
(課題を解決するための手段)
本発明者は燃焼合成法により製造したままのNiTi系
の素材の相対密度は50〜55%であり、必ずしも高純
度のNiTiが形成されていないが、900℃〜120
0℃の範囲で真空熱処理を施すことにより、100%N
iTiを形成することができること、またこの材料の熱
間加工性は極めて良好で、900℃〜1200℃の範囲
であれば熱間鍛造ないし熱間圧延、熱間押し出しなどの
鉄鋼材料製造に供している熱間加工設備で加工が可能で
、加工時に割れ疵の心配もないことを見出した。本発明
はこの知見に基づいて完成したものであって、その要旨
とするところは、
(1) N1およびTiをそれぞれ主成分とする粉末
を混合し、得られた混合粉末を真空中、かつ前記混合粉
末の合成反応で生じる反応生成熱により前記混合粉末が
n己燃焼を起こすことのできる温度以上に保持し、前記
混合粉末の一部に外部より入熱して合成反応を開始させ
、前記反応で発生した反応生成熱を未反応粉末に順次伝
播させる燃焼合成法でNiTi系金属間化合物を製造す
る方法において、燃焼合成後の生成物に900℃〜!2
00℃の範囲のfi度で、3〜50時間の真空熱処理を
施すことを特徴とするNiTi系金属間化合物の製造方
法。(Means for Solving the Problems) The present inventor found that the relative density of the NiTi-based material as produced by the combustion synthesis method is 50 to 55%, and although high purity NiTi is not necessarily formed, ~120
By performing vacuum heat treatment in the range of 0℃, 100%N
It is possible to form iTi, and the hot workability of this material is extremely good, and it can be used for manufacturing steel materials such as hot forging, hot rolling, and hot extrusion within the range of 900°C to 1200°C. It was discovered that it can be processed using existing hot processing equipment, and there is no need to worry about cracking during processing. The present invention was completed based on this knowledge, and its gist is as follows: (1) Powders containing N1 and Ti as main components are mixed, and the resulting mixed powder is placed in a vacuum and The mixed powder is maintained at a temperature higher than the temperature at which it can self-combust due to reaction generated heat generated in the synthesis reaction of the mixed powder, heat is inputted into a part of the mixed powder from the outside to start the synthesis reaction, and the reaction is performed. In a method for producing NiTi-based intermetallic compounds using a combustion synthesis method in which the generated reaction heat is sequentially propagated to unreacted powders, the product after combustion synthesis has a temperature of 900°C~! 2
A method for producing a NiTi-based intermetallic compound, comprising performing vacuum heat treatment at a fi degree in the range of 00°C for 3 to 50 hours.
(2) N1およびTiをそれぞれ主成分とする粉末
を混合し、得られた混合粉末を真空中、かつ前記混合粉
末の合成反応で生じる反応生成熱により前記混合粉末が
自己燃焼を起こすことのできる温度以上に保持し、前記
混合粉末の一部に外部より入熱して合成反応を開始させ
、前記反応で発生した反応生成熱を未反応粉末に順次伝
播させる燃焼合成法でNiTi系金属間化合物を製造す
る方法において、燃焼合成後の生成物に900℃〜12
00℃の範囲の温度で、圧下率50%以上の鍛造および
熱間圧延などの機械的な熱間加工を施すことを特徴とす
るNiTi系金属間化合物の製造方法。(2) Mix powders each containing N1 and Ti as main components, and place the resulting mixed powder in a vacuum, and the mixed powder can self-combust due to reaction generated heat generated in a synthesis reaction of the mixed powder. The NiTi-based intermetallic compound is produced by a combustion synthesis method in which the temperature is maintained above the temperature, heat is input from the outside into a part of the mixed powder to start the synthesis reaction, and the reaction generated heat generated in the reaction is sequentially propagated to the unreacted powder. In the manufacturing method, the product after combustion synthesis is heated to 900°C to 12°C.
1. A method for producing a NiTi-based intermetallic compound, which comprises performing mechanical hot working such as forging and hot rolling at a temperature in the range of 00° C. and a rolling reduction of 50% or more.
(() NlおよびTiをそれぞれ主成分とする粉末
を混合し、得られた混合粉末を真空中、かっ前記混合粉
末の合成反応で生じる反応生成熱により前記混合粉末が
自己燃焼を起こすことのできる温度以上に保持し、前記
混合粉末の一部に外部より入熱して合成反応を開始させ
、前記反応で発生した反応生成熱を未反応粉末に順次伝
播させる燃焼合成法でNiTi系金属間化合物を製造す
る方法において、燃焼合成後の生成物に900℃〜12
00℃の範囲の温度で、3〜50時間の真空熱処理を施
した後900℃〜1200℃の範囲の温度で、圧下率5
0%以上のm造および熱間圧延などの機械的な熱間加工
を施すことを特徴とするNiTi系金属間化合物の製造
方法にある。(() Powders containing Nl and Ti as main components are mixed, and the resulting mixed powder is heated in a vacuum so that the mixed powder can self-combust due to reaction generated heat generated in the synthesis reaction of the mixed powder. The NiTi-based intermetallic compound is produced by a combustion synthesis method in which the temperature is maintained above the temperature, heat is input from the outside into a part of the mixed powder to start the synthesis reaction, and the reaction generated heat generated in the reaction is sequentially propagated to the unreacted powder. In the manufacturing method, the product after combustion synthesis is heated to 900°C to 12°C.
After vacuum heat treatment at a temperature in the range of 00°C for 3 to 50 hours, the reduction rate was 5 at a temperature in the range of 900°C to 1200°C.
The present invention provides a method for producing a NiTi-based intermetallic compound, characterized by subjecting it to mechanical hot working such as 0% or more microstructure and hot rolling.
(作 用)
本発明における機械的な熱間加工とは熱間等方圧プレス
(HI P)を含まないいわゆる熱間域での機械的加工
であり、熱間鍛造、熱間圧延などがこれに属する。(Function) Mechanical hot working in the present invention is mechanical working in a so-called hot region that does not include hot isostatic pressing (HIP), and includes hot forging, hot rolling, etc. belongs to
燃焼合成後の素材は必ずしも!00%NiTi金属間化
合物を構成しておらず、そのまま熱間加工を施す際の加
工性が悪く、かつその後の機械的性質も悪い。ところが
、900℃〜1200℃の範囲で3ないし5on、’;
間の真空熱処理を施すことにより、上述の欠点が解泪さ
れる。これは均熱溶体化処理効果であり、拡散焼結によ
りより完全な化合物が形成されるためである。900℃
未満ではその効果が少なく、1200℃超では材料が溶
Mするために温度範囲を900℃〜1200℃とした。The material after combustion synthesis is not necessarily! It does not constitute a 00% NiTi intermetallic compound, has poor workability when subjected to hot working as it is, and has poor mechanical properties thereafter. However, in the range of 900°C to 1200°C, 3 to 5 on,';
The above-mentioned drawbacks can be overcome by performing a vacuum heat treatment between the two. This is due to the soaking solution treatment effect and is due to diffusion sintering forming a more complete compound. 900℃
If it is less than 1200°C, the effect will be small, and if it exceeds 1200°C, the material will melt, so the temperature range was set to 900°C to 1200°C.
また処理時間は最低3時間は反応を起こさせるために必
要で、長時間はど効果はあるが、実用的見地からその上
限を50時間とした。Further, the treatment time is required to be at least 3 hours to cause the reaction, and although a long time is effective, the upper limit was set at 50 hours from a practical standpoint.
燃焼合成法によりNiTi系の素材を製造する方法にお
いて燃焼合成後の素材を900℃〜1200℃の範囲で
圧下率50%以上の熱間加工を施すことが高密度化に非
常に有効であるが、900℃未満では変形応力が高すぎ
て本材料を加工するのが困難であり、また1200℃超
では材料が溶解を始めるために上記温度範囲に限定した
。また、圧下率は50%以上としたが、燃焼合成法によ
り製造したままのNiTi系の素材の相対密度は50〜
55%であるため100%に高密度化するためには最低
50%の熱間加工を施す必要がある。圧下率の上限につ
いては高いほどよ<99%もありうるが常識的な上限は
95%で高密度化と同時に材料組織の微細化をも考慮す
ると85%以上の熱間加工が望ましい。In the method of producing NiTi-based materials by combustion synthesis, hot working the material after combustion synthesis at a reduction rate of 50% or more in the range of 900°C to 1200°C is very effective for densification. At temperatures below 900°C, the deformation stress is too high and it is difficult to process this material, and at temperatures above 1200°C the material begins to melt, so the temperature range was limited to the above range. In addition, although the reduction rate was set to 50% or more, the relative density of the NiTi-based material as produced by the combustion synthesis method is 50~
Since the density is 55%, it is necessary to perform hot working of at least 50% in order to increase the density to 100%. As for the upper limit of the rolling reduction rate, the higher it is, the higher it can be <99%, but the common sense upper limit is 95%, and considering high density and refinement of the material structure at the same time, hot working of 85% or more is desirable.
粉体の自己燃焼合成装置の一例を第1図に示す。An example of a powder self-combustion synthesis apparatus is shown in Fig. 1.
すなわち、第1図において、1は高真空容器であり、2
は電気炉であって内壁にヒーター10を有する。電気炉
2内には原料混合粉4を収納し、該混合粉4に点火する
ための電極8に連結している点火用の抵抗加熱線5を備
えた耐火性るつぼ3を設置している。6は真空排気系、
7はシーリング機構、9は温度制御用熱電χ・■である
。That is, in FIG. 1, 1 is a high vacuum container, and 2 is a high vacuum container.
is an electric furnace and has a heater 10 on its inner wall. The electric furnace 2 houses a raw material mixed powder 4, and a refractory crucible 3 equipped with an ignition resistance heating wire 5 connected to an electrode 8 for igniting the mixed powder 4 is installed. 6 is the vacuum exhaust system,
7 is a sealing mechanism, and 9 is a temperature control thermoelectric χ/■.
以下にNiTiの実施例について説明する。Examples of NiTi will be described below.
(実施例1)
酸素含h′量はNlI量%で0.08で平均粒度が50
−のTi扮と、酸素含有量0.05%で平均粒度が20
umのN1粉を1:1のモル比で機械的に混合した。(Example 1) The oxygen content h' is 0.08 in NlI amount% and the average particle size is 50.
- with Ti coating and an average particle size of 20 with an oxygen content of 0.05%
um of N1 powder were mechanically mixed in a 1:1 molar ratio.
この混合粉末3kgを、第1図に示す自己燃焼合成装置
の耐火性るつは3内に収納して、温度300℃、真空度
2 X 1O−7Torrの条件下で第1図の点火用の
抵抗加熱線5の一例であるタングステンヒーターに電圧
30Vで25Aの電流を4秒間流して点火した。反応後
の化合物をX線回折で調べた結果、95%以上がNiT
iと確認された。また、反応後の化合物を化学分析した
結果、酸素含有量は0.10%、窒素0.015%、炭
素0.06%、水素o、ooe%であった。3 kg of this mixed powder was stored in the refractory melter 3 of the self-combustion synthesis apparatus shown in Fig. 1, and the ignition furnace shown in Fig. A tungsten heater, which is an example of the resistance heating wire 5, was ignited by passing a current of 25 A at a voltage of 30 V for 4 seconds. As a result of examining the compound after the reaction by X-ray diffraction, more than 95% was NiT.
It was confirmed that i. Further, as a result of chemical analysis of the compound after the reaction, the oxygen content was 0.10%, nitrogen 0.015%, carbon 0.06%, and hydrogen o, ooe%.
反応後の化合物をアルキメデス法で密度測定を行った結
果、相対密度で55%であった。この化合物を2 X
1O−7Torrの真空度の真空焼粘炉で1100℃x
tohの均熱処理を行いX線回折で粘晶構造を調べた
結果100%NiTiが形成されていることが確認され
た。The density of the compound after the reaction was measured using the Archimedes method, and the relative density was 55%. This compound is 2
1100℃x in a vacuum sintering furnace with a vacuum degree of 1O-7Torr
As a result of soaking the TOH and examining the viscous crystal structure by X-ray diffraction, it was confirmed that 100% NiTi was formed.
(実施例2)
酸素含有量は重量%で0,08で平均粒度が50−のT
i粉と、酸素3右mo、05%で平均粒度が20−のN
1粉を1:1のモル比で機械的に混合した。(Example 2) T with an oxygen content of 0.08% by weight and an average particle size of 50-
i powder and N with an average particle size of 20- at oxygen 3 right mo, 05%
1 powder were mechanically mixed in a 1:1 molar ratio.
この混合粉末3kgを第1図に示す自己燃焼合成装置に
挿入して、温度300℃、真空度2 X 10−’To
rrの条件下で第1図の点火用の抵抗加熱線の一例であ
るタングステンヒーターに電圧30vで25Aの電流を
4秒間流して点火した。反応後の化合物をX線回折で調
べた結果、95%以上がNiTiと確認された。また、
反応後の化合物を化学分析した結果、酸素含有量は0.
10%、窒素0.015%、炭素0.0B%、水素0.
0013%であった。3 kg of this mixed powder was inserted into the self-combustion synthesis apparatus shown in Fig. 1, and the temperature was 300°C and the degree of vacuum was 2 x 10-'To
Under the conditions of rr, a current of 25 A was passed for 4 seconds at a voltage of 30 V through a tungsten heater, which is an example of a resistance heating wire for ignition shown in FIG. 1, to ignite it. As a result of examining the compound after the reaction by X-ray diffraction, it was confirmed that 95% or more was NiTi. Also,
As a result of chemical analysis of the compound after the reaction, the oxygen content was 0.
10%, nitrogen 0.015%, carbon 0.0B%, hydrogen 0.
It was 0.0013%.
反応後の化合物をアルキメデス法で密度測定を行った結
果、相対密度で55%であった。この化合物を2 X
10”’Torrの真空度の真空焼結炉で1100℃X
10hの均熱処理を行いX線回折で結占晶構造を調べた
結果100%NiTiが形成されていることが確認され
た。The density of the compound after the reaction was measured using the Archimedes method, and the relative density was 55%. This compound is 2
1100℃X in a vacuum sintering furnace with a vacuum level of 10'' Torr
After soaking for 10 hours, the crystalline structure was examined by X-ray diffraction, and it was confirmed that 100% NiTi was formed.
この熱処理後の素形材から40mmφX 200m−の
丸棒を切り出し、ステンレス管内に真空封じ込めを行っ
て、050℃に加熱された加熱炉中で5時間の焼鈍直後
、熱間押し出し装置を用いて10mmφの丸棒を製造し
た(圧下率約94%)。この丸棒の相対密度を測定した
ところ100%あり、光学顕微鏡観察結果からも燃焼合
成時に存在していたミクロポアが解消されていることを
確認した。After this heat treatment, a round bar of 40 mmφ x 200 m is cut out, vacuum sealed in a stainless steel tube, annealed for 5 hours in a heating furnace heated to 050°C, and then heated to 10 mmφ using a hot extrusion device. A round bar was manufactured (reduction rate of about 94%). The relative density of this round bar was measured and found to be 100%, and it was confirmed from the optical microscope observation that the micropores that existed during combustion synthesis had been eliminated.
この丸棒材料を表面研削後冷延と焼鈍を繰り返し行い0
.8mmの線材とした。この線材のMs湿温度電気抵抗
測定法で測定したところ48℃を示し、形状記憶の戻る
温度AI’温度は71℃であった。この線材を、コイル
状に形状記憶させてバイアスばねと組合せ、形状記憶素
子を作って80℃のお湯と15℃の水に交互に浸漬する
疲労試験結果、105回以上破断しなかった。After surface grinding, this round bar material is repeatedly cold rolled and annealed.
.. It was made into a wire rod of 8 mm. When this wire was measured using the Ms wet temperature electrical resistance measurement method, it showed a temperature of 48°C, and the temperature AI' at which shape memory returns was 71°C. This wire was shaped into a coil with shape memory, combined with a bias spring to create a shape memory element, and as a result of a fatigue test in which it was alternately immersed in 80°C hot water and 15°C water, it did not break more than 105 times.
(″)!、施例3)
酸素含有量は重量%で0,05で平均粒度が40ttm
のTi粉と、酸素含有Jln0.02%で平均粒度が3
0umのN1粉をl:1のモル比で機械的に混合した。(″)!, Example 3) The oxygen content is 0.05% by weight and the average particle size is 40ttm.
Ti powder, oxygen content Jln 0.02%, average particle size 3
0 um of N1 powder was mechanically mixed in a molar ratio of l:1.
この混合粉末30kgを第1図に示す自己燃焼合成装置
に挿入して、温度300℃、真空度2 X 1O−6T
orrの条件下で第1図の点火用の抵抗加熱線の一例で
あるタングステンヒーターに電圧30Vで25Aの電流
を4秒間流して点火した。反応後の化合物をX線回折で
調べた結果95%以上がNiTiと確認された。また、
反応後の化合物を化学分析した結果、酸素含有量は0.
09%、窒素0.014%、炭素0.05%、水素0.
0013%であった。30 kg of this mixed powder was inserted into the self-combustion synthesizer shown in Fig. 1, and the temperature was 300°C and the degree of vacuum was 2 x 1O-6T.
25 A current was applied for 4 seconds at a voltage of 30 V to the tungsten heater, which is an example of a resistance heating wire for ignition shown in FIG. As a result of examining the compound after the reaction by X-ray diffraction, 95% or more was confirmed to be NiTi. Also,
As a result of chemical analysis of the compound after the reaction, the oxygen content was 0.
09%, nitrogen 0.014%, carbon 0.05%, hydrogen 0.
It was 0.0013%.
反応後の化合物をアルキメデス法で密度測定を行った結
果、相対密度で56%であった。この化合物を2 X
to−’Torrの真空度の真空焼結炉で1150℃X
10hの均熱処理を行いX線回折で結晶横進を調べた
結果100%NiTiが形成されていることが確認され
た。The density of the compound after the reaction was measured using the Archimedes method, and the relative density was 56%. This compound is 2
1150℃X in a vacuum sintering furnace with a vacuum degree of to-'Torr
After performing soaking treatment for 10 hours and examining crystal lateral movement by X-ray diffraction, it was confirmed that 100% NiTi was formed.
この熱処理後の素形材から80關φX000m+*の丸
棒を切り出しステンレス前出に真空封じ込めを行い11
50℃に加熱された加熱炉中で5時間焼jItI直後熱
間鍛造装置を用いて4〇−園φまで繰り返し鍛造を行い
、さらに930℃の加熱炉で3時間焼鈍後15■lφの
丸棒に仕上げた(全屈ド率約96.5%)。この丸棒の
相対密度を測定したところ100%あり、光学顕微鏡観
察結果からも燃焼合成時に存在していたミクロボアが解
消されていることを確認した。After this heat treatment, a round bar of 80 mm φ x 000 m + * was cut out and vacuum sealed in a stainless steel tube.
Immediately after firing in a heating furnace heated to 50°C for 5 hours, forging was repeated to a diameter of 40 mm using a hot forging device, and after further annealing in a heating furnace at 930°C for 3 hours, a round bar of 15 lφ was obtained. (total refractive index of approximately 96.5%). The relative density of this round bar was measured and found to be 100%, and it was confirmed from the optical microscope observation that the micropores that existed during combustion synthesis had been eliminated.
この丸棒材料を表面研削後冷延と焼鈍を繰り返し行い1
.0闘の線材とした。この線材のMs湿温度電気抵抗測
定法で測定したところ49℃を示し、形状記憶の戻る温
度Ar温度は70℃であった。この線伺を女性用下着(
ブラジャー)の芯線として使用した製品の洗濯同数寿命
試験を行った結果500回の洗濯に充分耐えることが確
認された。After surface grinding, this round bar material is repeatedly cold rolled and annealed.
.. It was made into a wire rod with zero resistance. When this wire was measured using the Ms humid temperature electrical resistance measuring method, it was found to be 49°C, and the Ar temperature, the temperature at which shape memory returns, was 70°C. This line corresponds to women's underwear (
As a result of conducting a washing-equal life test on the product used as the core wire of a brassiere (bra), it was confirmed that the product could withstand 500 washes.
(発明の効果)
このように本発明の形状記憶合金NiTiの製造方法は
構成され作用するものであるから、従来の方法に比較し
て材質の優れた化合物を機械的な熱間加工という安価な
製造工程で製造可能となるなどの効果をHする。(Effects of the Invention) Since the method for manufacturing the shape memory alloy NiTi of the present invention is constructed and operates as described above, it is possible to mechanically hot-process a compound with superior material properties at an inexpensive cost compared to conventional methods. Effects such as being able to be manufactured in the manufacturing process are H.
第1図は自己伝播燃焼合成装置の概略断面図である。 FIG. 1 is a schematic cross-sectional view of a self-propagating combustion synthesis device.
Claims (3)
合し、得られた混合粉末を真空中、かつ前記混合粉末の
合成反応で生じる反応生成熱により前記混合粉末が自己
燃焼を起こすことのできる温度以上に保持し、前記混合
粉末の一部に外部より入熱して合成反応を開始させ、前
記反応で発生した反応生成熱を未反応粉末に順次伝播さ
せる燃焼合成法でNiTi系金属間化合物を製造する方
法において、燃焼合成後の生成物に900℃〜1200
℃の範囲の温度で、3〜50時間の真空熱処理を施すこ
とを特徴とするNiTi系金属間化合物の製造方法。(1) Powders containing Ni and Ti as main components are mixed, and the resulting mixed powder is placed in a vacuum, and the mixed powder can self-combust due to reaction generated heat generated in the synthesis reaction of the mixed powder. The NiTi-based intermetallic compound is produced by a combustion synthesis method in which the temperature is maintained above the temperature, heat is input from the outside into a part of the mixed powder to start the synthesis reaction, and the reaction generated heat generated in the reaction is sequentially propagated to the unreacted powder. In the manufacturing method, the product after combustion synthesis is heated to 900°C to 1200°C.
A method for producing a NiTi-based intermetallic compound, comprising performing vacuum heat treatment for 3 to 50 hours at a temperature in the range of °C.
合し、得られた混合粉末を真空中、かつ前記混合粉末の
合成反応で生じる反応生成熱により前記混合粉末が自己
燃焼を起こすことのできる温度以上に保持し、前記混合
粉末の一部に外部より入熱して合成反応を開始させ、前
記反応で発生した反応生成熱を未反応粉末に順次伝播さ
せる燃焼合成法でNiTi系金属間化合物を製造する方
法において、燃焼合成後の生成物に900℃〜1200
℃の範囲の温度で、圧下率50%以上の機械的な熱間加
工を施すことを特徴とするNiTi系金属間化合物の製
造方法。(2) Powders containing Ni and Ti as main components are mixed, and the resulting mixed powder is placed in a vacuum, and the mixed powder can self-combust due to reaction generated heat generated in the synthesis reaction of the mixed powder. The NiTi-based intermetallic compound is produced by a combustion synthesis method in which the temperature is maintained above the temperature, heat is input from the outside into a part of the mixed powder to start the synthesis reaction, and the reaction generated heat generated in the reaction is sequentially propagated to the unreacted powder. In the manufacturing method, the product after combustion synthesis is heated to 900°C to 1200°C.
1. A method for producing a NiTi-based intermetallic compound, which comprises performing mechanical hot working at a temperature in the range of °C and a reduction rate of 50% or more.
合し、得られた混合粉末を真空中、かつ前記混合粉末の
合成反応で生じる反応生成熱により前記混合粉末が自己
燃焼を起こすことのできる温度以上に保持し、前記混合
粉末の一部に外部より入熱して合成反応を開始させ、前
記反応で発生した反応生成熱を未反応粉末に順次伝播さ
せる燃焼合成法でNiTi系金属間化合物を製造する方
法において、燃焼合成後の生成物に900℃〜1200
℃の範囲の温度で、3〜50時間の真空熱処理を施した
後900℃〜1200℃の範囲の温度で、圧下率50%
以上の機械的な熱間加工を施すことを特徴とするNiT
i系金属間化合物の製造方法。(3) Powders containing Ni and Ti as main components are mixed, and the resulting mixed powder is placed in a vacuum, and the mixed powder can cause self-combustion due to reaction generated heat generated in the synthesis reaction of the mixed powder. The NiTi-based intermetallic compound is produced by a combustion synthesis method in which the temperature is maintained above the temperature, heat is input from the outside into a part of the mixed powder to start the synthesis reaction, and the reaction generated heat generated in the reaction is sequentially propagated to the unreacted powder. In the manufacturing method, the product after combustion synthesis is heated to 900°C to 1200°C.
After vacuum heat treatment for 3 to 50 hours at a temperature in the range of °C, the reduction rate is 50% at a temperature in the range of 900 to 1200 °C.
NiT characterized by being subjected to the above mechanical hot working
A method for producing an i-based intermetallic compound.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2076472A JPH03274248A (en) | 1990-03-26 | 1990-03-26 | Manufacture of ni-ti series intermetallic compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2076472A JPH03274248A (en) | 1990-03-26 | 1990-03-26 | Manufacture of ni-ti series intermetallic compound |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03274248A true JPH03274248A (en) | 1991-12-05 |
Family
ID=13606120
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2076472A Pending JPH03274248A (en) | 1990-03-26 | 1990-03-26 | Manufacture of ni-ti series intermetallic compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03274248A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995008654A1 (en) * | 1993-09-24 | 1995-03-30 | The Ishizuka Research Institute, Ltd. | Composite material and process for producing the same |
JP2004346389A (en) * | 2003-05-23 | 2004-12-09 | Yoshimi Seisakusho:Kk | Casting member made of shape memory alloy, and its producing method |
CN113564423A (en) * | 2021-07-26 | 2021-10-29 | 广东省科学院新材料研究所 | Nickel-titanium intermetallic compound bearing material, preparation method and application thereof |
-
1990
- 1990-03-26 JP JP2076472A patent/JPH03274248A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995008654A1 (en) * | 1993-09-24 | 1995-03-30 | The Ishizuka Research Institute, Ltd. | Composite material and process for producing the same |
JP2004346389A (en) * | 2003-05-23 | 2004-12-09 | Yoshimi Seisakusho:Kk | Casting member made of shape memory alloy, and its producing method |
CN113564423A (en) * | 2021-07-26 | 2021-10-29 | 广东省科学院新材料研究所 | Nickel-titanium intermetallic compound bearing material, preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3769504B2 (en) | Dispersed and solidified platinum-gold material, process for producing the material and use of the material | |
JPH07166802A (en) | Turbine blade and manufacture of turbine blade thereof | |
WO2004024968A1 (en) | Method for producing dispersed oxide reinforced ferritic steel having coarse grain structure and being excellent in high temperature creep strength | |
JP4870324B2 (en) | Shape memory alloy cast member and method of manufacturing the same | |
US4865663A (en) | High temperature shape memory alloys | |
EP0035369B1 (en) | Ferritic iron-aluminium-chromium alloys | |
JPH03274248A (en) | Manufacture of ni-ti series intermetallic compound | |
JPS63307229A (en) | Manufacture of shape memory alloy | |
JP4384727B2 (en) | Manufacturing method of heat-resistant molded parts | |
RU2162900C1 (en) | Method of rods production and method of producing wire from alloys of nickel-titanium system with shape memory effect and method of these alloys production | |
CN115011890A (en) | A method for improving high-temperature strength-plastic product of high-entropy alloy by precipitation | |
CN114309131A (en) | Manufacturing method of uniform fine-grain nickel-based alloy N08825 large thick-wall tube blank forging | |
JP3738076B2 (en) | Noble metal based amorphous alloy with excellent plastic workability and applicable to large parts | |
JPH03134144A (en) | Nickel-base alloy member and its manufacture | |
KR950003051B1 (en) | Nickel-Based Super Heat-resistant Single Alloy | |
JPS62188735A (en) | Manufacture of tini alloy wire or plate | |
JPH0686636B2 (en) | Method for producing Ti-based shape memory alloy | |
RU2058996C1 (en) | Casting dispersion hardened nickel alloys production method | |
JP3839632B2 (en) | Method for producing Ni-Al intermetallic compound | |
Mukherjee et al. | Preparation of columbium metal by calcium hydride reduction of columbium pentoxide | |
CN115927915A (en) | Ti-Ni-Zr shape memory alloy and preparation method thereof | |
JP3849004B2 (en) | Method for producing rapidly solidified bulk amorphous alloy material | |
SU576160A1 (en) | Method of manufacturing sintered articles from alloys | |
Lekston et al. | The structure and properties formation of the NiTi shape memory rods after hot rotary forging | |
CN118006948A (en) | A high-strength, high-conductivity, high-plasticity beryllium copper alloy and preparation method thereof |