[go: up one dir, main page]

JPH03271566A - Wind mill blade - Google Patents

Wind mill blade

Info

Publication number
JPH03271566A
JPH03271566A JP2068306A JP6830690A JPH03271566A JP H03271566 A JPH03271566 A JP H03271566A JP 2068306 A JP2068306 A JP 2068306A JP 6830690 A JP6830690 A JP 6830690A JP H03271566 A JPH03271566 A JP H03271566A
Authority
JP
Japan
Prior art keywords
wind turbine
layers
wind
orientation
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2068306A
Other languages
Japanese (ja)
Inventor
Akihiko Yoshii
吉井 明彦
Yuji Ashibe
裕司 芦辺
Mitsunori Miki
光範 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2068306A priority Critical patent/JPH03271566A/en
Publication of JPH03271566A publication Critical patent/JPH03271566A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Wind Motors (AREA)

Abstract

PURPOSE:To obtain a wind mill blade, prevented from easily causing a trouble and also easily manufactured inexpensively with no complicated device of variable pitch mechanism or the like required, by forming the blade, made into a laminated structure, partly into the laminated structure having at least one layer of asymmetrical orientation angle. CONSTITUTION:A wind mill blade 2, requiring strength, rigidity and lightness against wind force, is formed of a plurality of layers of fiber reinforced compound material. Normally the more required are the rigidity and the strength, the larger a number of layers of this fiber reinforced compound material is increased. Accordingly, normally the number of laminated layers in a base part 2a is increased larger than that in a point end part 2b, of the wind mill blade 2. A fiber orientation angle of the layer is given symmetrical orientation of + or -theta with theta=0 as the main orientation in order to increase strength and rigidity and further to ensure the symmetry of deformation. Here the point end part 2b is partly molded by laminating the layer of asymmetrical orientation. That is, of the plurality of layers of fiber reinforced compound material 2c, a single or plurality of layers of fiber reinforced compound material 2c on a surface part are formed by laminating the layer so as to provide the orientation angle thetaat 10 deg. through 50 deg. and further the asymmetrical orientation.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、風力発電装置等に利用される風車ブレードに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a wind turbine blade used in a wind power generator or the like.

[従来の技術] 従来、風車を利用した風力発電装置の発電効率を向上さ
せるために、風速に応じて風車ブレードのピッチを変え
る可変ピッチの風車が知られている。
[Prior Art] Conventionally, in order to improve the power generation efficiency of a wind power generation device using a wind turbine, a variable pitch wind turbine that changes the pitch of the wind turbine blades according to the wind speed is known.

[発明か解決しようとする課題] しかし、従来のこの種の風車ブレードは、風速に応じて
ブレードのピッチを変えるため機器の構成が複雑となる
と共に、その制御装置も必要であり、故障しやすく、か
つ、高価となるという問題があった。
[Problem to be solved by the invention] However, conventional wind turbine blades of this type change the pitch of the blades depending on the wind speed, which makes the equipment configuration complicated, requires a control device, and is prone to failure. , and it is expensive.

本発明の課題は、風速に応じてピッチ角が自動的に変わ
るため可変ピッチ機構等の複雑な装置が不要であり、風
車が故障しに<<、かつ、安価で製作も容易である風車
ブレードを提供することにある。
The problems of the present invention are to provide a wind turbine blade that automatically changes the pitch angle according to the wind speed, eliminates the need for complicated equipment such as a variable pitch mechanism, prevents the wind turbine from malfunctioning, and that is inexpensive and easy to manufacture. Our goal is to provide the following.

[課題を解決するための手段] 本発明は、複数層の繊維強化複合材料を積層して形成し
た風車ブレードにおいて、積層構造としたブレードの一
部を少くとも一層の非対称配向角の層を有する積層構造
としたことを特徴とする特車ブレード及び前記少くとも
一層の繊維強化複合材料の非対称配向角を10度乃至5
0度としたことを特徴とする風車ブレードとしたことに
より。
[Means for Solving the Problems] The present invention provides a wind turbine blade formed by laminating multiple layers of fiber-reinforced composite materials, in which a part of the blade having a laminated structure has at least one layer with an asymmetric orientation angle. A special vehicle blade characterized in that it has a laminated structure, and an asymmetrical orientation angle of the at least one layer of fiber reinforced composite material of 10 degrees to 5 degrees.
By creating a windmill blade characterized by a temperature of 0 degrees.

風車ブレードに、風力によって発生する曲げ変形に比例
したねじり変形を発生させて風車ブレードを機械的に固
定したまま風車ブレードを部分的に可変ピッチ制御を行
なったのと等価の制御をすることを可能にしたものであ
る。
By generating torsional deformation in the wind turbine blades in proportion to the bending deformation caused by wind power, it is possible to perform control equivalent to partially variable pitch control of the wind turbine blades while keeping the wind turbine blades mechanically fixed. This is what I did.

[実施例コ 次に本発明の実施例を図面に基いて詳細に説明する。[Example code] Next, embodiments of the present invention will be described in detail based on the drawings.

第1図は風車のロータ部分を示すもので、同図において
符号1は風車のハブを示している。
FIG. 1 shows a rotor portion of a wind turbine, and in the figure, reference numeral 1 indicates a hub of the wind turbine.

このハブ1には複数の風車ブレード2が所定の間隔を置
いて固定されており、風車ブレード2に作用する風力は
、ハブ]に回転力として伝達され。
A plurality of wind turbine blades 2 are fixed to the hub 1 at predetermined intervals, and the wind force acting on the wind turbine blades 2 is transmitted to the hub as rotational force.

図示しない動力伝達系を介して発電機を駆動し発電する
ようになっている。
Power is generated by driving a generator via a power transmission system (not shown).

前記風車ブレード2は風力に十分耐える強度と剛性及び
軽量化が要求されるため複数層の繊維強化複合材料で形
成されている。この繊維強化複合材料の層数は通常風車
ブレード2の剛性及び強度が要求されるほど多くなる。
The wind turbine blade 2 is required to have sufficient strength and rigidity to withstand wind force, and to be lightweight, so it is made of a multi-layered fiber reinforced composite material. The number of layers of this fiber-reinforced composite material usually increases as the rigidity and strength of the wind turbine blade 2 is required.

従って1通常風車ブレード2の基部2g[例えば第2図
における領域CL−1>の部分コは、先端部2b(第2
図における領域gの部分)よりも積層数が多くなる。ま
たその繊維配向角θはブレードの強度、剛性を大きくす
るため、さらに変形の対称性を保証するため、θ−0を
主配向に±θ(たとえば+45°、−45’)の対称配
向を付加して形成される。本発明の風車ブレードはこの
ような基本積層構造に対して先端の一部(2b)を非対
称配向積層して成形したことを特徴としている。
Therefore, the base part 2g (for example, area CL-1 in FIG. 2) of the 1 normal wind turbine blade 2 is
The number of laminated layers is larger than in the area g in the figure). In addition, the fiber orientation angle θ increases the strength and rigidity of the blade, and in order to further ensure the symmetry of deformation, symmetrical orientations of ±θ (for example, +45°, -45') are added to the main orientation of θ-0. It is formed by The wind turbine blade of the present invention is characterized in that the tip part (2b) is laminated in an asymmetrical orientation with respect to such a basic laminated structure.

即ち、第3図に示すように、複数層(例えば3〜6層)
繊維強化複合材料2cのうち表面部の1層または複数層
の繊維強化複合材2cを、その配向角θが10度乃至5
0度で、かつ非対称配向となるように積層して形成して
いる。
That is, as shown in FIG. 3, multiple layers (for example, 3 to 6 layers)
One or more layers of the fiber reinforced composite material 2c on the surface of the fiber reinforced composite material 2c have an orientation angle θ of 10 degrees to 5 degrees.
They are formed by stacking them so that they are oriented at 0 degrees and asymmetrically.

なお、非対称配向部分の積層数n、配向角θ及び非対称
配向領域りはブレード2の要求特性に応じて適宜設計さ
れるが1曲げ変形と、該曲げ変形に比例するねじり変形
(曲げねじりカップリング効果)は配向角θが30度で
最大となり、10度未満及び51度以上では極端に低下
する(小さくなる)ので、非対称配向角θは10度乃至
50度の範囲で選定するのが望ましい。
The number n of laminated layers, orientation angle θ, and asymmetric orientation area of the asymmetrically oriented portion are appropriately designed according to the required characteristics of the blade 2. The asymmetrical orientation angle θ is preferably selected in the range of 10 degrees to 50 degrees because the effect (effect) reaches its maximum when the orientation angle θ is 30 degrees and is extremely reduced (becomes small) when the orientation angle θ is less than 10 degrees or 51 degrees or more.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

第1図に示すように風車ブレード2の断面が回転方向(
b方向)となす角、即ちつっこみ角をノとすると、風車
の効率を上げるためには は通常第4図に示すように先
端部はど小さくなるようにする必要がある。したがって
風車ブレード2は、ねじれ角を有している。この先端部
のつっこみ角ゲのことを一般的にはピッチ角と呼んでお
り、このピッチ角により発電の特性が変化する。
As shown in Figure 1, the cross section of the wind turbine blade 2 is in the rotational direction (
In order to increase the efficiency of the wind turbine, the tip must be made as small as shown in Figure 4, in order to increase the efficiency of the wind turbine. Therefore, the wind turbine blade 2 has a helix angle. This curved angle at the tip is generally called the pitch angle, and the power generation characteristics change depending on this pitch angle.

従来、−殻内に可変ピッチ制御とよばれる方法はロータ
が発電機能力以上のパワーを生み出す強風域において風
車ブレードの全体または一部分のつつこみ角デを機械的
変化させ発電機の能力限界を維持し1強風域での発電を
持続することを可能としている。
Conventionally, a method called in-shell variable pitch control maintains the generator's capacity limit by mechanically changing the tucking angle of all or part of the wind turbine blades in strong wind regions where the rotor generates more power than its generating capacity. This makes it possible to sustain power generation even in areas with strong winds.

しかし、この場合、ロータ部分の構造並びに制御が極め
て複雑となる。−力木発明の風車ブレード2の場合は非
対称維持配向をもつ構造体の特性から、Mlの抗力作用
により生ずる風車ブレード2への曲げモーメントに比例
したねじれ変形が発生し第4図に示すようにピッチ角が
Δノだけ減少することになる。このピッチ角変化量の強
さとともに第5図に示す如く増大するが、この作用によ
り強風遠域での発電効率を抑制(ストール)させること
ができる。
However, in this case, the structure and control of the rotor portion become extremely complicated. - In the case of the wind turbine blade 2 of the invention, due to the characteristics of the structure having an asymmetrically maintained orientation, torsional deformation occurs in proportion to the bending moment on the wind turbine blade 2 caused by the drag action of Ml, as shown in Figure 4. The pitch angle will decrease by Δ. As shown in FIG. 5, the pitch angle increases with the strength of the pitch angle change, and this effect can suppress (stall) the power generation efficiency in a region with strong winds.

しかも、中風速領域の発電効率を向上する作用もあり、
固定翼でありながら可変ピッチ翼と同様等の性能を出す
ことが可能となる。なお1発電効率特性は、非対称配向
角θ、非対称配向部分の積層数n及び非対称配向領域g
により自由に設計てきる。
Moreover, it also has the effect of improving power generation efficiency in the medium wind speed region.
Although it is a fixed wing, it is possible to achieve the same performance as a variable pitch wing. Note that 1 power generation efficiency characteristics are determined by the asymmetric orientation angle θ, the number n of stacked layers of the asymmetric orientation part, and the asymmetric orientation area g.
You can design it freely.

第6図は5発電能力が200 kWの風車を利用した風
力発電装置において、従来の固定ピッチ風車ブレードを
有するものと本発明の風車ブレード2を有するものと本
発明の風車ブレード2を有するものの風速と発電量の関
係を示したものである。
Figure 6 shows the wind speeds of wind turbine generators using wind turbines with a power generation capacity of 200 kW, one with conventional fixed pitch wind turbine blades, one with wind turbine blades 2 of the present invention, and one with wind turbine blades 2 of the present invention. This shows the relationship between the amount of power generated and the amount of power generated.

同図において実線Eは7本発明の、−点鎖線Fは従来の
固定風車ブレード2を有する風車を利用した風力発電装
置の風速と発電量との関係を示したものである。
In the same figure, the solid line E shows the relationship between the wind speed and the amount of power generated in a wind power generator using a wind turbine having seven present invention and the dashed-dot line F using a conventional wind turbine having fixed wind turbine blades 2.

この実線Eで示す実験例は、ストール風速V−50MP
HでΔy−10度、L−10m+ (173rn。
The experimental example shown by this solid line E is at a stall wind speed of V-50MP.
Δy-10 degrees at H, L-10m+ (173rn.

風車の回転速度Ω−6ORPMである。The rotational speed of the wind turbine is Ω-6ORPM.

この例かられかるように1本発明の風車ブレード2は風
速Vが設定値(50MPH)に近づくと風車の回転を押
えるように変形するので、高風速域でも使用できる。
As can be seen from this example, the wind turbine blade 2 of the present invention deforms to suppress the rotation of the wind turbine when the wind speed V approaches a set value (50 MPH), so it can be used even in a high wind speed range.

一方、これと同じ条件で、従来の固定ピッチ風車ブレー
ドを有する風車を利用して発電した場合。
On the other hand, if the same conditions were used to generate electricity using a conventional wind turbine with fixed pitch wind turbine blades.

風速Vが50MPMを起すと第6図に一点鎖線Fで示す
ように設定発電量(200にν)をオーバーしてしまう
ため1発電機がオーバーロードとなるので1発電を停止
せざるを得ない。
When the wind speed V reaches 50 MPM, the set power generation amount (ν to 200) is exceeded, as shown by the dashed line F in Figure 6, and one generator becomes overloaded, so one power generation has to be stopped. .

本発明の風車ブレード2を有する風車を利用した風力発
電装置の発電効率が、従来の固定ピッチ風車ブレードを
有する風車を利用した風力発電装置の発電効率より高風
速域において非常に大きいことがわかる。
It can be seen that the power generation efficiency of the wind power generation device using the wind turbine having the wind turbine blades 2 of the present invention is much higher in the high wind speed region than the power generation efficiency of the wind power generation device using the wind turbine having the conventional fixed pitch wind turbine blades.

[発明の効果コ 本発明によれば、風速に応じてピッチ角が自動的に変わ
るため可変ピッチ機構等の複雑な装置が不要であり、風
車が故障しに<<、かつ、安価で製作も容易である。
[Effects of the Invention] According to the present invention, since the pitch angle automatically changes according to the wind speed, a complicated device such as a variable pitch mechanism is not required, and the wind turbine is less likely to break down and is inexpensive to manufacture. It's easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の風車ブレードを有する風車の要部を示
す斜視図、第2図は同上風車ブレードを示す正面図、第
3図は同上風車ブレードの先端部の構成を説明するため
の図 第4図は本発明の風車ブレードと従来の固定ピッ
チ風車ブレードのつっこみ角)を説明するための図、第
5図は本発明の風車ブレードの風速に対するねじり変形
量Δりを示す図および第6図は本発明の風車ブレードを
有する風車を利用した風力発電装置と従来の固定ピッチ
風車ブレードを有する風車を利用した風力発電装置にお
ける風速と発電量との関係を示す図である。 1・・・ハブ、2・・・風車ブレード、2c・・・繊維
強化複合材料。 第1図 第2図 し−−X 第3図
FIG. 1 is a perspective view showing the main parts of a wind turbine having wind turbine blades according to the present invention, FIG. 2 is a front view showing the same wind turbine blade, and FIG. 3 is a diagram for explaining the configuration of the tip of the same wind turbine blade. FIG. 4 is a diagram for explaining the angle of engagement between the wind turbine blade of the present invention and a conventional fixed pitch wind turbine blade, FIG. The figure is a diagram showing the relationship between wind speed and power generation amount in a wind power generation device using a wind turbine having wind turbine blades of the present invention and a wind power generation device using a wind turbine having conventional fixed pitch wind turbine blades. 1... Hub, 2... Wind turbine blade, 2c... Fiber reinforced composite material. Figure 1 Figure 2 -X Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)複数層の繊維強化複合材料を積層して形成した風
車ブレードにおいて、積層構造としたブレードの一部を
少くとも一層の非対称配向角の層を有する積層構造とし
たことを特徴とする風車ブレード。
(1) A wind turbine blade formed by laminating multiple layers of fiber-reinforced composite material, characterized in that a part of the laminated blade has a laminated structure having at least one layer with an asymmetric orientation angle. blade.
(2)非対称配向角を10度乃至50度としたことを特
徴とする特許請求の範囲第1項記載の風車ブレード。
(2) The wind turbine blade according to claim 1, wherein the asymmetric orientation angle is between 10 degrees and 50 degrees.
JP2068306A 1990-03-20 1990-03-20 Wind mill blade Pending JPH03271566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2068306A JPH03271566A (en) 1990-03-20 1990-03-20 Wind mill blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2068306A JPH03271566A (en) 1990-03-20 1990-03-20 Wind mill blade

Publications (1)

Publication Number Publication Date
JPH03271566A true JPH03271566A (en) 1991-12-03

Family

ID=13369980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2068306A Pending JPH03271566A (en) 1990-03-20 1990-03-20 Wind mill blade

Country Status (1)

Country Link
JP (1) JPH03271566A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100816851B1 (en) * 2006-12-22 2008-03-26 군산대학교산학협력단 Wind turbine blades
US7802968B2 (en) * 2005-07-29 2010-09-28 General Electric Company Methods and apparatus for reducing load in a rotor blade
US20110052408A1 (en) * 2009-08-25 2011-03-03 Zuteck Michael D Swept blades utilizing asymmetric double biased fabrics
US20110052407A1 (en) * 2009-08-25 2011-03-03 Zuteck Michael D Swept blades utilizing asymmetric double biased fabrics
EP3034863B1 (en) 2014-12-19 2019-10-23 Nordex Energy Spain, S.A.U. Blade for a wind turbine and wind turbine comprising said blade
US11480156B2 (en) 2018-10-17 2022-10-25 Mitsubishi Heavy Industries, Ltd. Method of evaluating quality of wind turbine blade

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7802968B2 (en) * 2005-07-29 2010-09-28 General Electric Company Methods and apparatus for reducing load in a rotor blade
DK178292B1 (en) * 2005-07-29 2015-11-09 Gen Electric Methods and apparatus for reducing load in a rotor blade
KR100816851B1 (en) * 2006-12-22 2008-03-26 군산대학교산학협력단 Wind turbine blades
US20110052408A1 (en) * 2009-08-25 2011-03-03 Zuteck Michael D Swept blades utilizing asymmetric double biased fabrics
US20110052407A1 (en) * 2009-08-25 2011-03-03 Zuteck Michael D Swept blades utilizing asymmetric double biased fabrics
EP3034863B1 (en) 2014-12-19 2019-10-23 Nordex Energy Spain, S.A.U. Blade for a wind turbine and wind turbine comprising said blade
US11480156B2 (en) 2018-10-17 2022-10-25 Mitsubishi Heavy Industries, Ltd. Method of evaluating quality of wind turbine blade

Similar Documents

Publication Publication Date Title
CN1904353B (en) Methods and apparatus for reducing load in a rotor blade
US7789624B2 (en) Methods and devices for improving efficiency of wind turbines in low speed sites
AU2009277220B2 (en) Vertical shaft type Darius windmill
US4291235A (en) Windmill
JP3882162B2 (en) Vertical wind turbine generator
EP2510228B1 (en) Vertical axis wind turbine with self-starting capabilities
JP3451085B1 (en) Windmill for wind power generation
US8648483B2 (en) Vertical axis wind turbine system
JP5521120B2 (en) VERTICAL AXIS TURBINE AND BIDIRECTIONAL LAYER VERTICAL TURBINE HAVING THE SAME
Reupke et al. Slatted-blade Savonius wind-rotors
WO2006132923A2 (en) Aerodynamic-hybrid vertical-axis wind turbine
US8226348B2 (en) Vertical axis rotor-type wind turbine
US20170284363A1 (en) Multiple airfoil wind turbine blade assembly
JPH03271566A (en) Wind mill blade
US20040105754A1 (en) Darius windmill
US20150354530A1 (en) Multiple airfoil wind turbine blade assembly
EP3298271A2 (en) Horizontal axis troposkein tensioned blade fluid turbine
EP3951164B1 (en) Vertical axis-type wind turbine assembly
WO1999042723A1 (en) Technologies on vertical axis windmill effectively utilizing wind force energy by rotating its blades
WO1992001865A1 (en) Wind turbine blade and rotor incorporating same
KR20020005556A (en) Savonius Windmill Blade with Air-Vent Groove
JP3875618B2 (en) Wind turbine for horizontal axis wind power generator
JP2001073925A (en) Windmill
KR20100014204A (en) Vertical axis type darrieus windmill
RU2716635C1 (en) Wind-driven power plant of orthogonal type