JPH03271319A - Production of bearing steel having long service life and high strength - Google Patents
Production of bearing steel having long service life and high strengthInfo
- Publication number
- JPH03271319A JPH03271319A JP7111490A JP7111490A JPH03271319A JP H03271319 A JPH03271319 A JP H03271319A JP 7111490 A JP7111490 A JP 7111490A JP 7111490 A JP7111490 A JP 7111490A JP H03271319 A JPH03271319 A JP H03271319A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- fatigue life
- rolling
- molten steel
- life characteristics
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 66
- 239000010959 steel Substances 0.000 title claims abstract description 66
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 238000005096 rolling process Methods 0.000 claims abstract description 33
- 238000009749 continuous casting Methods 0.000 claims abstract description 13
- 238000010438 heat treatment Methods 0.000 claims abstract description 13
- 239000000203 mixture Substances 0.000 claims abstract description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 7
- 229910052802 copper Inorganic materials 0.000 claims abstract description 6
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 6
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 6
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 6
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 5
- 238000005098 hot rolling Methods 0.000 claims abstract description 4
- 238000005242 forging Methods 0.000 claims description 25
- 238000007711 solidification Methods 0.000 claims description 15
- 230000008023 solidification Effects 0.000 claims description 15
- 239000012535 impurity Substances 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 238000005204 segregation Methods 0.000 abstract description 17
- 229910052720 vanadium Inorganic materials 0.000 abstract description 4
- 229910052799 carbon Inorganic materials 0.000 abstract description 3
- 229910000677 High-carbon steel Inorganic materials 0.000 abstract 2
- 239000000463 material Substances 0.000 description 28
- 238000012546 transfer Methods 0.000 description 18
- 238000000034 method Methods 0.000 description 17
- 150000001247 metal acetylides Chemical class 0.000 description 9
- 238000005496 tempering Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 230000005496 eutectics Effects 0.000 description 7
- 239000010949 copper Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 4
- 238000010791 quenching Methods 0.000 description 4
- 230000000171 quenching effect Effects 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- FXNGWBDIVIGISM-UHFFFAOYSA-N methylidynechromium Chemical group [Cr]#[C] FXNGWBDIVIGISM-UHFFFAOYSA-N 0.000 description 3
- 238000005275 alloying Methods 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011295 pitch Substances 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、自動車、その他産業機械等に用いられる転
がり軸受の素材として好適な、優れた転勤疲労寿命特性
を有する高強度軸受用鋼の製造方法に関するものである
。Detailed Description of the Invention (Field of Industrial Application) This invention is directed to the production of high-strength steel for bearings that has excellent rolling fatigue life characteristics and is suitable as a material for rolling bearings used in automobiles and other industrial machinery. It is about the method.
(従来の技術)
従来、軸受用鋼としては、機械構造用炭素鋼、機械構造
用合金鋼および高炭素クロム軸受鋼などが使用されてい
る。(Prior Art) Conventionally, carbon steel for machine structures, alloy steel for machine structures, high carbon chromium bearing steel, etc. have been used as steel for bearings.
このうち高炭素クロム軸受鋼は、玉軸受、ころ輪受とし
て自動車、産業機械等に最も多く使用されている。この
鋼は、1wt%(以下単に%で示す)程度の炭素と0.
9〜1.6%程度のクロムが添加されていて、焼入れ後
、低温焼戻し処理により、転がり軸受に必要な強度を得
ることができる。そしてかかる軸受では、転勤接触面が
均質であることが、輪受寿命の面から要求されている。Among these, high carbon chromium bearing steel is most commonly used as ball bearings and roller bearings in automobiles, industrial machinery, etc. This steel contains about 1 wt% of carbon (hereinafter simply expressed as %) and 0.
Approximately 9 to 1.6% chromium is added, and after quenching, low-temperature tempering can provide the strength necessary for rolling bearings. Such a bearing is required to have a homogeneous rolling contact surface in order to extend the life of the bearing.
しかしながら鋼材の連続鋳造時、特に鋳片軸心部におい
てマクロ偏析(以下中心偏析と称す)ならびに共晶炭化
物が生威し、切断、打ち抜き時における割れ発生を増大
させると共に転勤疲労寿命特性を劣化させることから、
素材中心部を打ち抜いて廃材とするか、造塊法または長
時間の拡散処理の実施により共晶炭化物の消散を図って
から用いられていた。このため生産性や素材歩留りの低
下を余儀なくされていた。However, during continuous casting of steel materials, macro segregation (hereinafter referred to as center segregation) and eutectic carbides occur particularly in the axial center of the slab, increasing the occurrence of cracks during cutting and punching and deteriorating the rolling fatigue life characteristics. Therefore,
The core of the material was punched out as waste material, or the eutectic carbide was dissipated by an agglomeration method or a long diffusion process before use. As a result, productivity and material yield have been forced to decline.
このような弊害をもたらす中心偏析および共晶炭化物は
、連続鋳造の場合、凝固先端部の凝固収縮のほか、凝固
シェルのバルジングなどによって生しる空隙の真空吸引
力が加わり、凝固先端部にC,Cr等の濃化溶m成分が
吸い込まれることによって形成されたもので、製品加工
時の熱処理により、大型の共晶炭化物または球状化炭化
物の残留、残留オーステナイト量の増大およびこれらξ
クロ組織の不均一などが生じて、転勤疲労寿命を低下さ
せる。In continuous casting, center segregation and eutectic carbides that cause such problems are caused by solidification shrinkage at the solidified tip and vacuum suction force of the void created by bulging of the solidified shell, resulting in C at the solidified tip. , Cr, and other concentrated dissolved m components are sucked in. Heat treatment during product processing results in large eutectic carbides or spheroidized carbides remaining, an increase in the amount of retained austenite, and these ξ
Non-uniformity of the black structure occurs, reducing the fatigue life due to transfer.
その防止策としては、例えば2次冷却帯域における電磁
撹拌等が試みられたが、セミミクロ偏析を軽減するまで
には至らず、また大型の共晶炭化物の消散には効果が無
い。As a preventive measure, attempts have been made, for example, to use electromagnetic stirring in the secondary cooling zone, but this has not resulted in alleviation of semi-micro segregation and is ineffective in dissipating large eutectic carbides.
その他、凝固末期に一対のロールを用いて大圧下を施す
いわゆるインラインリダクション法(鉄と鋼 第60年
(1974)第7号875〜884頁)の適用も試みら
れたが、未凝固層の大きい鋳片領域における圧下が不十
分だと、凝固界面に割れが発生し、逆に圧下が十分すぎ
る場合には鋳片の厚み方向中心部に強い負偏析が生じる
などの問題があった。In addition, attempts have been made to apply the so-called in-line reduction method (Tetsu-to-Hagane 60th Year (1974) No. 7, pp. 875-884), in which a large reduction is applied using a pair of rolls at the final stage of solidification; If the reduction in the slab region is insufficient, cracks will occur at the solidification interface, while if the reduction is too sufficient, strong negative segregation will occur at the center of the slab in the thickness direction.
この点につき、特開昭49−121738号公報では、
鋳片の凝固先端部付近でロール対による軽圧下を施し、
該部分の凝固収縮量を圧下により補償する方法が、また
特開昭52−54625号公報では、鍛造金型を用いて
鋳片の凝固完了点近傍を大圧下する方法が、それぞれ提
案されている。Regarding this point, Japanese Patent Application Laid-Open No. 49-121738,
Light reduction is applied with a pair of rolls near the solidified tip of the slab,
A method is proposed in which the amount of solidification shrinkage in the area is compensated by reduction, and Japanese Patent Application Laid-Open No. 52-54625 proposes a method in which a forging die is used to greatly reduce the area near the solidification completion point of the slab. .
しかしながらロールによる軽圧下の場合には、複数対の
ロールによる数−11/IIの圧下を施したとしても、
ロールピッチ間で生じる凝固収縮やバルジングを十分に
防止することができず、また圧下位置が適切でなければ
かえって中心偏析が悪化するといった問題があった。However, in the case of light reduction by rolls, even if a reduction of several -11/II is applied by multiple pairs of rolls,
There was a problem in that solidification shrinkage and bulging occurring between roll pitches could not be sufficiently prevented, and center segregation would worsen if the rolling position was not appropriate.
他方、鍛造金型を用いて鋳片の凝固完了点近傍を大圧下
する場合は、インラインリダクション法の如きロールに
よる大圧下に比べて凝固界面が割れにくく、また負偏析
さらにはセミマクロ偏析をも飛躍的に改善できることが
明らかになってはいるけれども、依然として未凝固層の
大きい鋳片領域での圧下が不十分であると凝固界面に割
れが発生し、逆に圧下が十分すぎると鋳片の中心部に強
い負偏析を生じる不利があり、さらには未凝固厚の小さ
い領域を圧下してもその効果が得られないことから、最
適な圧下条件を模索しているのが現状である。On the other hand, when a forging die is used to apply a large reduction near the solidification point of the slab, the solidification interface is less likely to crack than when a large reduction is performed using rolls such as in-line reduction, and negative segregation and even semi-macro segregation can be significantly reduced. However, if the reduction in the area of the slab with a large unsolidified layer is insufficient, cracks will occur at the solidification interface, and conversely, if the reduction is too sufficient, cracks will occur in the center of the slab. There is a disadvantage that strong negative segregation occurs in some areas, and furthermore, the effect cannot be obtained even if the area where the unsolidified thickness is small is rolled down, so the current situation is to find the optimum rolling conditions.
(発明が解決しようとする課題)
この発明は、上記の問題点を有利に解決するもので、生
産性が高く、かつ従来の高炭素クロム軸受鋼よりも優れ
た転勤疲労寿命特性を有する高強度軸受用銅の有利な製
造方法を提案することを目的とする。(Problems to be Solved by the Invention) The present invention advantageously solves the above-mentioned problems, and has high productivity and high strength with superior rolling fatigue life characteristics than conventional high carbon chromium bearing steels. The purpose of this paper is to propose an advantageous manufacturing method for copper for bearings.
(課題を解決するための手段)
すなわちこの発明は、
C: 0.60〜1.50%、
Si : 0.15〜2.00%、
Mn : 0.25〜2.50%およびMo : 0.
05〜1.50%
を含み、残部はFeおよび不可避的不純物からなる溶鋼
を、溶鋼加熱度:25℃以上で連続鋳造したのち、鋳片
内部溶鋼が凝固を完了するクレータエンド近傍にて圧下
率:5%以上の鍛圧加工を施し、ついで熱間圧延を施す
ことからなる長寿命高強度軸受用鋼の製造方法(第1発
明)である。(Means for Solving the Problems) That is, this invention has the following properties: C: 0.60-1.50%, Si: 0.15-2.00%, Mn: 0.25-2.50% and Mo: 0 ..
After continuous casting of molten steel containing 05 to 1.50% Fe and unavoidable impurities at a molten steel heating degree of 25°C or higher, the reduction rate is reduced near the crater end where the molten steel inside the slab completes solidification. : A method for manufacturing a long-life, high-strength bearing steel (first invention), which comprises applying a forging process of 5% or more and then hot rolling.
またこの発明は、溶鋼の成分組成が、
C: 0.60〜1.50%、
St : 0.15〜2.00%、
Mn : 0.25〜2.50%およびMo : 0.
05〜1.50%
を含み、さらに
V : 0.05〜0.50%、
Nb : 0.05〜0.50%、
w : o、os〜0.50%、
Ni : 0.10〜2.00%およびCu : 0.
05〜1.00%
のうちから選んだ1種または2種以上を含有し、残部は
Feおよび不可避的不純物の&11rfi、になる長寿
命高強度軸受用鋼の製造方法(第2発明)である。Further, in the present invention, the composition of the molten steel is as follows: C: 0.60 to 1.50%, St: 0.15 to 2.00%, Mn: 0.25 to 2.50%, and Mo: 0.
Further, V: 0.05-0.50%, Nb: 0.05-0.50%, w: o, os-0.50%, Ni: 0.10-2 .00% and Cu: 0.
05 to 1.00%, and the remainder is Fe and unavoidable impurities of &11rfi (second invention). .
(作 用)
まずこの発明において、素材の成分組成を上記の範囲に
限定した理由について説明する。(Function) First, in this invention, the reason why the component composition of the material is limited to the above range will be explained.
C: 0.60〜1.50%
Cは、基地に固溶してマルテンサイトを強化させること
により、焼戻し後の硬度ならびに転勤疲労寿命特性を向
上させる有用元素である。しかしながらあまりに多すぎ
ると共晶炭化物が生威し、かえって転勤疲労寿命を劣化
させるだけでなく、さらにその消散のため長時間の均質
化処理が必要となり生産性の低下を招く。そこで上記の
点を勘案してC量は0.60〜1.50%の範囲で添加
するものとした。C: 0.60 to 1.50% C is a useful element that improves the hardness and transfer fatigue life characteristics after tempering by forming a solid solution in the matrix and strengthening martensite. However, if the amount is too large, eutectic carbides will grow, which will not only deteriorate the rolling fatigue life, but also require a long homogenization process to dissipate them, resulting in a decrease in productivity. Therefore, in consideration of the above points, the amount of C added was determined to be in the range of 0.60 to 1.50%.
Si : 0.15〜2.00%
Siは、鋼の溶製時脱酸剤として作用するほか、鋼塊の
表面欠陥の発生防止に有効な元素である。Si: 0.15 to 2.00% Si is an element that not only acts as a deoxidizing agent during steel melting but also is effective in preventing surface defects in steel ingots.
また焼入れ組織の強化ならびに焼戻しによる硬度低下の
抑制元素としても有用である。しかしながらあまりに多
すぎると被削性ならびに鍛造性を劣化させるので、St
は0.15〜2.00%の範囲で添加するものとした。It is also useful as an element that strengthens the hardened structure and suppresses the decrease in hardness due to tempering. However, if it is too much, machinability and forgeability deteriorate, so St.
shall be added in a range of 0.15 to 2.00%.
Mn : 0.25〜2.50%
Mnは、鋼の焼入れ性を向上させることにより、基地の
強度、靭性を高め、ひいては鋼材の転勤疲労寿命の向上
に有効に寄与する。しかしながら多すぎると耐衝撃性お
よび切削性を劣化させるので、Mnは0.25〜2.5
0%の範囲で添加するものとした。Mn: 0.25 to 2.50% Mn improves the hardenability of the steel, thereby increasing the strength and toughness of the matrix, and effectively contributing to improving the rolling fatigue life of the steel material. However, if it is too large, impact resistance and machinability will deteriorate, so Mn is 0.25 to 2.5.
It was assumed that it was added in a range of 0%.
Mo : 0.05〜1.50%、
Moは、炭化物の固溶温度を低下させ、焼入れによるC
固溶量を高める有用元素である。また強い固溶強化性を
有することから、製品(焼入れ、焼戻し後)の強度およ
び転勤疲労寿命の向上に有効に寄与する。しかしながら
多すぎると切削性を劣化させると共に、添加コストの上
昇を招く。よってMoは0.05%〜1.50%の範囲
で添加するものとした。Mo: 0.05 to 1.50%, Mo lowers the solid solution temperature of carbides and reduces C by quenching.
It is a useful element that increases the amount of solid solution. Furthermore, since it has strong solid solution strengthening properties, it effectively contributes to improving the strength and rolling fatigue life of the product (after quenching and tempering). However, if the amount is too large, machinability deteriorates and addition cost increases. Therefore, Mo was added in a range of 0.05% to 1.50%.
この発明では、上記した基本成分の他、必要に応してV
、 Nb、 W、 NiおよびCuのうちから選んだ1
種または2種以上を、強度向上成分として以下に述べる
範囲で添加することができる。In this invention, in addition to the above-mentioned basic components, V
, Nb, W, Ni and Cu selected from
A species or two or more species can be added as strength-enhancing components within the ranges described below.
V、 Nb、 W : 0.05〜0.50%、V、N
bおよびWはそれぞれ、高温で安定した炭化物を形威し
、転勤疲労寿命特性を向上させる。V, Nb, W: 0.05-0.50%, V, N
b and W each form stable carbides at high temperatures and improve transfer fatigue life characteristics.
しかし、多すぎると焼戻し後の硬度が低下し、かえって
転勤疲労寿命特性を劣化させる。よってV。However, if the amount is too high, the hardness after tempering will decrease, and the rolling fatigue life characteristics will deteriorate on the contrary. Therefore, V.
NbおよびWはそれぞれ、0.05〜0.50%の範囲
で添加するものとした。Nb and W were each added in a range of 0.05 to 0.50%.
Ni : 0.10〜2.00%
Niは、焼入れ性の向上に寄与するだけでなく、焼戻し
後の硬度低下を抑制させることから、強度および転勤疲
労寿命の向上に有用な元素である。Ni: 0.10 to 2.00% Ni not only contributes to improving hardenability, but also suppresses a decrease in hardness after tempering, so it is an element useful for improving strength and rolling fatigue life.
しかしながらあまりに多すぎると、残留オーステナイト
が多量に生威し焼戻し後の鋼材硬度を低下させる。よっ
てNiは0.10〜2°00%の範囲で添加するものと
した。However, if the amount is too large, a large amount of retained austenite will grow and reduce the hardness of the steel material after tempering. Therefore, Ni was added in a range of 0.10 to 2°00%.
Cu : 0.05〜1.00%
Cuは、Niと同様、焼入れ性の向上に寄与するだけで
なく、焼戻し後の硬度低下を抑制させることから、強度
および転勤疲労寿命の向上に有用な元素である。しかし
ながら含有量が多すぎる場合には鍛造性の劣化を招く。Cu: 0.05-1.00% Cu, like Ni, not only contributes to improving hardenability, but also suppresses the decrease in hardness after tempering, so it is an element useful for improving strength and rolling fatigue life. It is. However, when the content is too large, forgeability deteriorates.
よってCuは0.05〜1.00%の範囲で添加するも
のとした。Therefore, Cu was added in a range of 0.05 to 1.00%.
なおその他、酸素量低減および介在物形態制御を目的と
してAI、 Ca、 Na、 K、 MgおよびZr
のうちから選んだ1種または2種以上を、また被削性向
上を目的としてS、 Ca、 Pb、 B、 Biお
よびREMのうちから選んだ1種または2種以上を、さ
らに熱間強度向上を目的としてPおよびNのうちから選
んだ1種または2種を、またさらに脱炭低減を目的とし
てsbをそれぞれ少量添加することもできる。In addition, AI, Ca, Na, K, Mg, and Zr were added for the purpose of reducing the amount of oxygen and controlling the morphology of inclusions.
For the purpose of improving machinability, one or more selected from S, Ca, Pb, B, Bi, and REM are used to further improve hot strength. For this purpose, one or two selected from P and N may be added, and a small amount of sb may be added for the purpose of reducing decarburization.
さて上述したような好適成分組成に調整した溶鋼を、連
続鋳造して鋳片とするが、この発明では、得られた連続
鋳造鋳片の内部溶鋼が凝固完了するクレータエンド近傍
にて圧下率:5%以上の鍛圧加工を施すことが肝要であ
り、かくして鋳片中心部における偏析の生成を防止する
のである。Now, the molten steel adjusted to the preferred composition as described above is continuously cast into slabs. In this invention, the reduction rate is set near the crater end where the internal molten steel of the obtained continuously cast slabs completes solidification. It is important to perform a forging process of 5% or more, thus preventing the formation of segregation in the center of the slab.
ここに、上記の如き鍛圧加工によって、鋳片中心に相当
する位置での偏析が改善される理由は、次のとおりと考
えられる。Here, the reason why the forging process as described above improves segregation at a position corresponding to the center of the slab is considered to be as follows.
すなわち内部溶鋼の凝固末期には、大型の非金属介在物
を含んだ合金元素濃度の高い溶鋼がクレータエンド近傍
に存在するため、このまま凝固すると非金属介在物の残
存ならびに中心偏析が生じるわけであるが、凝固前に鍛
圧加工を施すと、かような非金属介在物を含む濃化溶鋼
は上方に押し出されるため、中心部の非金属介在物量な
らびに合金元素量はさほど上昇することはなく、その結
果、中心部において転勤疲労寿命特性を劣化させる要因
となる中心偏析や共晶炭化物などの発生が効果的に回避
される。In other words, at the final stage of solidification of internal molten steel, molten steel containing large nonmetallic inclusions and a high concentration of alloying elements exists near the crater end, so if it solidifies as it is, nonmetallic inclusions will remain and center segregation will occur. However, when forging is performed before solidification, the concentrated molten steel containing such non-metallic inclusions is pushed upwards, so the amount of non-metallic inclusions and alloying elements in the center do not increase significantly; As a result, the occurrence of center segregation, eutectic carbides, etc. that cause deterioration of transfer fatigue life characteristics in the center can be effectively avoided.
第1図に、C: 1.00%、Si : 0.75%、
Mn : 0.45%およびMo : 1.00%を含
有する組成になる溶鋼の連続鋳造に際し、連続鋳造中に
連続的に鍛圧力u工を行って得たもの、あるいは鍛圧加
工を行わない従来法により得られた鋳片をそれぞれ、棒
鋼圧延により65mmφ棒鋼とし、中心部(棒鋼の中心
が試験片の表面にくるように試験片を採取)における転
勤疲労寿命特性について調べた結果を示す。In Figure 1, C: 1.00%, Si: 0.75%,
When continuously casting molten steel with a composition containing Mn: 0.45% and Mo: 1.00%, it is obtained by continuously performing forging pressure processing during continuous casting, or conventional method without forging processing. The slabs obtained by this method were each rolled into 65 mmφ steel bars, and the transfer fatigue life characteristics at the center portion (the specimens were taken so that the center of the steel bar was on the surface of the specimen) were investigated.The results are shown below.
同図より明らかなように、棒鋼中心部材の転勤疲労寿命
特性は、圧下率が5%以上の鍛圧加工を施すことによっ
て、かかる鍛圧加工を施さない従来材よりも6倍以上に
向上している。As is clear from the figure, the rolling fatigue life characteristics of the central steel bar member are improved by more than 6 times when subjected to forging with a rolling reduction of 5% or more compared to conventional materials that are not subjected to such forging. .
従ってこの発明では、鍛圧加工による圧下率につき、5
%以上の範囲に限定したのである。とはいえ圧下率があ
まりに大きいと、圧延後の素材精度が低下するという問
題が生じるので、圧下率は60%以下程度とするのが好
ましい。Therefore, in this invention, the rolling reduction rate by forging process is 5.
% or more. However, if the rolling reduction ratio is too large, a problem arises in that the accuracy of the material after rolling decreases, so the rolling reduction ratio is preferably about 60% or less.
ところで発明者らは、転勤疲労寿命特性の一層の改善を
目指し、さらに研究重ねたところ、連続鋳造時における
溶鋼加熱度ΔTを25゛C以上とするが、所期した目的
の達成に関し、極めて有効であることの知見を得た。By the way, the inventors have conducted further research with the aim of further improving the rolling fatigue life characteristics, and have found that setting the molten steel heating degree ΔT during continuous casting to 25°C or higher is extremely effective in achieving the intended purpose. We obtained the knowledge that
第2図に、鍛圧加工による圧下率を0%(従来法)およ
び10%とした各場合における、連続鋳造時の溶鋼加熱
度ΔTと中心部材の転勤疲労寿命特性との関係について
調べた結果を示す。なお鍛圧加工法としては、発明者ら
が先に特開昭60−82257号公報において開示した
連続鍛圧法を利用した。Figure 2 shows the results of investigating the relationship between the heating degree ΔT of molten steel during continuous casting and the transfer fatigue life characteristics of the central member in each case where the reduction rate by forging was 0% (conventional method) and 10%. show. As the forging method, the continuous forging method previously disclosed by the inventors in JP-A-60-82257 was used.
同図より明らかなように、従来法では、転勤疲労寿命特
性のピークは溶鋼加熱度ΔTが約20℃のときで、ΔT
がそれを下回る場合には非金属介在物の浮上、分離が不
十分のため、一方ΔTがそれを上回る場合には濃厚な中
心偏析の残存により、いずれも転勤疲労寿命は低下する
傾向にあった。As is clear from the figure, in the conventional method, the peak of the transfer fatigue life characteristic occurs when the molten steel heating degree ΔT is approximately 20°C;
When ΔT is lower than that, the floating and separation of non-metallic inclusions is insufficient, while when ΔT is higher than that, the transfer fatigue life tends to decrease due to the remaining of dense center segregation. .
これに対し、この発明に従い溶鋼加熱度ΔTが25℃以
上の条件で連続鋳造し、鋳片の内部溶鋼が凝固を完了す
るクレータエンド近傍にて鍛圧加工を施すことによって
、より一層の転勤疲労寿命の延長が達成されている。In contrast, according to the present invention, continuous casting is performed under conditions where the molten steel heating degree ΔT is 25°C or higher, and the forging process is performed near the crater end where the molten steel inside the slab completes solidification, thereby further increasing the rolling fatigue life. extension has been achieved.
この理由は、鋳片内部溶鋼が凝固完了するクレータエン
ド近傍にて鍛圧加工を施すことによって製品の中心偏析
を抑制できることから、従来は濃厚な中心偏析の発生が
懸念されるため採用できなかった高温鋳造を採用でき、
その結果介在物の浮上、分離が促進され、転勤疲労寿命
が向上するものと考えられる。The reason for this is that center segregation of the product can be suppressed by performing forging near the crater end where the molten steel inside the slab has solidified. Can adopt casting,
As a result, it is thought that the floating and separation of inclusions is promoted and the transfer fatigue life is improved.
この効果は、溶鋼加熱度ΔTが25℃以上で著しいこと
から、この発明では連続鋳造時の溶鋼加熱度ΔTにつき
、25℃以上(好ましくは85゛c以下)の範囲に限定
した。Since this effect is significant when the molten steel heating degree ΔT is 25° C. or higher, in the present invention, the molten steel heating degree ΔT during continuous casting is limited to a range of 25° C. or higher (preferably 85° C. or lower).
(実施例)
第1表に示す化学酸分になる種々の溶鋼から、転炉→連
続鋳造法により、鋳片を製造した。このとき鋼材No、
1については鍛圧加工無しで、その他の鋼材について
はいずれも鍛圧加工を施した。また連続鋳造時における
溶鋼加熱度ΔTの目標値は30℃とした。さらに鍛圧加
工における圧下率の目標値は調材Nα4.5で2%およ
び20%、その他の鋼材では20%とした。(Example) Slabs were manufactured from various molten steels having the chemical acid content shown in Table 1 by a converter->continuous casting method. At this time, steel material No.
No. 1 was subjected to forging processing, and all other steel materials were subjected to forging processing. Further, the target value of the molten steel heating degree ΔT during continuous casting was set to 30°C. Furthermore, the target values for the reduction ratio in the forging process were 2% and 20% for the prepared material Nα4.5, and 20% for other steel materials.
ついで鋼材NO,iについては均熱炉にて、1240℃
l2hおよび20hで、またその他の鋼材については1
240″Cl2hで均熱処理後、651φ棒鋼に熱間圧
延した。Next, steel material NO,i was heated to 1240℃ in a soaking furnace.
l2h and 20h, and 1 for other steels.
After soaking at 240″Cl2h, it was hot rolled into a 651φ steel bar.
その後、球状化焼鈍処理を行い、074部および中心部
(棒鋼の中心が試験片の表面にくるように採取)より転
勤疲労寿命試験片を採取し、焼入れ、焼戻し後、転勤疲
労寿命試験を実施した。After that, a spheroidizing annealing treatment was performed, and transfer fatigue life test pieces were taken from the 074 part and the center part (taken so that the center of the steel bar was on the surface of the test piece), and after quenching and tempering, a transfer fatigue life test was performed. did.
転勤疲労寿命試験は、円筒型転勤疲労寿命試験機を用い
、ヘルツ最大接触応力600kgf/mm”、繰り返し
応力数46240 cpmの条件で行い、試験結果はワ
イブル分布に従うものと仮定して確率紙上にまとめ、鋼
材−11の20h拡散焼鈍処理材のD/4部LlO(累
積破損確立が10%のときの、はく離までの応力負荷回
数)を1として、相対的に評価した。The transfer fatigue life test was conducted using a cylindrical transfer fatigue life testing machine under the conditions of Hertzian maximum contact stress of 600 kgf/mm and repeated stress number of 46,240 cpm, and the test results were summarized on probability paper assuming that they followed the Weibull distribution. , D/4 part LlO (number of stress loads until peeling when cumulative failure probability is 10%) of 20h diffusion annealed steel material-11 was set as 1, and relative evaluation was made.
得られた結果を第2表に併記する。The obtained results are also listed in Table 2.
鋼材No、 1の2h拡散焼鈍材(比較例)の中心部に
おける転勤疲労寿命特性は、同20h処理材(従来例)
に比較して173倍と極めて劣る。The transfer fatigue life characteristics at the center of the 2-hour diffusion annealed material of steel material No. 1 (comparative example) are the same as those of the same 20-hour-treated material (conventional example).
It is extremely inferior at 173 times compared to .
また鋼材No、 4 、、5において、鍛圧加工時にお
ける圧下率が5%に満たない場合は、中心部における転
勤疲労寿命特性がD/4部よりも勝ることはない。Further, in steel materials No. 4, 5, if the rolling reduction during forging is less than 5%, the rolling fatigue life characteristics in the center part will not be superior to that in the D/4 part.
さらにこの発明の適正成分組成範囲から、Cが逸脱して
いる綱材No、 2、また■が逸脱している鋼材No、
11、さらにNiが逸脱している鋼材No、15はい
ずれも、圧下率:5%以上の鍛圧加工を施しても、中心
部およびD/4部とも、鋼材No、 1の20h処理材
(従来例)よりも転勤疲労寿命特性が劣っていた。Further, steel material No. 2, in which C deviates from the proper composition range of this invention, and steel material No. 2, in which ■ deviates,
11, and steel material No. 15, in which Ni deviates, even when subjected to forging with a reduction rate of 5% or more, both the center and D/4 portions were 20h treated material of steel material No. 1 (conventional). The transfer fatigue life characteristics were inferior to Example).
これに対し、成分組成範囲、溶鋼加熱度および鍛圧加工
における圧下率とも、この発明の適正範囲を満足するも
のの転勤疲労寿命特性は、鋼材No。On the other hand, although the composition range, the degree of heating of molten steel, and the reduction rate during forging satisfy the appropriate ranges of this invention, the transfer fatigue life characteristics of steel material No.
1の20h拡散焼鈍処理材(従来材)に比べ、D/4部
で2.1〜3.9倍、また中心部で2.4〜4.1倍優
れており、またいずれの鋼材も中心部の転勤疲労寿命特
性がD/4部よりも勝っていた。Compared to the 20h diffusion annealed material of No. 1 (conventional material), it is 2.1 to 3.9 times better in the D/4 part and 2.4 to 4.1 times better in the center, and both steel materials The transfer fatigue life characteristics of the D/4 section were superior to those of the D/4 section.
(発明の効果)
かくしてこの発明によれば、従来の連続鋳造鋳片におい
て問題とされた横断面軸心部における非金属介在物の低
減のみならず中心偏析の軽減を併せて達成することがで
き、ひいては転勤疲労寿命特性に優れた軸受用鋼が得る
ことができる。(Effects of the Invention) Thus, according to the present invention, it is possible to reduce not only the non-metallic inclusions in the axial center of the cross section, which were a problem in conventional continuously cast slabs, but also the center segregation. As a result, it is possible to obtain steel for bearings with excellent transfer fatigue life characteristics.
またこの発明では、中心部についてもD/4部と同等の
転勤疲労寿命特性が得られるので、従来のように鋳片に
おける中心部相当位置を廃材とすることなく転動輪等と
して利用できるので、従来に比べ大幅に材料歩留りが向
上する。In addition, in this invention, the same rolling fatigue life characteristics as the D/4 part can be obtained for the center part, so the part corresponding to the center part of the slab can be used as a rolling wheel, etc., without having to be discarded as waste material, as in the past. Material yield is significantly improved compared to conventional methods.
第1図は、鍛圧加工における圧下率と鋳片の中心部の転
動疲労寿命り、。との関係を示したグラフ、第2図は、
鍛圧加工による圧下率が0%(従来法)および10%の
各場合における、連続鋳造時の溶鋼加熱度ΔTと中心部
材の転勤疲労寿命特性との関係を示したグラフである。Figure 1 shows the rolling reduction rate during forging and the rolling fatigue life of the center of the slab. The graph shown in Figure 2 shows the relationship between
It is a graph showing the relationship between the degree of heating ΔT of molten steel during continuous casting and the rolling fatigue life characteristics of the central member in the cases where the reduction rate by forging is 0% (conventional method) and 10%.
Claims (1)
を、溶鋼加熱度:25℃以上で連続鋳造したのち、鋳片
内部溶鋼が凝固を完了するクレータエンド近傍にて圧下
率:5%以上の鍛圧加工を施し、ついで熱間圧延を施す
ことを特徴とする長寿命高強度軸受用鋼の製造方法。 2、溶鋼の成分組成が、 C:0.60〜1.50wt%、 Si:0.15〜2.00wt%、 Mn:0.25〜2.50wt%および Mo:0.05〜1.50wt% を含み、さらに V:0.05〜0.50wt%、 Nb:0.05〜0.50wt%、 W:0.05〜0.50wt%、 Ni:0.10〜2.00wt%および Cu:0.05〜1.00wt% のうちから選んだ1種または2種以上を含有し、残部は
Feおよび不可避的不純物の組成になる請求項1記載の
長寿命高強度軸受用鋼の製造方法。[Claims] 1. C: 0.60 to 1.50 wt%, Si: 0.15 to 2.00 wt%, Mn: 0.25 to 2.50 wt%, and Mo: 0.05 to 1.50 wt%. %, with the remainder consisting of Fe and unavoidable impurities. After continuous casting at a heating temperature of 25°C or higher, the molten steel is cast at a rolling reduction rate of 5% or higher near the crater end where the molten steel inside the slab completes solidification. A method for producing long-life, high-strength bearing steel, which is characterized by forging and then hot rolling. 2. The composition of the molten steel is: C: 0.60 to 1.50 wt%, Si: 0.15 to 2.00 wt%, Mn: 0.25 to 2.50 wt%, and Mo: 0.05 to 1.50 wt%. %, and further includes V: 0.05-0.50 wt%, Nb: 0.05-0.50 wt%, W: 0.05-0.50 wt%, Ni: 0.10-2.00 wt% and Cu. 2. The method for producing a long-life, high-strength bearing steel according to claim 1, wherein the steel contains one or more selected from: 0.05 to 1.00 wt%, and the remainder is Fe and unavoidable impurities. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7111490A JPH03271319A (en) | 1990-03-20 | 1990-03-20 | Production of bearing steel having long service life and high strength |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7111490A JPH03271319A (en) | 1990-03-20 | 1990-03-20 | Production of bearing steel having long service life and high strength |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03271319A true JPH03271319A (en) | 1991-12-03 |
Family
ID=13451212
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7111490A Pending JPH03271319A (en) | 1990-03-20 | 1990-03-20 | Production of bearing steel having long service life and high strength |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03271319A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6783610B2 (en) * | 2001-03-05 | 2004-08-31 | Amsted Industries Incorporated | Railway wheel alloy |
CN103882308A (en) * | 2014-02-18 | 2014-06-25 | 芜湖市鸿坤汽车零部件有限公司 | Alloy steel material for oil delivery pump valve seat and preparation method thereof |
-
1990
- 1990-03-20 JP JP7111490A patent/JPH03271319A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6783610B2 (en) * | 2001-03-05 | 2004-08-31 | Amsted Industries Incorporated | Railway wheel alloy |
CN103882308A (en) * | 2014-02-18 | 2014-06-25 | 芜湖市鸿坤汽车零部件有限公司 | Alloy steel material for oil delivery pump valve seat and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1697889B (en) | Low carbon martensitic stainless steel plate and manufacturing method thereof | |
CN112662934A (en) | Method for reducing bearing steel 100Cr6 carbide banded structure | |
JP2905243B2 (en) | Manufacturing method of bearing material with excellent rolling fatigue life | |
JP2986829B2 (en) | Manufacturing method of bearing material with excellent rolling fatigue life | |
JP3002392B2 (en) | Method for manufacturing centrifugally cast composite roll | |
JP2905242B2 (en) | Method for producing low Cr bearing steel material with excellent rolling fatigue life | |
JP2905241B2 (en) | Manufacturing method of bearing material with excellent rolling fatigue life | |
JP3357264B2 (en) | Manufacturing method of non-tempered steel bar for high toughness hot forging | |
JP3716073B2 (en) | Manufacturing method of hot forged parts with excellent machinability and fatigue characteristics | |
JP2841468B2 (en) | Bearing steel for cold working | |
JPH0762204B2 (en) | Manufacturing method of high-toughness non-heat treated steel for hot forging and its steel bars and parts | |
JPH03271319A (en) | Production of bearing steel having long service life and high strength | |
JP4500246B2 (en) | Steel pipe for machine structural member and manufacturing method thereof | |
JPH09165643A (en) | Bearing steel excellent in rolling fatigue characteristic | |
JP3579558B2 (en) | Bearing steel with excellent resistance to fire cracking | |
JP3721723B2 (en) | Machine structural steel with excellent machinability, cold forgeability and hardenability | |
JP3091795B2 (en) | Manufacturing method of steel bars with excellent drawability | |
JPH03258445A (en) | Production of raw material for bearing having long service life and high strength | |
JPH11285710A (en) | Composite work roll for cold rolling and method for producing the same | |
JPH0292444A (en) | Production of raw material for bearing steel ball | |
JP2003001307A (en) | Roll | |
JP2862607B2 (en) | Manufacturing method of steel with excellent drilling workability | |
JP3019240B2 (en) | Centrifugal casting composite roll | |
JPS60262941A (en) | Steel for warm forging | |
JPS63255345A (en) | Bearing steel |