JPH03270667A - Dual stator synchronous induction motor - Google Patents
Dual stator synchronous induction motorInfo
- Publication number
- JPH03270667A JPH03270667A JP6764990A JP6764990A JPH03270667A JP H03270667 A JPH03270667 A JP H03270667A JP 6764990 A JP6764990 A JP 6764990A JP 6764990 A JP6764990 A JP 6764990A JP H03270667 A JPH03270667 A JP H03270667A
- Authority
- JP
- Japan
- Prior art keywords
- rotor
- stator
- pole
- rotor core
- synchronous motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Permanent Magnet Type Synchronous Machine (AREA)
Abstract
Description
本発明は同期電動機に関する。 The present invention relates to a synchronous motor.
一般に同期電動機は、その回転子を固定子巻線の作る回
転磁界の回転速度すなわち同期速度近くまで加速する起
動機と、回転子巻線の直流励磁が必要である。
この起動機を省略して同期電動機自体に起動トルクを持
たせるように考案されたのが誘導同期電動機で、これは
起動時には回転子巻線を短絡して誘導電動機として起動
するために起動は必要としないが、同期運転に必要な回
転子巻線の直流励磁のために、ブラシを必要とする。す
なわち、回転子の回転速度が同期速度に近づくと回転子
巻線の短絡を開放して外部の直流電源からブラシを介し
て回転子巻線に直流電流を流して回転子に磁極を作り、
この磁極が固定子巻線の作る回転磁界に引張られて回転
子は同期速度で回転する。このブラシは保守点検を必要
とすることから保守費が嵩み、ブラシレス構造の同期電
動機の開発が望まれている。
このブラシレス構造の同期電動機としては、従来から永
久磁石形やリラクタンス形があるが、誘導機起動が不可
能なために起動トルクが小さい欠点があるため小容量の
ものに限られている。
またランゾル形やインダクタ形の同期電動機は磁路の構
成が複雑で大型となる欠点があった。
また交流励磁器と回転整流器を用いる方法も同様である
。また回転子巻線にダイオードを接続してインバーター
の方形波電圧による高調波磁界を利用するブラシレス自
励形三相同期電動機は回転子の磁界起磁力が不足で十分
な出力が得られない欠点がある。更には三相の固定子巻
線の一相にダイオードを挿入して固定子の作る正相分回
転磁界に静止励磁を重畳して、同期速度で回転する回転
子巻線に静止磁界による交流電圧を誘起させて、これを
ダイオードで整流することによって回転子巻線を直流励
磁して、正相分回転磁界を作用させて同期トルクを発生
するブラシレス自励形三相同期電動機があるが、これは
誘導機始動が不可能なために、回転子鉄心の渦電流によ
る起動となり起動トルクが小さい欠点がある。
また特公昭54−34124には起動を誘導機の原理に
よって行い、同期運転は軸方向の直流磁界を作ってこれ
によって回転子コアに磁極を形成して行うものがあるが
、これは発生トルクが回転軸に対して非対称となるため
に軸の振動の原因になる欠点がある。Generally, a synchronous motor requires a starter that accelerates the rotor to the rotation speed of the rotating magnetic field generated by the stator winding, that is, close to the synchronous speed, and DC excitation of the rotor winding. The induction synchronous motor was devised to omit this starter and give the synchronous motor itself its own starting torque.This requires starting because the rotor windings are short-circuited at the time of starting and the motor starts as an induction motor. However, brushes are required for the DC excitation of the rotor windings required for synchronous operation. That is, when the rotational speed of the rotor approaches the synchronous speed, the short circuit in the rotor winding is opened, and a DC current is passed from an external DC power source to the rotor winding through the brushes to create magnetic poles on the rotor.
These magnetic poles are pulled by the rotating magnetic field created by the stator windings, causing the rotor to rotate at a synchronous speed. This brush requires maintenance and inspection, which increases maintenance costs, and there is a desire to develop a synchronous motor with a brushless structure. Conventionally, there are permanent magnet type and reluctance type synchronous motors with this brushless structure, but they are limited to small capacity ones because they have the disadvantage of low starting torque because induction motor cannot be started. Furthermore, Ransol-type and inductor-type synchronous motors have the disadvantage of having complicated magnetic path configurations and being large. Also, the method using an AC exciter and a rotating rectifier is similar. In addition, brushless self-excited three-phase synchronous motors that connect diodes to the rotor windings and utilize the harmonic magnetic field generated by the square wave voltage of the inverter have the disadvantage that sufficient output cannot be obtained due to insufficient magnetomotive force of the rotor's magnetic field. be. Furthermore, by inserting a diode into one phase of the three-phase stator winding, static excitation is superimposed on the positive phase rotating magnetic field generated by the stator, and the alternating current voltage due to the static magnetic field is applied to the rotor winding rotating at a synchronous speed. There is a brushless self-excited three-phase synchronous motor that generates synchronous torque by inducing a DC current and rectifying it with a diode to excite the rotor winding and applying a positive-phase rotating magnetic field. Since it is impossible to start the induction motor, the starting torque is low due to the eddy current in the rotor core. In addition, in Japanese Patent Publication No. 54-34124, there is a method in which starting is performed using the principle of an induction machine, and synchronous operation is performed by creating an axial DC magnetic field and thereby forming magnetic poles in the rotor core, but this method has a method in which the generated torque is It has the disadvantage that it is asymmetric with respect to the rotating shaft, causing vibration of the shaft.
したがって起動トルクが大きく、更に同期トルクも大き
く、しかもブラシを必要とせず、保守点検が容易で構造
が簡単で専用の起動機も必要としない同期電動機の提供
を技術的課題とするものである。Therefore, the technical object is to provide a synchronous motor that has a large starting torque and a large synchronous torque, does not require brushes, is easy to maintain and inspect, has a simple structure, and does not require a dedicated starter.
前記課題を解決するために、同一回転軸上に任意の間隔
をおいて設けた2個の回転子コアを永久磁石で構成し、
該回転子コアの外周上に2個の回転子コアに連通した複
数の導体を設け、その両端を短絡環で連結した回転子と
、前記回転子コアにそれぞれ対向して周設した2個の固
定子と、前記2個の固定子のうち特定の固定子がこれに
対峙する回転子コアの周囲に生しる回転磁界と、他の固
定子がこれに対峙する回転子コアの周囲に生じる回転磁
界との間に位相差を生じさせる電圧移相装置とにより構
成し、前記永久磁石で構成した2個の回転子コアの磁極
は、N極とS極とを対にして、一方の回転子コアのN極
と他方の回転子コアのS極とを同一の位置に配置し、さ
らに一方の回転子コアのS極と他方の回転子コアのN極
とを同一の位置に配置して構成した。また、永久磁石で
構成した回転子コアは円筒型または突極型で構成した。
更に固定子を励磁する電源は商用周波数の交流電源か又
はインバータを利用した可変周波数電源で、単相交流電
源か又は多相交流電源である。また電圧移相装置は、2
個の固定子の相対位置を機械的に回動するか、あるいは
固定子巻線の端子をスイッチで切換えて電源に接続する
ように構成した。In order to solve the above problem, two rotor cores arranged on the same rotating shaft at an arbitrary interval are made of permanent magnets,
A plurality of conductors connected to two rotor cores are provided on the outer periphery of the rotor core, and a rotor whose both ends are connected by a short-circuit ring, and two conductors provided around the rotor core facing each other. A rotating magnetic field generated around a stator and a rotor core that a specific stator of the two stators faces, and a rotating magnetic field generated around a rotor core that faces another stator. The magnetic poles of the two rotor cores made of the permanent magnets are composed of a voltage phase shifter that generates a phase difference between the rotating magnetic field and the rotating magnetic field, and the magnetic poles of the two rotor cores made of the permanent magnets are paired with an N pole and an S pole. The N pole of the child core and the S pole of the other rotor core are arranged at the same position, and the S pole of one rotor core and the N pole of the other rotor core are arranged at the same position. Configured. Further, the rotor core made of permanent magnets was made of a cylindrical type or a salient pole type. Further, the power source for exciting the stator is a commercial frequency AC power source or a variable frequency power source using an inverter, and is a single-phase AC power source or a multi-phase AC power source. Moreover, the voltage phase shifter is 2
The structure is such that the relative positions of the individual stators can be mechanically rotated, or the terminals of the stator windings can be switched using a switch to connect to the power source.
複数固定子誘導電動機の電圧移相装置の作用について本
出願人は特願昭61−128314号においてその詳細
を説明している。
本発明によると、まず同一回転軸上に永久磁石で構成し
た2個の回転子コアを有し、該2個の回転子コアに連通
ずる導体を複数個設けその両端を短絡してかご形導体と
した回転子と、前記2個の回転子コアに対向して周設し
た2個の固定子より構成されたものにおいては、起動時
には2個の固定子の作る回転磁界によって複数個の回転
子導体に誘起される電圧が同相になるように、すなわち
回転子導体間を電流が環流するように、電圧移相装置を
作動させて一般の誘導電動機として起動する。
このとき永久磁石で構成した2個の回転子コアの磁極は
N極とS極とを対にして、一方の回転子コアのN極と他
方の回転子コアのS極とを同一の位置に配置し、更に一
方の回転子コアのS極と他方の回転子コアのN極とを同
一の位置に配置してあり、また2つの固定子によって2
つの回転子コアの周囲に生じる回転磁界はその位相差θ
がθ=0° (同相)であるから、回転子コアの磁極と
回転磁界の間の反撥と吸引の作用が同一回転軸上で相殺
されて回転子コアを形成する永久磁石は起動の障害には
ならない。
起動後、回転子の回転速度が上昇して回転磁界の回転速
度すなわち同期速度に近づくと、回転磁界による回転子
導体の誘起電圧は小さくなる。ここまでは誘導電動機と
しての動作であるが、すベリSがS=0.05に近づい
た時に同期運転に入る。これは次のようにして行う。
先ず2個の固定子のうち一方の固定子がこれに対峙する
回転子コアの周囲に生じる回転磁界と他方の固定子がこ
れに対峙する回転子コアの周囲に生じる回転磁界との間
に180度の位相差を生じさせるように電圧移相装置を
作動させる。
このようにすると今まで回転子導体間を環流して流れて
いた電流が流れなくなる。
一方、永久磁石で構成した回転子コアの磁極は、180
°位相差のある2つの回転磁界の作る磁極とすべて吸引
し合って同期速度に至るものである。従って、本発明の
誘導同期電動機は1つの回転子と2つの固定子で構成し
ているが、2つの固定子にそれぞれ対向する2つの回転
子コアを有するので1固定子と1回転子で構成する同期
電動機の2倍の容量と同等となる。
以上のように、本発明の2固定子誘導同期電動機は、起
動時には従来の誘導電動機の原理で起動するから起動ト
ルクが大きく、従って他の特別の起動機を必要としない
。また同期速度においては回転子コアの永久磁石が回転
磁界に吸引されるので回転子コアの磁極を強くすれば同
期トルクが大きく、ブラシなどの保守を必要としない同
期電動機を提供することが可能となった。
なお、電圧移相装置としては本出願人が特願昭61−1
28314号において固定子の位置を回転軸のまわりに
機械的に回動させることによって変える方法と、固定子
巻線の接続をスイッチによって切換えて行う方法の2つ
を説明している。
以上のような構成よって、起動トルクが大きく、さらに
同期トルクも大きく、しかもブラシを必要とせず、保守
点検が容易で構成が簡単で専用の起動機を必要としない
同期電動機を提供することが可能となった。
ところで、前記固定子巻線を励磁する電源は、商用周波
数の交流電源かまたはインバータを利用した可変周波数
電源を利用できる。また単相においても多相においても
利用できるものである。上記可変周波数電源を利用する
と、同期速度の変更が容易に可能となり、その場合でも
通常の誘導電動機の始動トルクで起動可能であり、利用
分野は大きく拡大し、安価な同期電動機の提供が可能と
なった。The details of the operation of a voltage phase shifter for a multi-stator induction motor have been described by the present applicant in Japanese Patent Application No. 128314/1983. According to the present invention, first, there are two rotor cores made of permanent magnets on the same rotating shaft, and a plurality of conductors communicating with the two rotor cores are provided, and both ends of the conductors are short-circuited to form a squirrel cage conductor. In a rotor constructed of a rotor and two stators disposed around the two rotor cores, the rotating magnetic field created by the two stators causes the rotation of the plurality of rotors at startup. The voltage phase shifting device is activated so that the voltages induced in the conductors are in phase, that is, the current circulates between the rotor conductors, and the motor is started as a general induction motor. At this time, the magnetic poles of the two rotor cores made of permanent magnets are made into a pair of north and south poles, and the north pole of one rotor core and the south pole of the other rotor core are placed in the same position. Furthermore, the S pole of one rotor core and the N pole of the other rotor core are arranged at the same position, and the two stators
The rotating magnetic field generated around the two rotor cores has a phase difference θ
Since θ=0° (in phase), the repulsion and attraction between the magnetic poles of the rotor core and the rotating magnetic field cancel each other out on the same rotation axis, and the permanent magnets forming the rotor core become an obstacle to starting. Must not be. After startup, when the rotational speed of the rotor increases and approaches the rotational speed of the rotating magnetic field, that is, the synchronous speed, the voltage induced in the rotor conductor by the rotating magnetic field becomes smaller. Up to this point, the motor is operating as an induction motor, but when the slip S approaches S=0.05, it enters synchronous operation. This is done as follows. First, there is a difference of 180 degrees between the rotating magnetic field generated around the rotor core of which one of the two stators faces and the rotating magnetic field generated around the rotor core of which the other stator faces. The voltage phase shifter is activated to create a degree phase difference. By doing this, the current that used to circulate between the rotor conductors will no longer flow. On the other hand, the magnetic poles of the rotor core made of permanent magnets are 180
The magnetic poles created by two rotating magnetic fields with a phase difference are all attracted to each other, resulting in a synchronous speed. Therefore, the induction synchronous motor of the present invention is composed of one rotor and two stators, but since it has two rotor cores facing each of the two stators, it is composed of one stator and one rotor. This is equivalent to twice the capacity of a synchronous motor. As described above, since the two-stator induction synchronous motor of the present invention is started based on the principle of a conventional induction motor, the starting torque is large, and therefore no other special starter is required. Furthermore, at synchronous speeds, the permanent magnets in the rotor core are attracted to the rotating magnetic field, so if the magnetic poles of the rotor core are made stronger, the synchronous torque is large, making it possible to provide a synchronous motor that does not require maintenance such as brushes. became. The voltage phase shift device was developed by the applicant in Japanese Patent Application No. 1986-1.
No. 28314 describes two methods: one in which the position of the stator is changed by mechanically rotating it around a rotating shaft, and the other in which the connection of the stator windings is changed by a switch. With the above configuration, it is possible to provide a synchronous motor that has a large starting torque, a large synchronous torque, does not require brushes, is easy to maintain and inspect, has a simple configuration, and does not require a dedicated starter. It became. By the way, the power source for exciting the stator winding can be a commercial frequency AC power source or a variable frequency power source using an inverter. Moreover, it can be used in both single phase and polyphase. By using the variable frequency power supply mentioned above, it becomes possible to easily change the synchronous speed, and even in that case, it can be started with the starting torque of a normal induction motor, greatly expanding the field of use and making it possible to provide inexpensive synchronous motors. became.
第1図乃至第3図により本発明の詳細な説明する。まず
第1図において符号20は2固定子誘導同期電動機の固
定子側を示す。また符号30は同じく回転子側を示す。
固定子側20はスター結線した2つの固定子巻線21.
22が並列に3相交流電源R,S、 Tに接続されてい
る。
一方回転子側20の回転軸10に2つの回転子コア81
.82が設けてあり、この回転子コア81.82はN極
とS極を対とする永久磁石で構成されている。更に2つ
の回転子コア81゜82の外周上に装着した複数個の回
転子導体31.32のそれぞれを連通状に連結してその
両端部において導体を短絡する短絡環33を設けて回転
子導体をカゴ状に構成する。
第2図は円筒形回転子コアの断面図、第3図は突極形回
転子コアの断面図を示す。
第2図、第3図に示すように2つの回転子コア81.8
2の磁極は、N極とS極を対にして、特定の回転子コア
82のN極(又はS極)と他方の回転子コア81のS極
(又はN極)が同一の位置に配置されている。
ここで固定子巻線21に対峙する回転子導体31に誘起
する電圧を第1図の図示の方向にEとし、固定子巻線2
2に対峙する回転子導体32に誘起する電圧を同図示の
方向にEεJ6とする。ここでθは電圧の位相差角であ
る。
以上の構成による作用を説明する。まず、起動時には、
回転子導体31.32の回転磁界による誘起電圧の位相
差角θがθ=0°になるように固定子巻線21.22が
結線された状態で電源に投入して起動する。このように
すると固定子巻線21.22に電源から3相電流が流れ
て、それぞれ同相の回転磁界が生じ、回転子導体31.
32に電圧が誘起されるが、この場合の誘起電圧の位相
差角θ=0°であるから、回転子導体に流れる電流は回
転子導体31から回転子導体32へ還流するように流れ
る。この回転子導体31.32に流れる電流と固定子巻
線21.22の作る回転磁界によるトルクは従来の誘導
電動機のトルクと同一である。ここで永久磁石で構成さ
れた2つの回転子コア81,82の磁極と固定子巻線2
1.22の作る回転磁界の磁極との間の相互作用を考察
してみる。
第4図は2つの回転子コア81.82と固定子21.2
2の断面図を示したもので、2つの回転子コア81.8
2は回転軸10で連結されている。また図示のように回
転子コア81のN極と回転子コア82のS極が同一の位
置に配置され、同じく回転子コア81のS極と回転子コ
ア82のN極が同一の位置に配置されている。
また図示のように固定子巻線21の作る回転磁界の磁極
N、 Sと固定子巻線22の作る回転磁界の磁極N、
Sは共に同期速度で同一方向に回転するが、2つの
固定子巻線21.22の作る2つの回転磁界の位相差角
θは起動時にはθ=0°であるから、固定子巻線21の
作る回転磁界の磁極N(又はS)と固定子巻線22の作
る回転磁界の磁極N(又はS)は常に同一の位置にある
。
従って、回転子コア81のN極と固定子巻線21の作る
回転磁界のN極と中心角をある瞬時においてαとすると
、回転子コア82のS極と固定子巻線22の作る回転磁
界のN極との中心角もαとなる。従って回転子コア81
に作用するN極N極との反撥力と回転子コア82に作用
するS極とN極の吸引力は等しい。従ってこの反撥力と
吸引力が打消されて回転子コアの磁極は回転磁界の影響
を受けない。すなわち回転子コアの磁極は回転磁界の拘
束を受けない。従って本発明の2固定子誘導同期電動機
は従来の誘導電動機と同一のトルク特性で起動する。従
って起動トルクは大きく、特別の別個の起動機を必要と
しない。
起動後、回転速度が上昇して、すベリSがS=0.05
に近づいた時に同期運転に引入れる。
これは次のようにして行う。
先ず電圧移相装置によって2つの固定子巻線21.22
の一方、例えば固定子巻線22の位置を、回転軸のまわ
りに回動させることによって変えて、2つの固定子巻線
21.22の作る2つの回転磁界の位相差角θ=180
°になるようにする。
このようにすると、2つの回転子導体31゜32の誘導
電圧の位相差角θ=180°となり、回転子導体31.
32の誘起電圧の総和はE+Eε”=E−E=0
となって、回転子導体31.32に電流は流れなくなる
。
ここで永久磁石で構成された2つの回転子コア81.8
2の磁極と固定子巻線21.22の作る回転磁界の磁極
との間の相互作用を考察してみる。
同期運転時には2つの固定子巻線21.22の作る2つ
の回転磁界の位相差角θはθ=1800であるから、第
5図に示すように固定子巻線21の作る回転磁界の磁極
N(又はS)と固定子巻線22の作る回転磁界の磁極N
(又はS)は常に電気角で180°異なった位置にある
。換言すれば固定子巻線21の作る回転磁界のN極と固
定子巻線22の作る回転磁界のS極が常に同一の位置に
ある。
従って回転子コア81のN極と固定子巻線21の作る回
転磁界のN極とが反撥し、同様に回転子コア82のS極
と固定子巻線22の作る回転磁界のS極とが反撥し、回
転子コア81,82の位置が第6図の位置に引込まれて
すべてのN、 Sが吸引する状態で安定する。すなわ
ち回転子コア81.82の磁極が固定子巻線21゜22
の作る回転磁界の磁極に引張られて、回転子は回転磁界
の回転速度と同一の速度すなわち同期速度で回転する。
この方法は構造が簡単で、起動トルクが大きく、回転子
コアの永久磁石を強力にすれば大きい同期トルクが得ら
れ効率が良い利点がある。
また本発明の同期電動機の起動を誘導電動機で行うので
、−船釣に誘導電動機で使用される電源を利用できる。
つまり商用周波数の交流電源やインバータを利用した可
変周波数電源を利用できる。また単相、多相においても
利用できるものである。The present invention will be explained in detail with reference to FIGS. 1 to 3. First, in FIG. 1, reference numeral 20 indicates the stator side of a two-stator induction synchronous motor. Further, the reference numeral 30 similarly indicates the rotor side. The stator side 20 has two star-connected stator windings 21.
22 are connected in parallel to three-phase AC power supplies R, S, and T. On the other hand, two rotor cores 81 are attached to the rotating shaft 10 on the rotor side 20.
.. 82 is provided, and this rotor core 81.82 is composed of a permanent magnet having a pair of north and south poles. Further, a shorting ring 33 is provided to connect each of the plurality of rotor conductors 31 and 32 mounted on the outer periphery of the two rotor cores 81 and 82 in a continuous manner and short-circuit the conductors at both ends thereof. are arranged in a basket shape. FIG. 2 shows a sectional view of a cylindrical rotor core, and FIG. 3 shows a sectional view of a salient pole rotor core. Two rotor cores 81.8 as shown in FIGS. 2 and 3
The second magnetic pole is a pair of N pole and S pole, and the N pole (or S pole) of a specific rotor core 82 and the S pole (or N pole) of the other rotor core 81 are arranged at the same position. has been done. Here, the voltage induced in the rotor conductor 31 facing the stator winding 21 is set as E in the direction shown in FIG.
The voltage induced in the rotor conductor 32 facing the rotor 2 is assumed to be EεJ6 in the direction shown in the figure. Here, θ is the voltage phase difference angle. The effect of the above configuration will be explained. First, at startup,
The stator windings 21 and 22 are connected so that the phase difference angle θ of the induced voltage due to the rotating magnetic field of the rotor conductor 31 and 32 becomes 0°, and the power supply is turned on and started. In this way, three-phase currents flow from the power supply to the stator windings 21, 22, generating rotating magnetic fields of the same phase, and the rotor conductors 31, 22 generate rotating magnetic fields of the same phase.
A voltage is induced in the rotor conductor 32, but since the phase difference angle θ of the induced voltage in this case is 0°, the current flowing in the rotor conductor flows back from the rotor conductor 31 to the rotor conductor 32. The torque caused by the current flowing through the rotor conductors 31, 32 and the rotating magnetic field created by the stator windings 21, 22 is the same as the torque of a conventional induction motor. Here, the magnetic poles of two rotor cores 81 and 82 composed of permanent magnets and the stator winding 2
Let us consider the interaction between the rotating magnetic field created by 1.22 and the magnetic poles. Figure 4 shows two rotor cores 81.82 and stator 21.2.
2 shows a cross-sectional view of two rotor cores 81.8.
2 are connected by a rotating shaft 10. Further, as shown in the figure, the N pole of the rotor core 81 and the S pole of the rotor core 82 are arranged at the same position, and similarly, the S pole of the rotor core 81 and the N pole of the rotor core 82 are arranged at the same position. has been done. In addition, as shown in the figure, the magnetic poles N and S of the rotating magnetic field created by the stator winding 21 and the magnetic poles N and S of the rotating magnetic field created by the stator winding 22,
S rotate in the same direction at a synchronous speed, but since the phase difference angle θ between the two rotating magnetic fields created by the two stator windings 21 and 22 is θ=0° at startup, the stator winding 21 The magnetic pole N (or S) of the rotating magnetic field generated and the magnetic pole N (or S) of the rotating magnetic field generated by the stator winding 22 are always at the same position. Therefore, if the N pole of the rotor core 81 and the central angle of the rotating magnetic field created by the stator winding 21 are α at a certain instant, then the rotating magnetic field created by the S pole of the rotor core 82 and the stator winding 22 is α. The central angle with the N pole is also α. Therefore, rotor core 81
The repulsive force between the north pole and the north pole acting on the rotor core 82 and the attractive force between the south pole and the north pole acting on the rotor core 82 are equal. Therefore, the repulsive force and attractive force are canceled and the magnetic poles of the rotor core are not affected by the rotating magnetic field. That is, the magnetic poles of the rotor core are not constrained by the rotating magnetic field. Therefore, the two-stator induction synchronous motor of the present invention starts with the same torque characteristics as a conventional induction motor. The starting torque is therefore high and no special separate starter is required. After startup, the rotation speed increases and the slip S becomes S=0.05.
When approaching , synchronized operation is initiated. This is done as follows. First, the two stator windings 21,22 are connected by a voltage phase shifter.
On the other hand, for example, by changing the position of the stator winding 22 by rotating it around the rotation axis, the phase difference angle θ between the two rotating magnetic fields created by the two stator windings 21 and 22 is set to 180.
°. In this way, the phase difference angle θ between the induced voltages of the two rotor conductors 31 and 32 becomes 180 degrees, and the rotor conductors 31 and 32 have a phase difference angle θ of 180 degrees.
The sum of the induced voltages in the rotor conductors 31.32 becomes E+Eε"=E-E=0, and no current flows in the rotor conductors 31.32. Here, the two rotor cores 81.8 made of permanent magnets
Let us consider the interaction between the magnetic poles of the stator windings 21 and 22 and the magnetic poles of the rotating magnetic field created by the stator windings 21 and 22. During synchronous operation, the phase difference angle θ between the two rotating magnetic fields created by the two stator windings 21 and 22 is θ=1800, so as shown in FIG. 5, the magnetic pole N of the rotating magnetic field created by the stator winding 21 (or S) and the magnetic pole N of the rotating magnetic field created by the stator winding 22
(or S) are always at positions different by 180 degrees in electrical angle. In other words, the N pole of the rotating magnetic field created by the stator winding 21 and the S pole of the rotating magnetic field created by the stator winding 22 are always at the same position. Therefore, the N pole of the rotor core 81 and the N pole of the rotating magnetic field created by the stator winding 21 repel each other, and similarly, the S pole of the rotor core 82 and the S pole of the rotating magnetic field created by the stator winding 22 repel each other. As a result, the rotor cores 81 and 82 are retracted to the position shown in FIG. 6, and are stabilized in a state where all N and S are attracted. That is, the magnetic poles of the rotor core 81, 82 are at the stator winding 21°22
The rotor is pulled by the magnetic poles of the rotating magnetic field, and rotates at the same speed as the rotational speed of the rotating magnetic field, that is, at a synchronous speed. This method has a simple structure, a large starting torque, and if the permanent magnets in the rotor core are made strong, a large synchronous torque can be obtained and the advantages are good efficiency. Furthermore, since the synchronous motor of the present invention is started by an induction motor, the power source used for the induction motor for boat fishing can be used. In other words, a commercial frequency AC power supply or a variable frequency power supply using an inverter can be used. It can also be used in single phase or polyphase.
以上の構成から本発明の2固定子誘導同期電動機は、起
動時は従来の誘導電動機と同様のトルク特性で行い、す
ベリSがたとえばS=0.05付近から同期速度に移行
して同期電動機のトルク特性で運転するものである。こ
の2固定子誘導同期電動機は、起動機やブラシを必要と
しないからその構造、構成が簡単となるだけでなく、従
来の誘導電動機と同様のトルク特性で起動できるので重
負荷がかかったままで起動と同期運転が可能となる。
ところで、本発明の2固定子誘導同期電動機は、誘導電
動機と同期電動機との両方のトルク特性を備えるから、
どちらかの電動機のトルク特性でも使用可能である。こ
のことは、同期速度で運転中、何らかの原因で脱調した
場合でも、同期電動機トルク特性から誘導電動機のトル
ク特性に切換え可能であるから、一般の同期電動機のよ
うに電動機が急激に停止することがない。
以上のようにブラシがなく複雑な構成を必要としないか
ら保守点検も容易であり、起動トルクが大きく同期トル
クも大きい同期電動機の提供が可能となった。From the above configuration, the two-stator induction synchronous motor of the present invention performs startup with the same torque characteristics as a conventional induction motor, and the synchronous motor shifts to the synchronous speed from around S = 0.05, for example. It operates with the torque characteristics of This two-stator induction synchronous motor does not require a starter or brushes, so it has a simple structure and configuration, and it can be started with the same torque characteristics as a conventional induction motor, so it can be started with a heavy load applied. Synchronous operation is possible. By the way, since the two-stator induction synchronous motor of the present invention has the torque characteristics of both an induction motor and a synchronous motor,
It can be used with either motor's torque characteristics. This means that even if the motor loses synchronization for some reason while operating at synchronous speed, it is possible to switch from the synchronous motor torque characteristic to the induction motor torque characteristic, so the motor will not suddenly stop like a general synchronous motor. There is no. As described above, since there are no brushes and no complicated configuration is required, maintenance and inspection are easy, and it has become possible to provide a synchronous motor with a large starting torque and a large synchronous torque.
【図面の簡単な説明】
第1図は本発明の固定子巻線側と回転子側の簡単な構成
図、第2図は円筒形回転子コアの断面図、第3図は突極
形量転子コアの断面図、第4図は起動時の2つの回転子
コアと2つの固定子コアの作用を断面で簡略に示した図
、第5図は同期速度に吸引する一例を示した図、第6図
は同期速度の2つの回転子コアと2つの固定子コアを断
面で簡略に示した図である。
10・・・回転軸、20・・・固定子側、21・・・固
定子巻線、22・・・固定子巻線、30・・・回転子側
、31・・・回転子導体。
32・・・回転子導体、
33・・・
短絡環、
81゜
82・・・回転子コア。[Brief Description of the Drawings] Fig. 1 is a simple configuration diagram of the stator winding side and rotor side of the present invention, Fig. 2 is a sectional view of the cylindrical rotor core, and Fig. 3 is a salient pole shape. A cross-sectional view of the trochanter core, Figure 4 is a cross-sectional view showing the actions of the two rotor cores and two stator cores during startup, and Figure 5 is a view showing an example of suction to synchronous speed. , FIG. 6 is a simplified cross-sectional view of two rotor cores and two stator cores at synchronous speed. DESCRIPTION OF SYMBOLS 10... Rotating shaft, 20... Stator side, 21... Stator winding, 22... Stator winding, 30... Rotor side, 31... Rotor conductor. 32... Rotor conductor, 33... Short circuit ring, 81° 82... Rotor core.
Claims (7)
回転子コアを永久磁石で構成し、該回転子コアの外周上
に2個の回転子コアに連通した複数の導体を設け、その
両端を短絡環で連結した回転子し、前記回転子コアにそ
れぞれ対向して周設した2個の固定子と、前記2個の固
定子のうち特定の固定子がこれに対峙する回転子コアの
周囲に生じる回転磁界と、他の固定子がこれに対峙する
回転子コアの周囲に生じる回転磁界との間に位相差を生
じさせる電圧移相装置とにより構成したことを特徴とす
る2固定子誘導同期電動機。(1) Two rotor cores arranged at an arbitrary interval on the same rotating shaft are composed of permanent magnets, and a plurality of conductors connected to the two rotor cores are arranged on the outer periphery of the rotor core. A rotor is provided, the ends of which are connected by a short-circuit ring, two stators are provided around the rotor core facing each other, and a specific stator of the two stators faces the rotor core. It is characterized by comprising a voltage phase shift device that creates a phase difference between the rotating magnetic field generated around the rotor core and the rotating magnetic field generated around the rotor core that faces other stators. 2 stator induction synchronous motor.
って、永久磁石で構成した2個の回転子コアの磁極は、
N極とS極とを対にして、一方の回転子コアのN極と他
方の回転子コアのS極とを同一の位置に配置し、さらに
一方の回転子コアのS極と他方の回転子コアのN極とを
同一の位置に配置したことを特徴とする2固定子誘導同
期電動機。(2) In the two-stator induction synchronous motor according to claim (1), the magnetic poles of the two rotor cores made of permanent magnets are
N poles and S poles are paired, the N pole of one rotor core and the S pole of the other rotor core are arranged at the same position, and the S pole of one rotor core and the rotation of the other rotor core are arranged in the same position. A two-stator induction synchronous motor characterized in that the N pole of the child core is located at the same position.
期電動機であって、永久磁石で構成した回転子コアは円
筒型であることを特徴とする2固定子誘導電同期動機。(3) The two-stator induction electric synchronous motor according to claim (1) or (2), wherein the rotor core made of permanent magnets is cylindrical.
期電動機であって、永久磁石で構成した回転子コアは突
極型であることを特徴とする2固定子誘導同期電動機。(4) A two-stator induction synchronous motor according to claim (1) or (2), wherein the rotor core made of permanent magnets is of a salient pole type.
定子誘導同期電動機であって、固定子を励磁する電源は
商用周波数の交流電源かまたはインバータを利用した可
変周波数電源であることを特徴とする2固定子誘導同期
電動機。(5) A two-stator induction synchronous motor according to any one of claims (1) to (4), in which the power source for exciting the stator is a commercial frequency AC power source or a variable frequency power source using an inverter. A two-stator induction synchronous motor characterized by the following.
定子誘導同期電動機であって、固定子を励磁する電源は
単相交流電源かまたは多相交流電源であることを特徴と
する2固定子誘導同期電動機。(6) The two-stator induction synchronous motor according to any one of claims (1) to (4), characterized in that the power source for exciting the stator is a single-phase AC power source or a multi-phase AC power source. A two-stator induction synchronous motor.
定子誘導同期電動機であって、電圧移相装置は、2個の
固定子の相対位置を定期的に回動するか、あるいは固定
子巻線の端子をスイッチで切換えて電源に接続するよう
にしたことを特徴とする2固定子誘導同期電動機。(7) The two-stator induction synchronous motor according to any one of claims (1) to (6), wherein the voltage phase shift device periodically rotates the relative positions of the two stators. , or a two-stator induction synchronous motor characterized in that the terminals of the stator windings are connected to a power source by switching them with a switch.
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6764990A JP2893353B2 (en) | 1990-03-16 | 1990-03-16 | Two stator induction synchronous motor |
DE69102911T DE69102911T2 (en) | 1990-03-16 | 1991-03-15 | Synchronous motors with two stators. |
EP91302245A EP0447257B1 (en) | 1990-03-16 | 1991-03-15 | Two-stator induction synchronous motor |
DK91302245.5T DK0447257T3 (en) | 1990-03-16 | 1991-03-15 | Induction synchronous motor with 2 stators |
KR1019910004209A KR910017709A (en) | 1990-03-16 | 1991-03-16 | 2 stator induction synchronous motor |
MYPI91000435A MY105310A (en) | 1990-03-16 | 1991-03-16 | Two-stator induction synchronous motor. |
FI911306A FI911306A (en) | 1990-03-16 | 1991-03-18 | SYNCHRONOUS MOTOR WITH TV STATORER. |
US07/671,116 US5144180A (en) | 1990-03-16 | 1991-03-18 | Two-stator induction synchronous motor |
NO911070A NO303478B1 (en) | 1990-03-16 | 1991-03-18 | Synchronous induction motor with two stators |
AU73541/91A AU639191B2 (en) | 1990-03-16 | 1991-03-18 | Two-stator induction synchronous motor |
CA002038480A CA2038480C (en) | 1990-03-16 | 1991-03-18 | Two-stator induction synchronous motor |
NO964574A NO964574D0 (en) | 1990-03-16 | 1996-10-28 | Synchronous induction motor with two stators |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6764990A JP2893353B2 (en) | 1990-03-16 | 1990-03-16 | Two stator induction synchronous motor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03270667A true JPH03270667A (en) | 1991-12-02 |
JP2893353B2 JP2893353B2 (en) | 1999-05-17 |
Family
ID=13351084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6764990A Expired - Fee Related JP2893353B2 (en) | 1990-03-16 | 1990-03-16 | Two stator induction synchronous motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2893353B2 (en) |
-
1990
- 1990-03-16 JP JP6764990A patent/JP2893353B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2893353B2 (en) | 1999-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3063229B2 (en) | Synchronous motor | |
EP0467517B1 (en) | Dual-stator induction synchronous motor | |
US10749390B2 (en) | Line-start synchronous reluctance motor with improved performance | |
JP3033621B2 (en) | Brushless induction synchronous motor | |
Zulu et al. | Topologies for wound-field three-phase segmented-rotor flux-switching machines | |
EP0447257B1 (en) | Two-stator induction synchronous motor | |
US20150008777A1 (en) | Synchronous electric machine | |
EP0570582B1 (en) | Multiple-stator synchronous induction motor | |
JP2893353B2 (en) | Two stator induction synchronous motor | |
JP2989881B2 (en) | 2 stator induction synchronous motor | |
JP2927855B2 (en) | Multiple stator induction synchronous motor | |
JP2893352B2 (en) | Two stator induction synchronous motor | |
JP2828319B2 (en) | Two stator induction synchronous motor | |
JPH06335271A (en) | Synchronous motor | |
JP3115310B2 (en) | 2 stator induction synchronous motor | |
JP3062231B2 (en) | Brushless single-phase induction synchronous motor | |
JP2982307B2 (en) | Synchronous motor | |
JP2975400B2 (en) | 2 stator induction synchronous motor | |
JP3358666B2 (en) | Synchronous motor | |
JPH05336716A (en) | Brushless single-phase half speed synchronous motor | |
SU393796A1 (en) | ||
Ayub et al. | Wide Speed-range Operation of a Dual-mode Wound Field Synchronous Machine | |
JPH06245450A (en) | Synchronous motor | |
JPH07222422A (en) | Flip-flop-type dc motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |