JPH03267972A - Image forming device - Google Patents
Image forming deviceInfo
- Publication number
- JPH03267972A JPH03267972A JP6679790A JP6679790A JPH03267972A JP H03267972 A JPH03267972 A JP H03267972A JP 6679790 A JP6679790 A JP 6679790A JP 6679790 A JP6679790 A JP 6679790A JP H03267972 A JPH03267972 A JP H03267972A
- Authority
- JP
- Japan
- Prior art keywords
- charging
- transfer
- image
- photoreceptor
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005684 electric field Effects 0.000 claims abstract description 9
- 239000000463 material Substances 0.000 claims description 20
- 230000002950 deficient Effects 0.000 abstract 1
- 108091008695 photoreceptors Proteins 0.000 description 41
- 238000000034 method Methods 0.000 description 22
- 230000008569 process Effects 0.000 description 16
- 230000007547 defect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 229920002943 EPDM rubber Polymers 0.000 description 2
- 229920006311 Urethane elastomer Polymers 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
Landscapes
- Electrostatic Charge, Transfer And Separation In Electrography (AREA)
Abstract
Description
【発明の詳細な説明】
(1)発明の目的
(産業上の利用分野)
この発明は、静電複写機、同プリンタ等静電転写プロセ
スを利用する画像形成装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION (1) Object of the Invention (Field of Industrial Application) The present invention relates to an image forming apparatus using an electrostatic transfer process, such as an electrostatic copying machine and a printer thereof.
(従来技術と解決すべき課題)
走行する像担持体に当接する帯電手段と転写手段とをそ
なえ1話帯電手段によって均一に帯電された像担持体表
面に、画像露光、現像工程を経てトナー像を形成し、該
トナー像が、像担持体とこれに当接する転写ローラなど
の転写手段との当接部として形成される転写部位に到来
したとき、この転写部位に転写材を供給するとともに、
転写手段に転写バイアスを印加して、像担持体側のトナ
ー像を転写材に転写するように構成した画像形成装置が
既に提案されている。(Prior art and problems to be solved) A toner image is formed on the surface of the image bearing member, which is uniformly charged by the charging means, and is equipped with a charging means and a transfer means that come into contact with a moving image bearing member, through an image exposure and development process. is formed, and when the toner image arrives at a transfer site formed as a contact portion between an image carrier and a transfer means such as a transfer roller that comes into contact with the image carrier, supplying a transfer material to this transfer site, and
2. Description of the Related Art Image forming apparatuses have already been proposed in which a toner image on an image carrier is transferred to a transfer material by applying a transfer bias to a transfer means.
第11図はこのような画像形成装置の典型的な一例を略
示する要部の側面図である。FIG. 11 is a side view of essential parts schematically showing a typical example of such an image forming apparatus.
紙面に垂直方向に軸線を有し、矢印a方向に回転走行す
る像担持体(感光体と云う)■の表面が、高圧電源11
4に接続された帯電ローラ3によって一様に帯電された
のち、この帯電面に、画像変調されたレーザビーム、ス
リット露光などの画像信号が照射されて静電潜像が形成
される。The surface of an image carrier (referred to as a photoreceptor) (1), which has an axis perpendicular to the plane of the paper and rotates in the direction of arrow a, is connected to a high-voltage power source 11.
After being uniformly charged by a charging roller 3 connected to a charging surface 4, this charging surface is irradiated with an image signal such as an image-modulated laser beam or slit exposure to form an electrostatic latent image.
この静電潜像は、感光体1の回転につれて、感光体lと
現像器6が対向する現像部位に達し、該現像器6から供
給される帯電トナーによって現像されてトナー像となる
。As the photoreceptor 1 rotates, this electrostatic latent image reaches a development site where the photoreceptor 1 and the developing device 6 face each other, and is developed by the charged toner supplied from the developing device 6 to become a toner image.
さらに感光体1が回転してこのトナー像が、感光体lと
転写ローラ2とが当接して形成される転写部位に到来す
ると、これにタイミングを合わせて搬送路7から転写材
Pが転写部位に搬送され、これとともに転写ローラ2に
は電源114によってトナーとは逆極性の転写バイアス
が印加され、よって形成される電界の作用で、感光体1
側のトナー像は転写材に転移する。When the photoconductor 1 further rotates and this toner image reaches the transfer site where the photoconductor 1 and the transfer roller 2 come into contact and are formed, the transfer material P is moved from the conveyance path 7 to the transfer site at the same timing. At the same time, a transfer bias having a polarity opposite to that of the toner is applied to the transfer roller 2 by the power supply 114, and due to the action of the electric field formed, the photoreceptor 1
The side toner image is transferred to the transfer material.
その後、転写材は感光体lから分離されて不図示の定着
部位に搬送され、転写部位で転写材に転移しなかった残
留トナーは、クリーナ8によって除去されて、感光体1
は次の工程に入り得る状態になる。Thereafter, the transfer material is separated from the photoreceptor 1 and conveyed to a fixing site (not shown), and residual toner that has not been transferred to the transfer material at the transfer site is removed by a cleaner 8 and the photoreceptor 1 is removed.
is ready for the next process.
このような構成の画像形成装置は、周知のコロナ放電器
を利用するものに比べると、電源の電圧が低くてすむ、
転写材の支持が強固で転写ズレなどを生じにくい、オゾ
ンの発生が少ない等種々な利点があるが、反面以下のよ
うな問題がある。An image forming apparatus with such a configuration requires a lower power supply voltage than one using a well-known corona discharger.
Although it has various advantages such as strong support of the transfer material, less transfer misalignment, and less generation of ozone, it also has the following problems.
これについて略述すると、まず、帯電手段として帯電ロ
ーラ等の接触帯電手段を使用する場合、この帯電手段を
定電圧制御される直流バイアスに定電流制御される交流
バイアスを重畳して、帯電面電位を所定の暗電位■。に
収束する仕方が提案されている。To briefly explain this, first, when using contact charging means such as a charging roller as the charging means, the charging means is charged by superimposing a constant current controlled alternating current bias on a constant voltage controlled direct current bias to increase the charging surface potential. ■ a given dark potential. A method to converge has been proposed.
このような場合、前記交流バイアスの尖頭値V、p(ピ
ーク間電圧)には第12図に示すように変曲点が存在し
、ある−窓以上のV、、を印加しなければ帯電不良とな
り、変曲点よりもの+200V程度でも局部的な帯電不
良が発生することが知られている。In such a case, there is an inflection point in the peak value V, p (peak-to-peak voltage) of the AC bias as shown in FIG. It is known that local charging failures occur even at +200V below the inflection point.
これは、感光体と接触帯電手段との間の放電によって帯
電が行なわれる場合に、帯電手段の表面粗さのために部
分的な帯電不良が生じて、微小な非帯電部分が形成され
るものであり、低温低湿環境下において顕著である。This is because when charging is performed by discharge between the photoreceptor and contact charging means, partial charging failure occurs due to the surface roughness of the charging means, and minute uncharged areas are formed. This is noticeable in low temperature and low humidity environments.
とくに反転現像の場合には、上記のような非帯電部分が
現像されて画像に表われて(砂地という)画質の劣化を
生ずるという問題がある。Particularly in the case of reversal development, there is a problem in that uncharged portions as described above are developed and appear on the image (called sandy areas), resulting in deterioration of image quality.
このため、通常印加する電圧は、以上のことを勘案して
適宜の高電位に設定して、上記のような事態の発生を回
避するとともに、環境変動による帯電手段の特性変化に
も対応し、さらにV、pの変化を定電流制御される交流
バイアスによって補償している。For this reason, the voltage normally applied is set to an appropriate high potential in consideration of the above to avoid the occurrence of the above situation, and also to cope with changes in the characteristics of the charging means due to environmental changes. Furthermore, changes in V and p are compensated for by an alternating current bias that is controlled by a constant current.
転写ローラなどの接触タイプの転写手段については、そ
の製造上の特性のバラツキ、環境変動によるその変動な
どのために、常時適切な転写バイアスを印加することは
困難であった。Regarding contact type transfer means such as a transfer roller, it has been difficult to constantly apply an appropriate transfer bias due to variations in manufacturing characteristics and fluctuations due to environmental changes.
これに対応すべ(、本出願人は、感光体表面を一様に帯
電し、転写手段に印加するバイアスを、まず定電流制御
し、そのときの発生電圧を保持して1次の転写時にこの
電圧で定電圧制御するような方式(ATVCという)を
提案した。In response to this, the present applicant uniformly charges the surface of the photoreceptor, first controls the bias applied to the transfer means at a constant current, and maintains the generated voltage at the time of primary transfer. We proposed a method of constant voltage control (called ATVC).
このような仕方によって、転写手段の抵抗値のバラツキ
、環境による変動、転写材サイズなどによらず、常時最
適のバイアスで転写を行なうという観点からみて、顕著
な効果がみられた。By this method, a remarkable effect was observed from the viewpoint of always performing transfer with the optimum bias, regardless of variations in the resistance value of the transfer means, fluctuations due to the environment, size of the transfer material, etc.
ところが、上記のように、−次帯電が実行された感光体
面にATVC方式を適用すると以下のような問題が生ず
る。However, as described above, when the ATVC method is applied to the surface of the photoreceptor that has been subjected to -order charging, the following problems occur.
即ち、転写バイアス電圧を得るために、定電流制御時に
一定の電流を感光体に流すと、感光体の表面電位が著し
く低下し、つぎの帯電工程で十分な収束性を持たせない
と帯電不良となり、電流が流れた部分に砂地が発生した
り、暗電位と明電位のコントラストが他の部分よりも小
さ(なって、画像に濃度ムラとして表われるという問題
が生ずる。In other words, when a constant current is passed through the photoreceptor during constant current control in order to obtain the transfer bias voltage, the surface potential of the photoreceptor decreases significantly, and if sufficient convergence is not achieved in the next charging step, charging failure will occur. This causes problems such as sandy areas appearing in the areas where the current flows, and the contrast between the dark potential and the bright potential being smaller than other areas (which appears as density unevenness in the image).
このような事態を回避するために、予めvppを高く設
定することも考えられるが、Vppが高(なると、帯電
手段と感光体との間の振動による帯電音が大きくなって
耳障りとなり、とくに静粛性が要求されるレーザプリン
タなどでは到底実用に耐えない。In order to avoid such a situation, it may be possible to set Vpp high in advance, but if Vpp becomes high (Vpp becomes high), the charging noise due to vibration between the charging means and the photoreceptor becomes louder and becomes harsher, and it becomes especially quiet. This method cannot be put to practical use in laser printers, etc., which require high performance.
本発明は上記のような事態に対処すべ(なされたもので
あって、ATVC方式を行なう装置において、直流に重
畳される交流電圧のVppを他の領域の帯電時よりも太
き(して電位収束性を高めて均な帯電をつなつとともに
、帯電不良による濃度ムラ、砂地現象の発生を阻止する
とともに、帯電音も実質的に影響がなく、環境によらず
常時安定して良好な転写性が得られるような画像形成装
置を提供することを目的とするものである。The present invention has been made to cope with the above-mentioned situation, and in an apparatus that performs the ATVC method, the Vpp of the AC voltage superimposed on the DC voltage is set to be thicker than when charging other areas (and the potential is increased). In addition to improving convergence and ensuring uniform charging, it also prevents uneven density and sandy areas due to poor charging, and there is virtually no effect on charging noise, resulting in stable and good transfer performance regardless of the environment. The object of the present invention is to provide an image forming apparatus that can provide the following.
(2)発明の構成
(課題を解決する技術手段、その作用)上記の目的を達
成するため、本発明は、像担持体と、これに当接して表
面を一様に帯電させる帯電手段と、前記像担持体表面に
形成されたトナー像を転写材に転写するため像担持体に
当接配置された転写手段とを含む画像形成装置において
、像担持体と転写手段とが直接当接している間に、該転
写手段に、最適転写電圧を得るための微小電流を流す手
段と、該電流を流した像担持体上の領域を前記帯電手段
が通過するさいに、帯電手段から像担持体およぶ電界を
他の領域におけるそれよりも強くすることを特徴とする
ものである。(2) Structure of the invention (technical means for solving the problem and its operation) In order to achieve the above object, the present invention includes an image carrier, a charging means that comes into contact with the image carrier and charges the surface uniformly, In an image forming apparatus including a transfer means disposed in contact with the image carrier for transferring the toner image formed on the surface of the image carrier onto a transfer material, the image carrier and the transfer means are in direct contact with each other. a means for passing a minute current through the transfer means in order to obtain an optimum transfer voltage; It is characterized by making the electric field stronger than that in other areas.
このように構成することによって、帯電不良による濃度
ムラ、砂地現象の発生を防止し、帯電音の気にならない
ような画像形成装置を得ることができる。With this configuration, it is possible to prevent the occurrence of density unevenness and sandy area phenomenon due to poor charging, and to obtain an image forming apparatus in which charging noise is not bothersome.
(実施例の説明)
第1図は本発明を適用するに適した画像形成装置の構成
を示す要部の概略側面図であって、紙面に垂直方向に軸
線を有し、矢印a方向に回転走行する円筒状のOPC感
光体1の表面が、コントローラ9に接続され、直流定電
圧、交流定電流制御を行なう電源4によって、帯電ロー
ラ3を介して一様にマイナス帯電される。(Description of Embodiments) FIG. 1 is a schematic side view of main parts showing the configuration of an image forming apparatus suitable for applying the present invention, which has an axis perpendicular to the plane of the paper and rotates in the direction of arrow a. The surface of a traveling cylindrical OPC photoreceptor 1 is uniformly negatively charged via a charging roller 3 by a power source 4 that is connected to a controller 9 and performs DC constant voltage and AC constant current control.
その後、この帯電面に1図示の場合画像変調されたレー
ザビームが走査されて静電潜像が形成され、該潜像が、
感光体1と現像器6とが対向する現像部位に達すると、
該現像器6がらこれにトナーが供給されてトナー像が形
成される。Thereafter, this charged surface is scanned with an image-modulated laser beam in the case shown in Figure 1 to form an electrostatic latent image, and the latent image is
When the photoreceptor 1 and the developing device 6 reach the opposing development area,
Toner is supplied from the developing device 6 to form a toner image.
感光体11の走行方向に見て現像部位の下流側には、感
光体lとこれに圧接する転写ローラ2との圧接ニップ部
として形成される転写部位があり、前記トナー像が該転
写部位に到来すると、これとともに搬送路7から転写材
Pが、前記トナー像とタイミングを合わせて転写部位に
供給され、さらにATVCを行なう電源4によって、転
写ローラ2に転写バイアスが印加されて、感光体側のト
ナー像は転写材に転移する。On the downstream side of the development area when viewed in the traveling direction of the photoreceptor 11, there is a transfer area formed as a pressure nip between the photoreceptor 1 and the transfer roller 2 that is in pressure contact with the photoreceptor 1, and the toner image is transferred to the transfer area. When the transfer material P arrives, the transfer material P is supplied from the conveyance path 7 to the transfer site in synchronization with the toner image, and a transfer bias is applied to the transfer roller 2 by the power source 4 for performing ATVC, so that the transfer material P is transferred to the photoreceptor side. The toner image is transferred to the transfer material.
その後、トナー像を担持する転写材Pは感光体lから分
離されて不図示の定着部位に搬送され、転写部位で転写
材に転移しなかった残留トナーはクリーナ8によって除
去されて、感光体lはっぎの工程に入り得る状態となる
。Thereafter, the transfer material P carrying the toner image is separated from the photoconductor l and conveyed to a fixing site (not shown), and residual toner that has not been transferred to the transfer material at the transfer site is removed by a cleaner 8, and the photoconductor l is removed by a cleaner 8. The state is now ready for the Hagi process.
以上の装置をさらに具体的に説明する。The above device will be explained in more detail.
感光体としては、マイナス帯電し、反転現像を行なう装
置を使用した。As the photoreceptor, a device that is negatively charged and performs reversal development was used.
感光体の直径を30φ、プロセススピード30IllI
l/sec、転写ローラの径は20φである。The diameter of the photoreceptor is 30φ, the process speed is 30IllI
l/sec, and the diameter of the transfer roller is 20φ.
転写ローラ2は、EPDMにZZnO35noなどのフ
ィラーを分散して体積抵抗を10a〜xo12ΩcI1
1に調整し、硬度を20〜40° (アスカ−C硬度)
に制御したものを使用した。The transfer roller 2 has a volume resistance of 10a to xo12ΩcI1 by dispersing filler such as ZZnO35no in EPDM.
1, and the hardness is 20-40° (Asker-C hardness)
A controlled sample was used.
ATVCは前回転中と紙間において行ない、プリント1
枚ごとに転写バイアスを設定しており、したがって、前
回転時、紙間では定電流制御が行なわれ、このとき発生
する電圧が保持されていることになる。ATVC is performed during the pre-rotation and between the sheets, and print 1
A transfer bias is set for each sheet, so constant current control is performed between sheets during the pre-rotation, and the voltage generated at this time is maintained.
図示の装置では転写ローラの抵抗値を10’〜1010
Ωの範囲におさめ、ATVCの定電流値を約5μAとし
た。In the illustrated device, the resistance value of the transfer roller is 10' to 1010.
The constant current value of ATVC was set to about 5 μA.
上記の抵抗値の転写ローラを用いた場合、定電流値をこ
れ以上とすると、感光体にプラスメモリーを形成したり
、転写時に転写材を突き抜けて画質の劣化をおこす可能
性があり、電流値が3μ八以下であると転写不良を生ず
る。When using a transfer roller with the above resistance value, if the constant current value is higher than this value, there is a possibility that positive memory will be formed on the photoconductor or that the image quality will deteriorate due to the transfer material being penetrated during transfer. If it is less than 3μ8, transfer defects will occur.
帯電ローラ3は感光体1に従動回転するように構成して
あり、10φの芯金にカーボン分散のEPDMを捲回し
、その表面に体積抵抗108〜゛2Ωc111のヒドリ
ンゴムの中抵抗層を設けて、外径を16φに形成した。The charging roller 3 is configured to rotate following the photoreceptor 1, and has a 10φ core metal wound with carbon-dispersed EPDM, and a medium resistance layer of hydrin rubber having a volume resistivity of 108 to 2Ωc111 provided on the surface thereof. The outer diameter was formed to 16φ.
前述のように、このような帯電ローラを用い、定電圧制
御によって感光体l上の暗電位■。を設定し、交流定電
流制御を重畳して、環境にかかわらず、帯電電位を■。As mentioned above, using such a charging roller, the dark potential on the photoreceptor I is set by constant voltage control. ■ By setting and superimposing AC constant current control, the charging potential can be controlled regardless of the environment.
に収束させている。It is converging to.
第3図に示すように、交流電流値が300μA未満では
帯電不良が発生するので、300μAに設定した。As shown in FIG. 3, charging failure occurs when the alternating current value is less than 300 μA, so it was set to 300 μA.
このとき発生する電圧は、帯電ローラの抵抗値のバラツ
キによってほぼ1800〜2200Vとなるが、この値
は良好な帯電を行ないかつ感光体層をリークさせない範
囲に収っており、このときの帯電周波数fは200Hz
である。The voltage generated at this time is approximately 1800 to 2200 V depending on the variation in the resistance value of the charging roller, but this value is within the range that performs good charging and does not leak the photoreceptor layer, and the charging frequency at this time f is 200Hz
It is.
ところで、この−次帯電部位に、前述のようにATVC
による定電流制御が行なわれていると、感光体表面の電
荷とは逆極性のプラス電荷が付与されているため、表面
電位の低下が生ずることになる。と(に転写手段たる転
写ローラ2の円周方向、長平方向に抵抗値のバラツキが
あると、抵抗値の低い部分に電荷が集中して感光体上に
プラスメモリーが形成され1次の帯電工程で所定の暗電
位V0が確保できない状況が発生し、これが画像上に濃
度ムラ、黒点などとして表われる。By the way, as mentioned above, ATVC is applied to this −order charged region.
When constant current control is performed, a positive charge having a polarity opposite to that on the surface of the photoreceptor is applied, resulting in a decrease in surface potential. If there are variations in the resistance value in the circumferential direction and the longitudinal direction of the transfer roller 2, which is the transfer means, the electric charge will be concentrated in the part with the lower resistance value, and a positive memory will be formed on the photoreceptor, leading to the primary charging process. A situation occurs in which a predetermined dark potential V0 cannot be secured, and this appears as density unevenness, black spots, etc. on the image.
第4図にATVCの定電流値と、電位をVDに収束する
に要する一次帯電の交流電流値との関係を示す0図示の
ように、帯電とは逆極性であるプラス電荷が注入されな
い場合、ATVC電流値がゼロの場合は前述の300μ
Aを流すときの発生電圧V ppで電位は十分■。に収
束する。FIG. 4 shows the relationship between the constant current value of ATVC and the alternating current value of primary charging required to converge the potential to VD. As shown in the diagram, if a positive charge with the opposite polarity to the charging is not injected, If the ATVC current value is zero, the above 300μ
The generated voltage V pp when A is flowing is sufficient for the potential ■. converges to.
しかしながら、ATVCを行なうためにプラスの定電流
を流すと次第に電位収束性が悪くなり、7μA程度では
、400μAの定電流を流しても1回の帯電では回復不
可能となる。However, when a positive constant current is applied to perform ATVC, the potential convergence gradually deteriorates, and when the voltage is about 7 μA, it becomes impossible to recover with one charging even if a constant current of 400 μA is applied.
図示の装置においては5.0μAの定電流制御でATV
Cを行なっているので、所定VDに収束させるのに約3
30μAが必要であることが判る。In the device shown in the figure, ATV
Since we are performing C, it takes about 3 to converge to the specified VD.
It turns out that 30 μA is required.
即ち、上記の定電流制御のさいに発生する電圧を、定電
流を流す領域に印加することによって、ATVC定電流
領域で発生しやすい帯電不良、砂地の発生などを防止す
ることが出来る。That is, by applying the voltage generated during the above-mentioned constant current control to the region where a constant current flows, it is possible to prevent charging defects, sand spots, etc. that tend to occur in the ATVC constant current region.
第5図は上記の場合のシーケンスを示すものである。FIG. 5 shows the sequence in the above case.
図示のように、ATVCで感光体にプラス電流を流す領
域では、−次帯電の交流成分を高くして電位収束性を高
めている。As shown in the figure, in the region where a positive current is passed through the photoreceptor in ATVC, the alternating current component of the -order charging is increased to improve potential convergence.
ところで、静電潜像形成手段として画像変調されたレー
ザビームで帯電面を走査するようにした装置においては
、レーザ光の強度補正のために、前回転時あるいは紙間
においてレーザ光を照射してプリント毎に光強度を補正
する(APCという)ものが提案されている。By the way, in a device that scans a charged surface with an image-modulated laser beam as an electrostatic latent image forming means, the laser beam is irradiated during pre-rotation or between sheets in order to correct the intensity of the laser beam. A system that corrects the light intensity for each print (referred to as APC) has been proposed.
第6A図、第6B図はこのように場合に本発明を適用す
るさいのシーケンスを示し、第6A図はAPCの前にA
TVCを行なう場合、第6B図はAPCの後にATVC
を行なう場合のシーケンスである。6A and 6B show the sequence in which the present invention is applied in such a case, in which FIG.
When performing TVC, Figure 6B shows APC followed by ATVC.
This is the sequence when performing.
図示のように、いずれの場合にもATVCは、APCが
行なわれない時点で実行されているが、これは、 AP
Cによって感光体表面にレーザ光が照射されてその部分
の電位が低下するので、そこへATV Cのプラス電流
が流れ込むと、電位が低いために容易にプラスメモリー
を発生しやすいからである。As shown in the figure, in both cases ATVC is executed at a time when APC is not performed;
This is because the surface of the photoreceptor is irradiated with laser light by C and the potential of that portion is lowered, so if the positive current of the ATVC flows into that part, the low potential easily causes positive memory.
以上説明したように、接触帯電手段として帯電ローラを
、また接触転写手段として転写ローラを使用する装置に
おいて、ATVCの定電流領域のみ一次帯電の交流成分
の電圧V□を太き(することによって、転写不良、砂地
現象などの発生を防止し、また帯電音も実質的に気にな
らない程度に抑えることが可能である。As explained above, in an apparatus that uses a charging roller as a contact charging means and a transfer roller as a contact transfer means, by increasing the voltage V□ of the AC component of primary charging only in the constant current region of ATVC, It is possible to prevent the occurrence of transfer defects, sandy areas, etc., and also to suppress charging noise to a level that is virtually unnoticeable.
つぎに前記第1図のものと同様の構成の装置で、プロセ
ススピード60 mm/ seeの装置の場合を説明す
る。Next, a description will be given of an apparatus having the same configuration as that shown in FIG. 1 and having a process speed of 60 mm/see.
プロセススピードがあがると、ATVCの定電流値と帯
電ローラ印加する帯電周波数fも変化し、帯電された感
光体表面の単位面積当りの電荷量も、前記第1の実施例
の約2倍程度としなければならない。As the process speed increases, the constant current value of the ATVC and the charging frequency f applied to the charging roller also change, and the amount of charge per unit area of the charged photoreceptor surface is approximately twice that of the first embodiment. There must be.
このためこの実施例においては、10μAの定電流でA
TVCを行ない、これによって、前記実施例の、第2図
における5μAのときとほぼ同様の発生電圧が得られた
。このときの転写ローラの抵抗値は前記第1の実施例の
ものと同様である。For this reason, in this embodiment, a constant current of 10 μA
TVC was carried out, and as a result, a generated voltage almost the same as that at 5 μA in FIG. 2 of the above embodiment was obtained. The resistance value of the transfer roller at this time is the same as that of the first embodiment.
帯電周波数fの値はプロセススピードに大きく依存し、
ある値以下であると電位がV。に収束せず帯電ムラが発
生するので、これを上げる必要があり、両者の関係はほ
ぼリニアな変化を示すので、本実施例ではfを400H
zに設定した。The value of the charging frequency f largely depends on the process speed,
The potential is V when it is below a certain value. Since it does not converge and uneven charging occurs, it is necessary to increase this value.The relationship between the two shows an almost linear change, so in this example, f is set to 400H.
It was set to z.
プロセススピードが速くなると、紙間が短くなるのでA
TVC,APCを行なう時間を取りにく(なるので、A
PCを前回転時、各紙間で、ATVCを前回転時にのみ
行ない、連続プリントの場合には、前回転時に検知した
電圧を以後継続的に印加するようにするのが好適である
。A: As the process speed increases, the paper gap becomes shorter.
It is difficult to find time to conduct TVC and APC (because it becomes
It is preferable to perform ATVC only during the previous rotation of the PC between each paper during the previous rotation, and in the case of continuous printing, to continuously apply the voltage detected during the previous rotation.
本実施例の場合、転写ローラ1周分でATVCの定電流
制御を行ない、該ローラの周方向の抵抗ムラによる発生
電圧の変動を可及的に抑えることができる。In the case of this embodiment, constant current control of ATVC is performed for one rotation of the transfer roller, and fluctuations in the generated voltage due to resistance unevenness in the circumferential direction of the roller can be suppressed as much as possible.
第7図は上記装置のシーケンスである。FIG. 7 shows the sequence of the above device.
帯電周波数が大きくなると、Z=1/2πfCの関係か
らインピーダンスが小さ(なるので交流定電流値も変化
し、本実施例装置の場合、通常600UAを、ATVC
時には660μAにアップすることによって、帯電音も
耳障りにならず、転写不良、砂地現象の発生をも防止す
ることが可能となり、良質の画像を得ることが出来た。As the charging frequency increases, the impedance decreases (because of the relationship Z = 1/2πfC, so the AC constant current value also changes.
By increasing the current to 660 μA in some cases, the charging sound did not become harsh, it was possible to prevent transfer defects and sandy areas, and it was possible to obtain high-quality images.
図示のシーケンスでは、APCの後でATV (:を行
なっているが、ATVCがAPcの前後いずれでもよい
ことは勿論である。In the illustrated sequence, ATV (:) is performed after APC, but it goes without saying that ATVC may be performed either before or after APc.
以上、帯電手段として帯電ローラ、転写手段として転写
ローラを使用した装置について説明したが、帯電手段、
転写手段が、ベルトその他接触タイプの他の手段にも適
用できるものであることは論を俟たない。Above, an apparatus using a charging roller as a charging means and a transfer roller as a transfer means has been described.
It goes without saying that the transfer means can also be applied to belts or other contact type means.
第8図は本発明のさらに他の実施例を示すもので、マイ
ナス帯電する感光体lを用いて反転現像する系であって
、帯電手段としてブレード状の帯電ブレードを、転写手
段として転写ベルトを使用している。FIG. 8 shows still another embodiment of the present invention, which is a system for reversal development using a negatively charged photoreceptor l, in which a blade-shaped charging blade is used as the charging means and a transfer belt is used as the transfer means. I am using it.
コントローラ9によって直流定電圧制御、交流定電流制
御される電源4に接読された帯電ブレード83によって
感光体1表面が一様にマイナス帯電され、これにレーザ
光による画像信号5が照射されて静電潜像が形成される
。The surface of the photoreceptor 1 is uniformly negatively charged by a charging blade 83 connected to a power source 4 which is controlled by a controller 9 to control DC constant voltage and AC constant current, and is then irradiated with an image signal 5 by a laser beam to become static. A latent image is formed.
この潜像に、現像器6から負帯電トナーが供給されてト
ナー像となり、これが感光体1と、ローラ84.85に
懸架される転写ベルト81とが当接する転写部位に至る
と、これにタイミングを合わせて転写材Pが該転写部位
に搬送され、これとともに、感光体lと転写ベルト81
を介して対向する電極ローラ82に、コントローラ9に
よって制御される電源4によって転写バイアスが印加さ
れ、感光体側のトナー像は転写材に転移する。Negatively charged toner is supplied from the developing device 6 to this latent image to form a toner image, and when this reaches the transfer site where the photoreceptor 1 and the transfer belt 81 suspended between rollers 84 and 85 come into contact, the timing The transfer material P is conveyed to the transfer site together with the photoreceptor l and the transfer belt 81.
A transfer bias is applied by the power source 4 controlled by the controller 9 to the electrode roller 82 facing the electrode roller 82 via the transfer bias, and the toner image on the photoreceptor side is transferred to the transfer material.
転写後、転写材はベルト81によって搬送されて不颯示
の定着部位に搬送され、感光体に残る残留トナーはクリ
ーナ8によって除去されて次の画像形成工程に入る。After the transfer, the transfer material is conveyed by a belt 81 to an unspecified fixing site, residual toner remaining on the photoreceptor is removed by a cleaner 8, and the next image forming process begins.
次上記装置をさらに具体的に説述する。Next, the above device will be explained in more detail.
帯電ブレード83は体積抵抗10”ΩCff1のウレタ
ンゴムからなる2mm厚の導電層に、帯電を均一にする
ための中抵抗層として体積抵抗109ΩcmのN−メチ
ルメトキシ化ナイロンの、厚み30μmのものを被覆し
て構成し、感光体1に対してカウンタ方向に当接しであ
る。The charging blade 83 has a 2 mm thick conductive layer made of urethane rubber with a volume resistance of 10"ΩCff1, and a 30 μm thick conductive layer made of N-methylmethoxylated nylon with a volume resistance of 109 Ωcm as a medium resistance layer for uniform charging. The photoreceptor 1 is in contact with the photoreceptor 1 in the counter direction.
転写ベルト81は、材質としては、2フツ化のフッ素樹
脂を第2アミノ基、水酸基等の極性基とし、導電性を付
与して体積抵抗を1012〜1014ΩcIfflとし
た樹脂を、厚み150μmとして用いた。The transfer belt 81 is made of a difluorinated fluororesin with polar groups such as secondary amino groups and hydroxyl groups, and has a thickness of 150 μm and is made of a resin with conductivity and a volume resistivity of 10 12 to 10 14 ΩcIffl. .
電極ローラ82はカーボンを分散して、体積抵抗を10
’〜10’ΩCInに調整したウレタンゴムを、6φの
芯金に厚み2ffiI11に捲回して直径10ψ、硬度
40° (アスカ−C)としたものを使用した。The electrode roller 82 disperses carbon and has a volume resistance of 10
Urethane rubber adjusted to 10' to 10' ΩCIn was wound around a 6φ core metal to a thickness of 2ffiI11 to give a diameter of 10ψ and a hardness of 40° (Asker-C).
この実施例装置ではプロセススピードを901tlII
l/secとし、帯電周波数fを600Hzに設定した
。In this example device, the process speed is 901tlII.
l/sec, and the charging frequency f was set to 600 Hz.
またATVCで良好な転写性を得るには、電極ローラ8
2に流す電流は15−20μ八程度が必要であることが
分かったので、この装置では15μAの定電流でATV
Cを行なったところ、前記第1の実施例装置で5μAの
定電流の場合に得られた電圧とほぼ同様の電圧が得られ
、良好な転写性を得ることが出来た。In addition, in order to obtain good transfer performance in ATVC, the electrode roller 8
It was found that the current flowing through the ATV 2 is about 15-20 μA, so with this device, a constant current of 15 μA is required for the ATV.
When C was carried out, a voltage almost the same as that obtained in the case of a constant current of 5 μA with the apparatus of the first embodiment was obtained, and good transferability could be obtained.
また、−次帯電交流成分を左右する交流電流値は、帯電
ローラと帯電ブレードではさして差がないことが判明し
た。Furthermore, it has been found that there is not much difference between the charging roller and the charging blade in the alternating current value that influences the -order charging alternating current component.
これは、感光体表面の帯電が主としてパッシェンの放電
によることが、既に実験によって明らかになっており1
回転する曲面同志間の放電の場合、両者のギャップが拡
がる方向にあるとき、換言すると両者の圧接ニップ部の
後半の部分での放電が帯電に大きく寄与するものである
ことが確認されており、したがって、帯電部材としてロ
ーラでもブレードでも帯電に実質的に寄与する部分には
さしたる差異がないためと考えられる。This is because experiments have already revealed that the charging on the surface of the photoreceptor is mainly due to Paschen discharge1.
In the case of electrical discharge between rotating curved surfaces, it has been confirmed that when the gap between the two is in the direction of widening, in other words, the electrical discharge in the latter half of the pressure nip between the two greatly contributes to charging. Therefore, it is thought that this is because there is no significant difference in the portion that substantially contributes to charging whether the charging member is a roller or a blade.
図示の装置においては、通常は1 m A 、 ATV
C4l域で1.1mAで定電流制御を行なった。また、
プロセススピードが速いので、前回転時にATVCを行
ない、紙間ではAPCのみとした。In the device shown, typically 1 mA, ATV
Constant current control was performed at 1.1 mA in the C4l region. Also,
Since the process speed is fast, ATVC was performed during the pre-rotation, and only APC was used between sheets.
シーケンスは前記第7図のものと同様であるので省略し
た。The sequence is the same as that shown in FIG. 7, so it has been omitted.
以上のような装置を用いて、気になるような帯電音もな
く、転写不良による濃度ムラ、砂地現象等の発生なく、
各環境において良好な転写性が得られた。Using the above-mentioned device, there is no disturbing charging noise, no density unevenness due to poor transfer, no sandy areas, etc.
Good transferability was obtained in each environment.
第9図は本発明のさらに他の実施例を示す、画像形成装
置の概略側面図である。FIG. 9 is a schematic side view of an image forming apparatus showing still another embodiment of the present invention.
この装置も感光体を負帯電して、ネガトナーによって反
転現像を行なう系とし、プロセススピードは60ffI
III/seCとした。This device also uses a system in which the photoreceptor is negatively charged and reverse development is performed using negative toner, and the process speed is 60ffI.
III/seC.
この実施例装置においては、感光体上のATVC定電流
の領域の電界を強(する手段として、帯電ローラ3に印
加する交流電圧のデユーティ比を変えるためのデユーテ
ィ比可変用の発振器10をそなえているほかは、前記第
1図々示の装置と同様の構成作用をそなえており、共通
する部分については説明を省略する。This embodiment of the apparatus is equipped with a variable duty ratio oscillator 10 for changing the duty ratio of the AC voltage applied to the charging roller 3 as a means for strengthening the electric field in the ATVC constant current region on the photoreceptor. Other than that, this device has the same structure and function as the device shown in the first figure, and a description of the common parts will be omitted.
またプロセススピードが60 mm/ secであるの
で、ATVC定電流値、帯電周波数は、第2図々示の装
置の場合と同じく、それぞれ1oILA、400Hzと
した。Furthermore, since the process speed was 60 mm/sec, the ATVC constant current value and charging frequency were set to 1oILA and 400Hz, respectively, as in the case of the apparatus shown in Figure 2.
帯電ローラに印加する交流電圧の周波数を変えずデユー
ティ比を変えた場合、電位の収束性は印加バイアスの実
効値で変化する。When changing the duty ratio without changing the frequency of the AC voltage applied to the charging roller, the convergence of the potential changes depending on the effective value of the applied bias.
第10図に、暗電位■。=−600Vの帯電面に、10
μAでATVCを行ない、帯電ローラに印加する交流電
圧のデユーティ比(同図々示a:b)の変化と、電位収
束性の関係を示しである。In Figure 10, dark potential ■. = -600V charged surface, 10
This figure shows the relationship between potential convergence and changes in the duty ratio (a:b in the figure) of the AC voltage applied to the charging roller when ATVC is performed at μA.
図示のように、電位を高める方向で実効値な大きくして
ゆ(と収束性が向上し、図示の場合、a / b =
2以上のときおおむね収束することが判る。As shown in the figure, when the effective value is increased in the direction of increasing the potential, the convergence improves, and in the case shown, a / b =
It can be seen that it generally converges when it is 2 or more.
したがって、ATVC定電流領域の帯電時に、帯電ロー
ラ3に印加する交流定電流のデユーティ比(a / b
)を4とした。Therefore, when charging in the ATVC constant current region, the duty ratio (a/b) of the AC constant current applied to the charging roller 3 is
) was set as 4.
これによって、前述の第6A図、第6B図、第7図に示
すシーケンスによって実験して効果をみたが、交流定電
流が300μAの場合でも充分な電位収束性が得られ、
帯電音の増大もなく、転写不良、砂地現象の発生もなく
良好な画像が得られることを確認した。As a result, we tested the effects using the sequences shown in Figures 6A, 6B, and 7 above, and found that sufficient potential convergence was obtained even when the AC constant current was 300 μA.
It was confirmed that good images could be obtained without an increase in charging noise, poor transfer, or occurrence of sandy areas.
この実施例装置が、ベルト、ブレードなど他の接触タイ
プの帯電、転写手段においても有効であることは勿論で
ある。It goes without saying that the device of this embodiment is also effective for other contact type charging and transfer means such as belts and blades.
(3)発明の詳細
な説明したように、本発明によるときは、ローラ、ブレ
ードなどの感光体に当接する構成の帯電手段、転写手段
をそなえた画像形成装置において、転写手段への環境の
差異による最適転写電圧を得るために、転写手段に微小
電流を流し、これに対応する像担持体の領域を帯電手段
が通過するさい、前記帯電手段から像担持体に及ぶ電界
を、他の領域よりも強くすることによって、電位収束性
を向上することができ、これによって、帯電音を耳障り
になるほど増大することなく、砂地現象の発生を阻止し
、帯電不良、これによるATVC領域と他の領域との間
に生ずる画像の濃度ムラを効果的に排除し、良質の画像
を得るのに顕著な効果がある。(3) As described in detail, according to the present invention, in an image forming apparatus equipped with a charging means and a transfer means configured to come into contact with a photoreceptor such as a roller or a blade, there is a difference in the environment for the transfer means. In order to obtain the optimum transfer voltage, a minute current is passed through the transfer means, and when the charging means passes through a region of the image bearing member corresponding to this, the electric field extending from the charging means to the image bearing member is made smaller than other regions. By increasing the strength of the voltage, the potential convergence can be improved, thereby preventing the occurrence of sandy ground phenomenon without increasing the charging noise to the point where it becomes annoying, and preventing charging failures and the resulting separation between the ATVC area and other areas. This effectively eliminates the unevenness in image density that occurs between images, and has a remarkable effect on obtaining high-quality images.
第1図は本発明の第1の実施例を示す画像形成装置の概
略側面図、
第2図は転写手段のATVC定電流値と発生電圧の関係
を示すグラフ、
第3図は帯電手段の交流定電流値と発生するV ppと
の関係を示すグラフ、
第4図はATVC定電流値と電位収束可能な一次帯電交
流定電流値との関係を示すグラフ、第5図は前記第1の
実施例装置の、APCを行なわない場合の動作シーケン
ス、
第6A図は同上装置の、APCを行ない、かつその前に
ATVCを行なう場合のシーケンス、第6B図は同上装
置の、APCを行ない、かつその後にATVCを行なう
場合のシーケンス、第7図は前記第1の実施例装置で、
プロセススピードを変えた第2の実施例のシーケンス、
第8図は本発明の第3の実施例装置の概略側面図、
第9図は本発明の第4の実施例装置の概略側面図、
第1O図は帯電用交流電流のデユーティ比の変化と電子
収束性の関係を示すグラフ、
第11図は公知の画像形成装置の構成な略示する概略側
面図、
第12図は同上の一次帯電用の交流電圧V、pと電位収
束性の関係を説明するグラフである。
1・・・像担持体(感光体)、2・・・転写ローラ、3
・・・帯電ローラ、4・・・帯電、転写用電源、5・・
・像露光、6・・・現像器、7・・・搬送路、8・・・
クリーナ、lO・・・デユーティ比可変発振器、81・
・・転写ベルト、82・・・背面電極ローラ、83・・
・帯電ブレード。
i÷
図
一次幕tAc疋It8
ωA〕
第 2 図
6A図
(V)1
第6B図
、−7図
τ型え
79図
り。0.比
弔も
謁 81Σ
兵11図
蔦12図FIG. 1 is a schematic side view of an image forming apparatus showing a first embodiment of the present invention, FIG. 2 is a graph showing the relationship between the ATVC constant current value of the transfer means and the generated voltage, and FIG. 3 is an AC of the charging means. A graph showing the relationship between the constant current value and the generated Vpp, FIG. 4 is a graph showing the relationship between the ATVC constant current value and the primary charging AC constant current value that allows potential convergence, and FIG. The operation sequence of the example device when APC is not performed. Figure 6A is the sequence of the same device as above when APC is performed and before that ATVC is performed. Figure 6B is the sequence of the same device as above when APC is performed and then FIG. 7 shows the sequence when performing ATVC in the device of the first embodiment,
The sequence of the second embodiment with different process speeds,
FIG. 8 is a schematic side view of a device according to a third embodiment of the present invention, FIG. 9 is a schematic side view of a device according to a fourth embodiment of the present invention, and FIG. A graph showing the relationship between electron convergence. FIG. 11 is a schematic side view showing the configuration of a known image forming apparatus. FIG. 12 is a graph showing the relationship between primary charging AC voltages V and p and potential convergence. This is a graph to explain. 1... Image carrier (photoreceptor), 2... Transfer roller, 3
... Charging roller, 4... Power supply for charging and transfer, 5...
・Image exposure, 6...Developer, 7...Transport path, 8...
Cleaner, lO... variable duty ratio oscillator, 81.
...Transfer belt, 82...Back electrode roller, 83...
・Charged blade. i ÷ Figure 1 Act tAc 8 ωA] 2 Figure 6A Figure (V) 1 Figure 6B, -7 τ type 79 diagram. 0. Hito also has an audience 81Σ Soldier 11 figure Tsuta 12 figure
Claims (3)
せる帯電手段と、前記像担持体表面に形成されたトナー
像を転写材に転写するため像担持体に当接配置された転
写手段とを含む画像形成装置において、 像担持体と転写手段とが直接当接している間に、該転写
手段に、最適転写電圧を得るための微小電流を流す手段
と、 該電流を流した像担持体上の領域を前記帯電手段が通過
するさいに、帯電手段から像担持体およぶ電界を他の領
域におけるそれよりも強くすることを特徴とする画像形
成装置。(1) An image carrier, a charging means that comes into contact with the image carrier and charges the surface uniformly, and a charging device that is arranged in contact with the image carrier to transfer the toner image formed on the surface of the image carrier to a transfer material. an image forming apparatus including a transfer means, comprising: means for passing a minute current through the transfer means to obtain an optimum transfer voltage while the image bearing member and the transfer means are in direct contact with each other; An image forming apparatus characterized in that when the charging means passes through a region on the image bearing member that has been charged, an electric field from the charging means to the image bearing member is made stronger than that in other regions.
い、帯電手段に印加する交流電圧の尖頭値をたの領域よ
りも大きくする特許請求の範囲第1項記載の画像形成装
置。(2) The image forming apparatus according to claim 1, wherein when charging the area on the image carrier through which a minute current is passed, the peak value of the AC voltage applied to the charging means is larger than that of the other area. .
い、帯電手段に印加する交流電圧のデューティ比を変化
させる特許請求の範囲第1項記載の画像形成装置。(3) The image forming apparatus according to claim 1, wherein the duty ratio of the AC voltage applied to the charging means is changed when charging the area on the image carrier through which a minute current is passed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6679790A JPH03267972A (en) | 1990-03-19 | 1990-03-19 | Image forming device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6679790A JPH03267972A (en) | 1990-03-19 | 1990-03-19 | Image forming device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03267972A true JPH03267972A (en) | 1991-11-28 |
Family
ID=13326222
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6679790A Pending JPH03267972A (en) | 1990-03-19 | 1990-03-19 | Image forming device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03267972A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9417548B2 (en) | 2014-09-12 | 2016-08-16 | Canon Kabushiki Kaisha | Image forming apparatus in which charging current changes corresponding to voltage rise during transfer voltage determination |
-
1990
- 1990-03-19 JP JP6679790A patent/JPH03267972A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9417548B2 (en) | 2014-09-12 | 2016-08-16 | Canon Kabushiki Kaisha | Image forming apparatus in which charging current changes corresponding to voltage rise during transfer voltage determination |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5888588B2 (en) | Transfer device and image forming apparatus | |
US5428429A (en) | Resistive intermediate transfer member | |
JP2817391B2 (en) | Charging device | |
JP2001282012A (en) | Image forming device | |
JP2004061941A (en) | Image forming apparatus | |
JP3576738B2 (en) | Image forming device | |
US7106984B2 (en) | Image forming apparatus | |
JP2004280069A (en) | Image forming apparatus | |
JPH02198468A (en) | Electrifying device | |
US20100329709A1 (en) | Image forming apparatus | |
JP2010008926A (en) | Image forming apparatus | |
JP5473291B2 (en) | Image forming apparatus | |
JPH09185219A (en) | Electrostatic charging device and image forming device | |
JP2004205583A (en) | Image forming apparatus | |
JPH03267972A (en) | Image forming device | |
JP2019086596A (en) | Image forming apparatus | |
JPH05127546A (en) | Image forming device | |
JP2011128373A (en) | Image forming apparatus | |
JP2011107532A (en) | Charging device and image forming apparatus | |
JPH04251276A (en) | Transfer device for image forming device | |
JPS6114671A (en) | Electrophotographic copying device | |
JP2015138143A (en) | image forming apparatus | |
JP2000284616A (en) | Image forming device | |
US6487380B1 (en) | Image forming apparatus having transfer member for carrying a recording medium | |
JPH08328360A (en) | Electrifying method |