[go: up one dir, main page]

JPH03266481A - Magnetoresistance effect film and magnetoresistance effect element provided therewith - Google Patents

Magnetoresistance effect film and magnetoresistance effect element provided therewith

Info

Publication number
JPH03266481A
JPH03266481A JP2064172A JP6417290A JPH03266481A JP H03266481 A JPH03266481 A JP H03266481A JP 2064172 A JP2064172 A JP 2064172A JP 6417290 A JP6417290 A JP 6417290A JP H03266481 A JPH03266481 A JP H03266481A
Authority
JP
Japan
Prior art keywords
layer
magnetic
film
intermediate layer
magnetoresistive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2064172A
Other languages
Japanese (ja)
Inventor
Ryoichi Nakatani
亮一 中谷
Toshio Kobayashi
俊雄 小林
Masahiro Kitada
北田 正弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2064172A priority Critical patent/JPH03266481A/en
Publication of JPH03266481A publication Critical patent/JPH03266481A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は高い磁気抵抗効果を有する多層磁性薄膜に関し
、特に磁気ディスク装置などに用いる再生用磁気ヘッド
に適した磁気抵抗効果膜および磁気抵抗効果素子に関す
る。
[Industrial Field of Application] The present invention relates to a multilayer magnetic thin film having a high magnetoresistive effect, and particularly to a magnetoresistive film and a magnetoresistive element suitable for a reproducing magnetic head used in a magnetic disk drive or the like.

【従来の技@] 高密度磁気記録における再生用磁気ヘッドとして、磁気
抵抗効果を用いた磁気ヘッドの研究が進められている。 高性能を有する磁気ヘッドを実用化するためには、高い
磁気抵抗効果を有する磁性薄膜を開発することが望まし
い。 最近、フィジカル レビュー レターズ、第61巻、第
21号、第2472〜2475頁(Physical 
Review Letters、Vol、61.No、
21.2472−2475.1988)に記載のように
、抵抗変化率が50%近くに達するF e / Cr多
層膜が報告されている。 【発明が解決しようとする課題】 しかし、Fe/Cr多層膜において、50%程度の抵抗
変化率を得るためには、F e / Cr多層膜に20
 k Oe以上の高い磁界を印加しなくてはならず、こ
のままでは、磁気記録媒体からの微弱な磁界を検品する
磁気抵抗効果素子の材料とはなりにくい、また、50%
程度の抵抗変化率は、4゜2にという極低温で得られ、
室温での抵抗変化率は18%程度まで減少してしまう。 本発明の目的は、上述のF e / Cr多層膜の問題
を解消し、室温かつ低印加磁界で高い磁気抵抗変化率を
有する多層構造を有する磁気抵抗効果膜およびこれを用
いた磁気抵抗効果素子を提供することにある。
[Conventional Techniques] Research is progressing on magnetic heads that use magnetoresistive effects as magnetic heads for reproduction in high-density magnetic recording. In order to put a magnetic head with high performance into practical use, it is desirable to develop a magnetic thin film with a high magnetoresistive effect. Recently, Physical Review Letters, Vol. 61, No. 21, pp. 2472-2475 (Physical
Review Letters, Vol. 61. No,
21.2472-2475.1988), an Fe/Cr multilayer film with a resistance change rate of nearly 50% has been reported. [Problems to be Solved by the Invention] However, in order to obtain a resistance change rate of about 50% in the Fe/Cr multilayer film, 20%
A high magnetic field of k Oe or higher must be applied, and as it is, it is difficult to use as a material for magnetoresistive elements that inspect weak magnetic fields from magnetic recording media.
A resistance change rate of about
The resistance change rate at room temperature decreases to about 18%. An object of the present invention is to solve the above-mentioned problems with the Fe/Cr multilayer film, and to provide a magnetoresistive film having a multilayer structure having a high rate of change in magnetoresistance at room temperature and in a low applied magnetic field, and a magnetoresistive element using the same. Our goal is to provide the following.

【課題を解決するための手段】 本発明者らはFe薄膜あるいはFeを主成分とする合金
薄膜に他の組成の薄膜を介して多層構造とした磁性薄膜
について、鋭意研究を行った結果。 消磁状態で上記Fe層あるいはFe系合金層の磁化の少
なくとも一部が中間層の上下で反平行であるならば、磁
気抵抗効果を示すことを明らかにし、本発明を完成する
に至った。 すなわち、Fe層あるいはFe系合金層に他の組成の中
間層を介して多層構造とした磁性薄膜において、上記中
間層が常磁性でかつ非絶縁物であり、消磁状態で上記F
e層あるいはFe系合金層の磁化の少なくとも一部が中
間層の上下で反平行であり、上記Fe層あるいはFe系
合金層の層数が4層以上である場合、F e / Cr
多層膜の場合よりも低い印加磁界でも抵抗変化を示すこ
とを明らかにした。また、上記Fe系合金層をB、C。 Nより選ばれる少なくとも1種の元素を0.1〜5at
%含む合金層とすることにより、さらに低い印加磁界で
も抵抗変化を示す。また、本発明の磁気抵抗効果膜を磁
気回路に用いることにより、低い印加磁界で作動する磁
気抵抗効果素子が得られる。
[Means for Solving the Problems] The present inventors have conducted intensive research on a magnetic thin film that has a multilayer structure with a Fe thin film or an alloy thin film containing Fe as a main component with thin films of other compositions interposed therebetween. It has been revealed that if at least part of the magnetization of the Fe layer or Fe-based alloy layer is antiparallel above and below the intermediate layer in a demagnetized state, a magnetoresistive effect is exhibited, and the present invention has been completed. That is, in a magnetic thin film that has a multilayer structure with an Fe layer or a Fe-based alloy layer interposed through an intermediate layer of another composition, the intermediate layer is paramagnetic and non-insulating, and the F in the demagnetized state is
When at least part of the magnetization of the e layer or Fe-based alloy layer is antiparallel above and below the intermediate layer, and the number of the Fe layers or Fe-based alloy layers is four or more, Fe/Cr
It was revealed that the resistance changes even at lower applied magnetic fields than in the case of multilayer films. Further, the Fe-based alloy layer is made of B or C. 0.1 to 5at of at least one element selected from N
%, the resistance changes even at a lower applied magnetic field. Furthermore, by using the magnetoresistive film of the present invention in a magnetic circuit, a magnetoresistive element that operates with a low applied magnetic field can be obtained.

【作用】[Effect]

上述のように、Fe層あるいはFe系合金層に他の組成
の中間層を介して多層構造とした磁性薄膜において、上
記中間層が常磁性でかつ非絶縁物であり、消磁状態で上
記Fe層あるいはFe系合金層の磁化の少なくとも一部
が中間層の上下で反平行であり、上記Fe層あるいはF
e系合金層の層数が4層以上である場合、従来例のF 
e / Cr多層膜に比して、低い印加磁界でも抵抗変
化を示し、電気抵抗率の変化は小さいが、低い磁界で電
気抵抗の変化が飽和する。 また、単位磁界に対する抵抗変化率も大きい。 これは、反強磁性中間層を用いた多層膜よりも、常磁性
中間層を用いた多層膜の方が、外部磁界によって磁性層
の磁化が反転しやすいためであり。 常磁性中間層を用いた多層膜において、磁気抵抗効果を
生じるのは、各磁性層の静磁結合によって、消磁状態に
おける各磁性層の磁化の向きが反並行に近くなっている
ためとみることができる。
As mentioned above, in a magnetic thin film that has a multilayer structure with an Fe layer or a Fe-based alloy layer interposed therebetween and an intermediate layer of another composition, the intermediate layer is paramagnetic and non-insulating, and the Fe layer is in a demagnetized state. Alternatively, at least a part of the magnetization of the Fe-based alloy layer is antiparallel above and below the intermediate layer, and the Fe layer or F
When the number of e-based alloy layers is 4 or more, the conventional F
Compared to the e/Cr multilayer film, it shows a change in resistance even with a low applied magnetic field, and the change in electrical resistivity is small, but the change in electrical resistance saturates at a low magnetic field. Furthermore, the rate of change in resistance with respect to a unit magnetic field is also large. This is because the magnetization of the magnetic layer is more easily reversed by an external magnetic field in a multilayer film using a paramagnetic intermediate layer than in a multilayer film using an antiferromagnetic intermediate layer. In a multilayer film using a paramagnetic intermediate layer, the magnetoresistive effect occurs because the magnetization direction of each magnetic layer in the demagnetized state becomes nearly antiparallel due to magnetostatic coupling of each magnetic layer. I can do it.

【実施例】【Example】

以下に本発明の一実施例を挙げ、図表を参照しながらさ
らに具体的に説明する。 [実施例1] 多層磁性薄膜の作製にはイオンビーム・スパッタリング
装置を用いた。スパッタリングは以下の条件で行った。 イオンガス・・・Ar 装置内Arガス圧力・・・2−5X1002Pa蒸着用
イオンガン加速電圧・・・400V蒸着用イオンガンイ
オン電流・・・60mAターゲット基板間距離・・・1
27mm上記条件で作製した磁性薄膜の断面図を第1図
に示す。本実施例では、主磁性層11として膜厚500
人のFe薄膜、中間層12として膜厚2゜人のT a 
CおよびCr、基板13としてコーニング社製7059
ガラス基板を用いた。多層磁性薄膜全体の膜厚は約20
00人とし、主磁性層11の層数は4層である。 第2図に従来のF e / Cr多層膜の電気抵抗の印
加磁界依存性21および本発明のF e / T a 
C多層膜の電気抵抗の印加磁界依存性22を示す。 外部磁界は上記多層膜の面内の磁化容易方向に印加した
。電気抵抗は、4端子法で測定し、電流は上記多層膜の
面内の磁化容易方向に流した。また。 測定は室温で行った。 第2図のように、F e / Cr多層膜の電気抵抗率
の変化は比較的大きい。しかし、電気抵抗の変化が飽和
するためには、8000e程度の高い磁界を印加しなく
てはならない。これに対し、本発明のF e / T 
a C多層膜の電気抵抗率の変化は小さいが、低い磁界
で電気抵抗の変化が飽和する。 また、単位磁界に対する抵抗変化率(第2図での抵抗変
化率を示す曲線の傾き)も大きい、これは、反強磁性中
間層を用いた多層膜よりも、常磁性中間層を用いた多層
膜の方が、外部磁界によって磁性層の磁化が反転しやす
いためと考えられる。また、常磁性中間層を用いた多層
膜において、磁気抵抗効果を生じるのは、各磁性層の静
磁結合によって、消磁状態における各磁性層の磁化の向
きが反並行に近くなっているためと思われる。 以上述べたように1反強磁性中間層を用いたFe / 
Cr多層膜よりも、常磁性中間層を用いた本発明のF 
e / T a C多層膜の方が、低い磁界で電気抵抗
の変化が飽和し、単位磁界に対する抵抗変化率が大きい
。 [実施例2] 実施例1と同様の条件で第1図に示すような磁性薄膜を
形成した。本実施例では、主磁性層11として膜厚50
0人のFe薄膜、中間層12として膜厚20人の各種常
磁性中間層、基板13としてコーニング社製7059ガ
ラス基板を用いた。 多層磁性薄膜全体の膜厚は約2000人とし、主磁性層
11の層数は4層である。 中間層材料による最大の抵抗変化率の変化を第1表に示
す、ここでの最大の抵抗変化率は、第2図における抵抗
変化率を示す曲線のピーク値を示す。第1表に示すよう
に、TaC,WC,Cu、Ag、Tiを中間層として用
いた多層膜の抵抗変化率が比較的大きい、これらの中間
層材料は比較的電気伝導度の高い材料である。これに対
し、電気伝導度の低いBN、Si、5in2.AI□○
1を中間層材料として用いた多層膜の抵抗変化率は小さ
い。抵抗変化率は、電気抵抗変化Δρ/全体の電気抵抗
ρで表されるため、中間層として、電気抵抗の高い材料
を用いて全体の抵抗が高くなると抵抗変化率は小さくな
ってしまうものと思われる。従って、中間層材料として
は非絶縁物が好ましい。 [実施例3コ 実施例1と同様の条件で第1図に示すような磁性薄膜を
形成した。本実施例では、主磁性層11としてFe薄膜
、中間層12として膜厚20人のT a C1基板13
としてコーニング社製7o59ガラス基板を用いた。多
層磁性薄膜全体の膜厚は約2000人とし、主磁性層1
1の層数を変化した。従って、主磁性層すなわち、Fe
層の層数が増加するに伴い、Fe層の一層当りの厚さは
減少する。 Fe層数による多層膜の最大の抵抗変化率の変化を第3
図に示す。ここでの最大の抵抗変化率は、第2図におけ
る抵抗変化率を示す曲線のピーク値を示す。Fe層数の
増加に伴い、最大の抵抗変化率は増加する。消磁状態に
おいて、中間層の上下で磁性層の磁化の向きが反並行に
なっている所で磁気抵抗効果は生じる。従って、中間層
および磁性層の多い多層膜の方が磁気抵抗効果が大きい
ものと思われる。同図のように、Fe層数が4層以上の
時に抵抗変化率が0.5%以上になる。このため、磁性
層の層数は4層以上が好ましい。 [実施例4コ 実施例1と同様の条件で第1図に示すような磁性薄膜を
形成した。本実施例では、主磁性層11として膜厚50
0人のFe−C系合金薄膜、Fe−B系合金薄膜、Fe
−N系合金薄膜、中間層12として膜厚20人のT a
 C1基板13としてコニング社製7059ガラス基板
を用いた。多層磁性薄膜全体の膜厚は約2000人とし
、主磁性層11の層数は4層である。 B、C,Nの濃度による最大の抵抗変化率の変化を第4
図に示す。同図に示すように、FeにB、C,Nを0.
1at%以上添加すると最大の抵抗変化率が大きくなる
。しかし、B、C,Nを5at%より多く添加すると最
大の抵抗変化率が減少してしまう。B、C,Nを0.1
〜5at%添加すると最大の抵抗変化率が大きくなる理
由は次のように考えられる。FeにB、C,Nを0.1
〜5at%添加すると、第5図に示すように、保磁力が
Feよりも低くなる。このため、磁性層の磁気異方性の
分散が小さくなり、中間層の上下で磁性層の磁化の向き
がさらに反並行に近くなるためと考えられる。 [実施例5コ 本発明の磁気抵抗効果膜を用いて、磁気抵抗効果素子を
形成した。磁気抵抗効果素子の形成プロセスを以下に述
べる。 第6図(a)のように、L字型の下部電極61を形成す
る。本実施例では、Cuによって下部電極61を形成し
た。次に、第6図(b)のように。 下部電極61の上に本発明の磁気抵抗効果膜62を形成
する。本実施例では、実施例1のF e / TaC多
層膜を磁気抵抗効果膜62として用いた。 次に、第6図(c)のように、磁気抵抗効果膜62の段
差を解消するために、絶縁体63を形成する。本実施例
では、樹脂を絶縁体63として用いた。さらに、第6図
(d)のように、磁気抵抗効果膜62および絶縁体63
の上に、上部電極64を形成した。本実施例では、Cu
によって上部電極64を形成した。 下部電極61から上部電極64に電流を流し。 さらに、磁気抵抗効果膜62に磁界を印加して、磁場に
よる電気抵抗の変化を調べた。その結果、本実施例の磁
気抵抗効果素子では、最大、0.6%の電気抵抗の変化
が観測された。また、本発明の磁気抵抗効果素子は50
0eの外部磁界で電気抵抗の値が飽和した。これは、F
e/Cr多層膜の場合より、低い磁界である。 また、本実施例のような、多層構造を有する磁気抵抗効
果膜を素子化する時には1本実施例のように、電流が必
ず中間層を通過するように電流を流すことが重要である
An example of the present invention will be described below in more detail with reference to figures and tables. [Example 1] An ion beam sputtering device was used to produce a multilayer magnetic thin film. Sputtering was performed under the following conditions. Ion gas...Ar Ar gas pressure in the device...2-5X1002Pa Ion gun acceleration voltage for deposition...400V Ion gun ion current for deposition...60mA Distance between target substrates...1
A cross-sectional view of a magnetic thin film of 27 mm produced under the above conditions is shown in FIG. In this example, the main magnetic layer 11 has a film thickness of 500 mm.
A human Fe thin film with a film thickness of 2° as the intermediate layer 12
C and Cr, 7059 manufactured by Corning Corporation as the substrate 13
A glass substrate was used. The total thickness of the multilayer magnetic thin film is approximately 20
00 people, and the number of layers of the main magnetic layer 11 is four. Figure 2 shows the dependence of the electrical resistance of the conventional Fe/Cr multilayer film on the applied magnetic field 21 and the Fe/Ta of the present invention.
The dependence of the electrical resistance of the C multilayer film on the applied magnetic field 22 is shown. The external magnetic field was applied in the direction of easy magnetization in the plane of the multilayer film. The electrical resistance was measured by a four-terminal method, and a current was passed in the direction of easy magnetization in the plane of the multilayer film. Also. Measurements were performed at room temperature. As shown in FIG. 2, the change in electrical resistivity of the Fe/Cr multilayer film is relatively large. However, in order to saturate the change in electrical resistance, a high magnetic field of about 8000e must be applied. In contrast, the Fe/T of the present invention
Although the change in electrical resistivity of the aC multilayer film is small, the change in electrical resistance becomes saturated at a low magnetic field. In addition, the rate of change in resistance per unit magnetic field (the slope of the curve showing the rate of change in resistance in Figure 2) is also larger. This is thought to be because the magnetization of the magnetic layer is more easily reversed by an external magnetic field in the case of a film. In addition, in a multilayer film using a paramagnetic intermediate layer, the magnetoresistance effect occurs because the magnetization directions of each magnetic layer in the demagnetized state are nearly antiparallel due to magnetostatic coupling of each magnetic layer. Seem. As mentioned above, Fe/
The F of the present invention using a paramagnetic intermediate layer rather than a Cr multilayer film
In the e/T a C multilayer film, the change in electrical resistance is saturated at a low magnetic field, and the rate of change in resistance with respect to a unit magnetic field is larger. [Example 2] A magnetic thin film as shown in FIG. 1 was formed under the same conditions as in Example 1. In this embodiment, the main magnetic layer 11 has a film thickness of 50 mm.
A Fe thin film of 0.000000000000 was used, various paramagnetic intermediate layers having a film thickness of 200000 were used as the intermediate layer 12, and a 7059 glass substrate manufactured by Corning Co., Ltd. was used as the substrate 13. The thickness of the entire multilayer magnetic thin film is about 2000, and the number of layers of the main magnetic layer 11 is four. Table 1 shows the change in the maximum resistance change rate depending on the intermediate layer material, and the maximum resistance change rate here indicates the peak value of the curve showing the resistance change rate in FIG. As shown in Table 1, the resistance change rate of multilayer films using TaC, WC, Cu, Ag, and Ti as intermediate layers is relatively large, and these intermediate layer materials have relatively high electrical conductivity. . On the other hand, BN, Si, 5in2. AI□○
The resistance change rate of a multilayer film using No. 1 as an intermediate layer material is small. The rate of change in resistance is expressed as change in electrical resistance Δρ/total electrical resistance ρ, so if a material with high electrical resistance is used as the intermediate layer and the overall resistance increases, the rate of resistance change will decrease. It will be done. Therefore, a non-insulating material is preferred as the intermediate layer material. [Example 3] A magnetic thin film as shown in FIG. 1 was formed under the same conditions as in Example 1. In this example, the main magnetic layer 11 is an Fe thin film, and the intermediate layer 12 is a T a C1 substrate 13 with a film thickness of 20.
A 7o59 glass substrate manufactured by Corning was used as the substrate. The thickness of the entire multilayer magnetic thin film is approximately 2000, and the main magnetic layer 1
The number of layers of 1 was changed. Therefore, the main magnetic layer, that is, Fe
As the number of layers increases, the thickness per Fe layer decreases. The change in the maximum resistance change rate of the multilayer film depending on the number of Fe layers is
As shown in the figure. The maximum resistance change rate here indicates the peak value of the curve showing the resistance change rate in FIG. As the number of Fe layers increases, the maximum resistance change rate increases. In the demagnetized state, the magnetoresistive effect occurs where the magnetization directions of the magnetic layers are antiparallel above and below the intermediate layer. Therefore, it seems that a multilayer film with many intermediate layers and magnetic layers has a larger magnetoresistive effect. As shown in the figure, when the number of Fe layers is four or more, the resistance change rate is 0.5% or more. For this reason, the number of magnetic layers is preferably four or more. [Example 4] A magnetic thin film as shown in FIG. 1 was formed under the same conditions as in Example 1. In this embodiment, the main magnetic layer 11 has a film thickness of 50 mm.
0 Fe-C alloy thin film, Fe-B alloy thin film, Fe
- N-based alloy thin film, T a of 20 people as the intermediate layer 12
As the C1 substrate 13, a 7059 glass substrate manufactured by Conning was used. The thickness of the entire multilayer magnetic thin film is about 2000, and the number of layers of the main magnetic layer 11 is four. The change in the maximum resistance change rate due to the concentration of B, C, and N is expressed as the fourth
As shown in the figure. As shown in the figure, B, C, and N are added to Fe in an amount of 0.
Adding 1 at % or more increases the maximum resistance change rate. However, if more than 5 at % of B, C, and N are added, the maximum rate of resistance change will decrease. B, C, N 0.1
The reason why the maximum rate of change in resistance increases when adding ~5 at% is considered to be as follows. 0.1 of B, C, and N to Fe
When ~5 at% is added, the coercive force becomes lower than that of Fe, as shown in FIG. This is thought to be because the dispersion of the magnetic anisotropy of the magnetic layer becomes smaller, and the magnetization directions of the magnetic layer above and below the intermediate layer become more antiparallel. [Example 5] A magnetoresistive element was formed using the magnetoresistive film of the present invention. The process for forming the magnetoresistive element will be described below. As shown in FIG. 6(a), an L-shaped lower electrode 61 is formed. In this example, the lower electrode 61 was formed of Cu. Next, as shown in FIG. 6(b). A magnetoresistive film 62 of the present invention is formed on the lower electrode 61. In this example, the Fe/TaC multilayer film of Example 1 was used as the magnetoresistive film 62. Next, as shown in FIG. 6(c), an insulator 63 is formed to eliminate the step difference in the magnetoresistive film 62. In this embodiment, resin was used as the insulator 63. Furthermore, as shown in FIG. 6(d), the magnetoresistive film 62 and the insulator 63
An upper electrode 64 was formed thereon. In this example, Cu
The upper electrode 64 was formed by the following steps. A current is passed from the lower electrode 61 to the upper electrode 64. Furthermore, a magnetic field was applied to the magnetoresistive film 62 to examine changes in electrical resistance due to the magnetic field. As a result, in the magnetoresistive element of this example, a maximum change in electrical resistance of 0.6% was observed. Further, the magnetoresistive element of the present invention has a
The value of electrical resistance was saturated with an external magnetic field of 0e. This is F
The magnetic field is lower than that of the e/Cr multilayer film. Furthermore, when forming a magnetoresistive film having a multilayer structure into a device as in this embodiment, it is important to flow the current so that it always passes through the intermediate layer, as in this embodiment.

【発明の効果】【Effect of the invention】

以上詳細に説明したごとく、Fe層あるいはFe系合金
層に他の組成の中間層を介して多層構造とした磁性薄膜
において、上記中間層が常磁性でかつ非絶縁物であり、
消磁状態で上記Fe層あるいはFe系合金層の磁化の少
なくとも一部が中間層の上下で反平行であり、上記Fe
層あるいはFe系合金層の層数が4層以上である場合、
低い印加磁界でも抵抗変化を示すことを明らかにした。 また、上記Fe系合金層をB、C,Nより選ばれる少な
くとも1種の元素を0.1〜5at%含む合金層とする
ことにより、さらに低い印加磁界でも抵抗変化を示す。 また、本発明の磁気抵抗効果膜を磁気回路に用いること
により、低い印加磁界で作動する磁気抵抗効果素子が得
られる。
As explained in detail above, in a magnetic thin film having a multilayer structure with an Fe layer or an Fe-based alloy layer interposed through an intermediate layer of another composition, the intermediate layer is paramagnetic and non-insulating,
In the demagnetized state, at least a part of the magnetization of the Fe layer or Fe-based alloy layer is antiparallel above and below the intermediate layer, and
When the number of layers or Fe-based alloy layers is 4 or more,
It was revealed that the resistance changes even at low applied magnetic fields. Furthermore, by making the Fe-based alloy layer an alloy layer containing 0.1 to 5 at% of at least one element selected from B, C, and N, the resistance changes even in a lower applied magnetic field. Furthermore, by using the magnetoresistive film of the present invention in a magnetic circuit, a magnetoresistive element that operates with a low applied magnetic field can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の磁性薄膜の断面図、第2図
は従来のF e / Cr多層膜および本発明のF e
 / T a C多層膜の外部磁界による電気抵抗変化
の大きさを示すグラフ、第3図は本発明のFe層 T 
a C多層膜におけるFe層数による最大の電気抵抗変
化の大きさを示すグラフ、第4図は本発明のF e /
 T a C多層膜のFe層にB、C,Nを添加した時
の磁気抵抗効果の大きさの変化を示すグラフ、第5図は
本発明のF e / T a C多層膜のFe層にB、
C,Nを添加した時の保磁力の変化を示すグラフ、第6
図は本発明の磁気抵抗効果素子の形成プロセスを示す斜
視図である。 符号の説明
FIG. 1 is a cross-sectional view of a magnetic thin film according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of a conventional Fe/Cr multilayer film and a Fe/Cr multilayer film of the present invention.
Graph showing the magnitude of electrical resistance change due to external magnetic field of T a / T a C multilayer film, Figure 3 shows the Fe layer T of the present invention.
a Graph showing the magnitude of the maximum electrical resistance change depending on the number of Fe layers in a C multilayer film, FIG.
Figure 5 is a graph showing changes in the magnitude of the magnetoresistive effect when B, C, and N are added to the Fe layer of the Fe/TaC multilayer film of the present invention. B,
Graph showing changes in coercive force when C and N are added, No. 6
The figure is a perspective view showing the process of forming the magnetoresistive element of the present invention. Explanation of symbols

Claims (1)

【特許請求の範囲】 1、Fe層に他の組成の中間層を介して多層構造とした
磁性薄膜において、上記中間層が常磁性でかつ非絶縁物
であり、消磁状態で上記Fe層の磁化の少なくとも一部
が中間層の上下で反平行であり、上記Fe層の層数が4
層以上であることを特徴とする磁気抵抗効果膜。 2、Fe系合金層に他の組成の中間層を介して多層構造
とした磁性薄膜において、上記中間層が常磁性でかつ非
絶縁物であり、消磁状態で上記Fe系合金層の磁化の少
なくとも一部が中間層の上下で反平行であり、上記Fe
系合金層の層数が4層以上であることを特徴とする磁気
抵抗効果膜。 3、特許請求の範囲第2項に記載の磁気抵抗効果膜にお
いて、上記Fe系合金層がB、C、Nより選ばれる少な
くとも1種の元素を0.1〜5at%含むことを特徴と
する磁気抵抗効果膜。 4、特許請求の範囲第1項から第3項に記載の磁気抵抗
効果膜を磁気回路の少なくとも一部に用いた磁気抵抗効
果素子。
[Claims] 1. In a magnetic thin film having a multilayer structure with an intermediate layer having a different composition interposed between the Fe layer and the intermediate layer having a different composition, the intermediate layer is paramagnetic and non-insulating, and the magnetization of the Fe layer in a demagnetized state is are antiparallel above and below the intermediate layer, and the number of the Fe layers is 4.
A magnetoresistive film characterized by having more than one layer. 2. In a magnetic thin film having a multilayer structure with an Fe-based alloy layer interposed through an intermediate layer of another composition, the intermediate layer is paramagnetic and non-insulating, and in a demagnetized state, at least one of the magnetizations of the Fe-based alloy layer is Some of the above Fe
A magnetoresistive film characterized in that the number of alloy layers is four or more. 3. The magnetoresistive film according to claim 2, wherein the Fe-based alloy layer contains 0.1 to 5 at% of at least one element selected from B, C, and N. Magnetoresistive film. 4. A magnetoresistive element using the magnetoresistive film according to claims 1 to 3 in at least a part of a magnetic circuit.
JP2064172A 1990-03-16 1990-03-16 Magnetoresistance effect film and magnetoresistance effect element provided therewith Pending JPH03266481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2064172A JPH03266481A (en) 1990-03-16 1990-03-16 Magnetoresistance effect film and magnetoresistance effect element provided therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2064172A JPH03266481A (en) 1990-03-16 1990-03-16 Magnetoresistance effect film and magnetoresistance effect element provided therewith

Publications (1)

Publication Number Publication Date
JPH03266481A true JPH03266481A (en) 1991-11-27

Family

ID=13250379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2064172A Pending JPH03266481A (en) 1990-03-16 1990-03-16 Magnetoresistance effect film and magnetoresistance effect element provided therewith

Country Status (1)

Country Link
JP (1) JPH03266481A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6124711A (en) * 1996-01-19 2000-09-26 Fujitsu Limited Magnetic sensor using tunnel resistance to detect an external magnetic field

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6124711A (en) * 1996-01-19 2000-09-26 Fujitsu Limited Magnetic sensor using tunnel resistance to detect an external magnetic field

Similar Documents

Publication Publication Date Title
JP2654316B2 (en) Magnetoresistive sensor
US6387550B1 (en) Giant magnetoresistive material film, method of producing the same and magnetic head using the same
JPS6032330B2 (en) magnetic thin film structure
JPH104012A (en) Magnetoresistance effect element, manufacture thereof and magnetic head manufactured thereby
EP0814519B1 (en) Magnetoresistive effect device, process for fabricating the same, and magnetic head produced using the same
JPH06220609A (en) Magnetoresistance effect film, its production, magnetoresistance effect element using the film and magnetoresistance effect-type magnetic head
GB2423860A (en) Magnetic detecting device
JPH04103014A (en) magnetic head
JPS63273373A (en) Magnetoresistance sensor
JPH03266481A (en) Magnetoresistance effect film and magnetoresistance effect element provided therewith
JPH07220246A (en) Magnetoresistive film, magnetoresistive head, and magnetic recording / reproducing apparatus
JPH01238106A (en) Corrosion-resistant ferromagnetic thin-film
JP3575672B2 (en) Magnetoresistance effect film and magnetoresistance effect element
JP3634997B2 (en) Manufacturing method of magnetic head
JP3083237B2 (en) Magnetoresistive element and magnetic head
JP2833586B2 (en) Magnetoresistive element and method of manufacturing the same
JPH05175572A (en) Magnetoresistive element, magnetic head and recording / reproducing apparatus using the same
JPH0774022A (en) Multilayer magnetoresistive film and magnetic head
JP2867416B2 (en) Magnetoresistive head
JP2004178659A (en) Spin valve head and magnetic recording device
JP4051729B2 (en) Magnetoresistive material and manufacturing method thereof
JPH0778313A (en) Magnetic recording / reproducing device
JPH08153314A (en) Multilayer magnetoresistive film and magnetic head
JP3008910B2 (en) Magnetoresistive element, magnetoresistive head and magnetic recording / reproducing apparatus using the same
JPS63237204A (en) Magneto-resistance effect head