[go: up one dir, main page]

JPH03261846A - Infrared absorption enhanced spectrometer - Google Patents

Infrared absorption enhanced spectrometer

Info

Publication number
JPH03261846A
JPH03261846A JP5799290A JP5799290A JPH03261846A JP H03261846 A JPH03261846 A JP H03261846A JP 5799290 A JP5799290 A JP 5799290A JP 5799290 A JP5799290 A JP 5799290A JP H03261846 A JPH03261846 A JP H03261846A
Authority
JP
Japan
Prior art keywords
prism
incident
film
light
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5799290A
Other languages
Japanese (ja)
Inventor
Atsuo Watanabe
敦夫 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5799290A priority Critical patent/JPH03261846A/en
Priority to US07/666,221 priority patent/US5075551A/en
Publication of JPH03261846A publication Critical patent/JPH03261846A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To make the number of waves in a direction of a prism bottom coincide with the number of waves of surface electromagnetic waves to obtain a sufficient S/N ratio by uniformly pressing a film against a reflecting surface of a highly refractive prism and preventing divergence of incident light and outgoing light to the prism while an incident surface and an outgoing surface are made flat. CONSTITUTION:An object of analysis with this spectrometer is popolarization. In performing analysis, a crimp screw receiving jig 12, a crimp screw 13 and a crimp plate 14 are used to press a film 51 on which a thin film 53 being a specimen is deposited against a reflecting surface of a highly refractive prism 16. The film 51 is made of plastic such as PET and aluminum 52 has been deposited on it. The prism 16 is equipped with a flat reflecting surface while a reflecting mirror 17 and an angle adjusting mechanism 20 are used to adjust incident and outgoing angles with respect to a crystal. By thus constituting the spectrometer and turning the screw 13, the crimp plate 14 is lowered together with a cushion 41, and the PET film 51, the aluminum deposited film 52 and a specimen 53 are integrally pressed against the reflecting surface of the prism 16 so as to reduce a loss in infrared rays.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、赤外線吸収強化分光装置に関するものであり
、更に詳しくは、入射面と反射面と出射面をもつ高屈折
率プリズムの前記反射面と、自由電子から成る固体プラ
ズマとしての金属と、の間に設けた間隙に分析対象とし
ての試料を薄層として配置し、前記プリズムの入射面か
ら赤外光を入射し、反射面で全反射して出射面から抜け
させて得られる該赤外光の吸光度特性から前記試料の分
析を行うに際し、入射面から入射した前記赤外光によっ
て、前記金属の表面に電磁波を励起させるようにするこ
とにより、前記吸光度特性を向上させて分析感度を高め
るようにした赤外線吸収強化分光装置に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an infrared absorption enhanced spectrometer, and more specifically, to a high refractive index prism having an entrance surface, a reflection surface, and an exit surface. A thin layer of the sample to be analyzed is placed in the gap between the prism and the metal, which is a solid plasma made up of free electrons, and infrared light is incident on the incident surface of the prism, and the infrared light is totally reflected on the reflective surface. When analyzing the sample from the absorbance characteristics of the infrared light obtained by passing through the exit surface, the infrared light incident from the entrance surface excites electromagnetic waves on the surface of the metal. The present invention relates to an infrared absorption enhanced spectrometer that improves the absorbance characteristics and increases the analytical sensitivity.

〔従来の技術] 金属のように電子が自由に動くものを固体プラズマと見
なすことが出来る。このような固体プラズマの表面付近
には表面電磁波(表面プラズモン)が存在しうる。表面
電磁波の光による励起は高屈折率プリズムを用いるか、
金属表面に回折格子をきざむ方法により行われる。
[Prior Art] Materials in which electrons move freely, such as metals, can be considered solid plasma. Surface electromagnetic waves (surface plasmons) may exist near the surface of such solid plasma. For excitation of surface electromagnetic waves with light, use a high refractive index prism or
This is done by cutting a diffraction grating on the metal surface.

第5図は0ttoにより提案された表面電磁波の励起法
を示す説明図である。
FIG. 5 is an explanatory diagram showing a surface electromagnetic wave excitation method proposed by Otto.

1は屈折率ηpの高屈折率のプリズムで、その下面に誘
電率η(ω)の隙間2を介し誘電率ε(ω)の金属3が
置かれている。なお、ωは光の角周波数であり、誘電率
η、εはωの関数である。
Reference numeral 1 denotes a high refractive index prism having a refractive index ηp, and a metal 3 having a dielectric constant ε(ω) is placed on the lower surface of the prism through a gap 2 having a dielectric constant η(ω). Note that ω is the angular frequency of light, and the dielectric constants η and ε are functions of ω.

入射光4はプリズム1の底面で全反射され、反射光5と
なるが、プリズム中を進む光の波数(波長の逆数) k
p =ηp ・ω/C(但しCは光の速度)の、X方向
の成分kpsinθが、励起される表面電磁波の波数k
xと一致すれば、金属3の表面に表面電磁波6が励起さ
れる。
Incident light 4 is totally reflected at the bottom of prism 1 and becomes reflected light 5, but the wave number (reciprocal of wavelength) of the light traveling through the prism is k
The component kpsinθ in the X direction of p = ηp ・ω/C (where C is the speed of light) is the wave number k of the excited surface electromagnetic wave.
If x matches, surface electromagnetic waves 6 are excited on the surface of the metal 3.

表面電磁波6の波数kxと光の角周波数ωとの分散関係
は次の弐で与えられる。
The dispersion relationship between the wave number kx of the surface electromagnetic wave 6 and the angular frequency ω of light is given by the following 2.

kx =ω/C−Jεη/(ε+η)   ・・・・・
・(1)赤外線のように比較的低周波数のものでは、金
属の誘電率の絶対値1ε1は一般の誘電体の誘電率の絶
対値よりはるかに大きく上記(1)式は次のように近似
できる。
kx = ω/C-Jεη/(ε+η)...
・(1) For relatively low frequency light such as infrared rays, the absolute value of the permittivity of metal 1ε1 is much larger than the absolute value of the permittivity of general dielectric materials, and the above equation (1) can be approximated as follows. can.

kx =ω/Cr「          ・・・・・・
(2)低周波数の表面電磁波は隙間内を高導電体により
導ひかれるフォトンのようにふるまうことを示している
kx = ω/Cr "...
(2) Low-frequency surface electromagnetic waves behave like photons guided by a highly conductive material within a gap.

以上のような原理により、金属表面上の試料としての薄
層へ面方向に赤外線を透過させることが出来、薄膜試料
に対する赤外線の透過距離を増大させることにより、分
析感度を向上出来る。
According to the above principle, infrared rays can be transmitted in the plane direction to a thin layer as a sample on a metal surface, and analysis sensitivity can be improved by increasing the transmission distance of infrared rays to the thin film sample.

さて、表面電磁波については古くから研究され、高屈折
率プリズムを用いる表面電磁波の励起方法も、すでに説
明したように○ttoおよびKretsc)+n+an
nにより提案されている。
Now, surface electromagnetic waves have been studied for a long time, and the excitation method of surface electromagnetic waves using a high refractive index prism is also known as ○tto and Kretsc) + n + an
proposed by n.

厳密な意味での表面電磁波分光法は、例えばプリズム二
個を一定間隙に置いて、その間の表面を伝って来る光の
強さと入射光の強さの比を取るなどの方法によると考え
られる。しかし単プリズムを使っても0ttoまたはK
 retschmannの方法により、表面電磁波が励
起することが確認されており、面方向に光を通すことに
よる金属表面の付着した薄層(試料)の吸収を増大し、
分析感度を増大させることが可能である。
Surface electromagnetic wave spectroscopy in the strict sense can be thought of as a method in which, for example, two prisms are placed at a fixed gap and the ratio of the intensity of light traveling on the surface between them and the intensity of incident light is calculated. However, even if a single prism is used, 0tto or K
It has been confirmed that surface electromagnetic waves are excited by Retschmann's method, which increases the absorption of a thin layer (sample) attached to a metal surface by passing light in the plane direction.
It is possible to increase analytical sensitivity.

このような効果をねらって種々な試みが行なわれて来た
。S u e takaらはゲルマニュウムの半円筒プ
リズムの平面に銀を蒸着することにより、渾着面に付着
させた薄膜の赤外線吸収が強化されることを観測してい
る。またI 5hida らは入射角75°に出来るよ
う平面の入射、出射面を持つゲルマニュウムプリズムを
使って、反射面にサンプルと5での薄層を付着させ、そ
の上面に銀を藁着させる方法で赤外線吸収の増大を観測
している。
Various attempts have been made to achieve such effects. Sue Taka et al. observed that by depositing silver on the plane of a germanium semi-cylindrical prism, the infrared absorption of the thin film attached to the strapping surface was enhanced. In addition, I5hida et al. used a germanium prism with flat entrance and exit surfaces so that the incident angle was 75°, and attached a thin layer of the sample and step 5 to the reflecting surface, and then deposited silver on the top surface. An increase in infrared absorption is observed.

これらの方法はいずれも金属層は蒸着により形成させて
おり、通常の分析に採用するためには、舊着装置等の設
備を必要とする。
In all of these methods, the metal layer is formed by vapor deposition, and equipment such as a deposition device is required for use in normal analysis.

またS u e takaらの方法は島状の銀粒子によ
る赤外線吸収の強化ということで、表面電磁波も関与し
ているかも知れないが、使用する金属材料が銀で、島状
に付着させるというように一般に使用するには非常にき
びしい制約となる。
In addition, Sue Taka et al.'s method strengthens infrared absorption by island-shaped silver particles, and surface electromagnetic waves may also be involved, but the metal material used is silver and it is attached in island shapes. This is a very severe restriction for general use.

なお、従来技術を記載した文献としては、次のようなも
のを挙げることができる。
Note that the following documents can be cited as documents describing the prior art.

(1) E lectromagnetic  Wav
e  S pectroscopySurface  
5cience48 (1975) 253−287 
0North−Holland Publishing
 Company”lNTR0DUCTORY  TH
EORY  F○R5URFACE   ELECTR
OMAGNETrCWA■E  5PECTRO3CO
PYJRobertJ、BELL   R,W、ALE
XANDERJr、、  C,A、WARD  and
  r、L、TYLER(2)  Zeitschri
ft  fiir  Physik  216゜398
  4  ■O(1968)  ’Excitatio
n  ofNonradiative  5urfac
e  Plasma  Waves  1nSilve
r  by  the  Method  of  F
rustratedTotal  Reflectio
n  J ANDREAS   OTT○ (発明が解決しようとする課題〕 本発明は、このような原理にもとづく測定法において、
金属の表面、その上の薄層の試料および高屈折率のプリ
ズムの位置関係が測定可能な状態に容易に設置出来、プ
リズム中の光のプリズム底面方向の波数を表面電磁波の
波数と一致するよう容易に入射光の角度が調整出来、且
つ十分なS/N比が得られるよう赤外線の損失の少い光
学系を有する赤外線吸収強化分光装置を提供することを
目的とする。
(1) Electromagnetic Wav
e S spectroscopy Surface
5science48 (1975) 253-287
0North-Holland Publishing
Company”lNTR0DUCTORY TH
EORY F○R5URFACE ELECTR
OMAGNETrCWA■E 5PECTRO3CO
PYJRobertJ, BELL R,W,ALE
XANDER Jr,, C, A, WARD and
r, L, TYLER (2) Zeitschri
ft fiir Physik 216°398
4 ■O (1968) 'Excitatio
n ofNonradiative 5urfac
e Plasma Waves 1nSilve
r by the Method of F
RustratedTotal Reflectio
n J ANDREAS OTT○ (Problem to be solved by the invention) The present invention provides a measurement method based on such a principle,
It can be easily installed in a state where the positional relationship between the metal surface, the thin sample layer on it, and the high refractive index prism can be measured, and the wave number of the light in the prism toward the bottom of the prism can be made to match the wave number of the surface electromagnetic waves. It is an object of the present invention to provide an infrared absorption enhanced spectrometer having an optical system with low infrared loss so that the angle of incident light can be easily adjusted and a sufficient S/N ratio can be obtained.

〔課題を解決するための手段〕[Means to solve the problem]

高屈折プリズムを使って金属など自由電子から戒る固体
プラズマの表面に表面電磁波を励起させ、光が固体プラ
ズマ表面に付着した薄層内を面方向に進行するようふる
まわせることにより、薄層による光の吸収を増し分析感
度を増強させる表面電磁波分光法において、 i ) 高屈折7”リズムの反射面にフィルムが均一に
押しつけられるよう保持出来る形状で、プリズムへの入
射光、出射光が出来る限り発散することがないよう、プ
リズムへの入射面及び出射面が平面であり、 ii)分析する薄膜はフレキシブルなフィルム(例えば
50μm位の厚さのポリエチレンテレフタレートフィル
ム)に金属を500A位蒸着(例えばアルミニュウムを
蒸着)した金属蒸着面に付着され、 1ii)高屈折プリズムの反射面と分析する薄膜を付着
した金属蒸着フィルムを圧着する機構を有し、iv)高
屈折率プリズムの反射面に対する入射角を変更出来る調
整機構を有する表面電磁波Gこよる赤外線吸収強化分光
装置を構成した。
A high-refraction prism is used to excite surface electromagnetic waves on the surface of a solid plasma that is protected from free electrons such as metals, and the light travels in the plane of the thin layer attached to the solid plasma surface. In surface electromagnetic wave spectroscopy, which increases light absorption and enhances analysis sensitivity, i) the shape allows the film to be held uniformly against the reflective surface with a high refraction 7" rhythm, so that the light entering and exiting the prism is as much as possible. In order to prevent divergence, the entrance and exit surfaces of the prism are flat, and ii) The thin film to be analyzed is a flexible film (for example, a polyethylene terephthalate film with a thickness of about 50 μm) with a metal deposited at about 500A (for example, aluminum). 1ii) has a mechanism for pressure-bonding the metallized film on which the thin film to be analyzed is attached to the reflective surface of the high refractive index prism; We have constructed an infrared absorption enhanced spectrometer based on surface electromagnetic waves G that has a changeable adjustment mechanism.

(作用〕 金属の誘電率ε=ε、+jε2(但し、iは虚数)は低
周波になるに従ってその絶対値は増大する。
(Function) The absolute value of the metal dielectric constant ε=ε, +jε2 (where i is an imaginary number) increases as the frequency becomes lower.

赤外線の領域では 一ε1〉η夏・・・・・・(3) となり、表面電磁波の分散は、前記式(2)のように近
似出来る。この間係は式(3)を満足する金属であれば
良く、もう少し広く解釈すれば、金属でなくても光が試
料の薄膜を通して洩れない状態(例えば薄膜より低い屈
折率の材料が薄膜の裏面と、接していてもよい。)でも
この関係は満足出来る。
In the infrared region, ε1>η summer (3), and the dispersion of surface electromagnetic waves can be approximated as shown in equation (2) above. This relationship may be any metal that satisfies Equation (3), but if we interpret it a little more broadly, it does not need to be a metal to ensure that light does not leak through the thin film of the sample (for example, if a material with a lower refractive index than the thin film is connected to the back surface of the thin film). ), but this relationship is satisfactory.

式(2)を薄膜の複素屈折率を使って表現すると次のよ
うになる。
Expression (2) using the complex refractive index of the thin film is as follows.

kx =ω/C(ns −i ks)   ’   −
(4)ここで(ns−4ks)は薄膜サンプルの複素屈
折率で、nsは複素屈折率の実数部、ksは虚数部で、
消衰係数ともいわれている。
kx = ω/C(ns −i ks)' −
(4) Here, (ns-4ks) is the complex refractive index of the thin film sample, ns is the real part of the complex refractive index, and ks is the imaginary part.
Also called extinction coefficient.

プリズム(屈折率np)内を進む光の波数kpのプリズ
ム表面方向の成分kpsin θが、表面電磁波の波数
と等しくなるためには、それぞれの波数が等しいと置い
て、 kpsln  θ= n p・(ω/ C)sinθ=
 ω/ C(n s〜1ks) 整理すると sin  θ=  −(ns −i ks)     
 −(5)np が得られる。ks<nsの場合は sin fl ’E ns / np        
  ・・・・・・(6)としてよい。
In order for the component kpsin θ of the wave number kp of light traveling inside the prism (refractive index np) in the direction of the prism surface to be equal to the wave number of the surface electromagnetic wave, assuming that each wave number is equal, kpsln θ= n p・( ω/C) sinθ=
ω / C (ns ~ 1ks) If we rearrange, sin θ = - (ns - iks)
-(5) np is obtained. If ks<ns, sin fl 'E ns/np
...(6) may be used.

一般のサンプル(分析対象とする試料)では、n5=1
.5位のものが多いので、ゲルマニュウムのようにnp
=4のプリズムでは、θ= 22.5゜位としKR3−
5のようにnp=2.4のプリズムでは、θ=39°位
とし、サンプルの屈折率に合せて入射角を微調整出来る
ようにする。
For general samples (samples to be analyzed), n5=1
.. There are many things in the 5th place, so np like germanium
= 4 prism, θ = 22.5° and KR3-
In a prism with np=2.4 as in No. 5, θ=about 39°, so that the angle of incidence can be finely adjusted in accordance with the refractive index of the sample.

高屈折率のプリズム反射面と金属平面との間の間隙をプ
リズム表面からのエハネッセント波で金属表面の表面を
磁波を励起させるだけ、せまくすることは、非常に困難
である。高屈折率のプリズム表面からのエハネツセント
波(指数関数的に消衰する電磁波)により金属平面を有
効に励起させるためには赤外線の波長領域でも、0.1
μmオーダの距離に接近させなくてはならない。
It is extremely difficult to narrow the gap between the high-refractive-index prism reflective surface and the metal plane to the extent that magnetic waves are excited on the metal surface by the ehanescent wave from the prism surface. In order to effectively excite a metal plane with an exponential wave (electromagnetic wave that decays exponentially) from a prism surface with a high refractive index, even in the infrared wavelength region, it is necessary to
They must be brought close to each other at a distance on the order of μm.

まずプリズムも金属面も0.1μmオーダの平坦度で面
を仕上げなくてはならない。
First, both the prism and the metal surfaces must be finished with flatness on the order of 0.1 μm.

次にたとえそれだけの平坦度で仕上げたとしても両面に
0.1μm径以上のパーティクルの附着かあってはなら
ない。一つでもその大きさのパーティクルがあるとプリ
ズムと金属の平面をそれによりへだてられることを意味
する。
Next, even if the surface is finished with such flatness, there must be no adhesion of particles with a diameter of 0.1 μm or more on both surfaces. This means that if there is even one particle of that size, the prism and the metal plane can be separated by it.

半導体の超LSIの製造プロセスではそれ位の清浄度は
得られているがこれは極度に管理された環境に於いて実
現されている。そのような環境でなくても数十パーセン
ト以上の面積が0.1μm以内で接触している状態を常
に実現するためにはいずれかの面がフレキシブルで一方
の面に柔軟に従うものでなくてはならない。
A similar degree of cleanliness has been achieved in the semiconductor VLSI manufacturing process, but this is achieved in an extremely controlled environment. Even in such an environment, one of the surfaces must be flexible and follow the other surface in order to always achieve a state in which more than several tens of percent of the area is in contact within 0.1 μm. No.

プリズムは一般には結晶を使用するので柔軟性は期待出
来ない。一方金属も通常は硬いもので柔軟性は期待でき
ないが、金属の光学的な役割は数百オングストロームの
厚みがあれば十分である。
Since prisms generally use crystals, flexibility cannot be expected. On the other hand, metals are usually hard and cannot be expected to be flexible, but a thickness of several hundred angstroms is sufficient for the optical role of metals.

従ってフレキシブルなプラスチックフィルムの表面に例
えば500人位金属を蒸着したフィルムも半無限の金属
表面と光学的に同しふるまいをする。
Therefore, a flexible plastic film with, for example, 500 metals deposited on its surface behaves optically in the same way as a semi-infinite metal surface.

プリズムの反射面と金属表面との間を(0,1μm以下
で接触させることは、金属をフレキシブルなフィルムに
500人位蒸着したものを反射面へ圧着することで解決
出来る。もしフレキシブルなフィルムが薄く背後から圧
力をかける圧着板の面が影響する場合は圧着板にクツシ
ョン層をもうけ圧力が面に対し一様になるようにすれば
良い。
Contact between the reflective surface of the prism and the metal surface (within 0.1 μm or less can be achieved by evaporating about 500 metals onto a flexible film and press-bonding it to the reflective surface.If the flexible film If the surface of the pressure bonding plate, which is thin and pressure is applied from behind, is affected, it is sufficient to provide a cushion layer on the pressure bonding plate so that the pressure is uniform on the surface.

本装置を使用する分光光度計では、試料を置いたり、測
定のためのいろいろなアクセサリを置く試料室は、一定
の光路を持ち、センタフォーカス(試料室の光路の中央
部に焦点を持つ)であるのが−船釣である。従って、本
装置も入射側と出射側が対称でプリズムの反射点に焦点
が来るのが望ましい。本装置は入射角が可変でかつ反射
点に焦点が来るような光学系を取っている。
In a spectrophotometer using this device, the sample chamber in which the sample is placed and various accessories for measurement are placed has a fixed optical path and a center focus (the focus is in the center of the optical path of the sample chamber). There is - boat fishing. Therefore, it is desirable that the incident side and the output side of this device be symmetrical and that the focal point be at the reflection point of the prism. This device has an optical system that allows the angle of incidence to be varied and focuses on the reflection point.

[実施例] 次に図を参照して本発明の詳細な説明する。[Example] The present invention will now be described in detail with reference to the drawings.

第1図は本発明の一実施例を示す正面図、第2図は同側
面図、である。
FIG. 1 is a front view showing one embodiment of the present invention, and FIG. 2 is a side view of the same.

これらの図において、11はベース板、12は圧着ネジ
受、13は圧着ネジ、■4は圧着板、41はクツション
、51はPET(ポリエチレンテレフタレート)フィル
ム、52はアルミニュウム蒸着膜、53は分析対象とし
ての試料(サンプル)、16は高屈折率プリズム、■7
は反射鏡、18は入射光、19は出射光、20は入射、
出射角調整機構、である。
In these figures, 11 is a base plate, 12 is a crimp screw receiver, 13 is a crimp screw, 4 is a crimp plate, 41 is a cushion, 51 is a PET (polyethylene terephthalate) film, 52 is an aluminum vapor deposited film, and 53 is an analysis target 16 is a high refractive index prism, ■7
is a reflecting mirror, 18 is incident light, 19 is output light, 20 is incident light,
This is an output angle adjustment mechanism.

以下、槽底を簡単に説明する。11がベース板で、本装
置の主要部が配置されている。入射光18及び出射光1
9の光軸と、外部装置との光軸を合せる調整機構20が
外部にもうけられている。
The tank bottom will be briefly explained below. Reference numeral 11 denotes a base plate, on which the main parts of the device are arranged. Incident light 18 and output light 1
An adjustment mechanism 20 is provided externally to align the optical axis of the device 9 with that of an external device.

また本装置の入射光又は反射光に対しP偏光の光が選択
出来るよう偏光子が本装置以外の光軸上に置かれP偏光
を選択出来るようになっている。分析は一般乙こP偏光
を対象として行われる。
In addition, a polarizer is placed on the optical axis other than this device so that P-polarized light can be selected for incident light or reflected light of this device, so that P-polarized light can be selected. The analysis is performed for general P-polarized light.

圧着ネジ受け12.圧着ネジ13.圧着板14が試料の
薄膜53の付着した金属を蒸着されたフィルム51を高
屈折率プリズム16の反射面へ圧着する機構である。5
1は試料53を担持するためのフィルムで、PETのよ
うZプラスチックフィルムから戒り、アルミニュウムの
ような金属が蒸着52されている。16は高屈折率のプ
リズムで、フレキシブルな金属の蒸着面52と接合する
平面な反射面と、入射光と反射光が屈折率4のプリズム
では、22.5度位、屈折率2.4のプリズムでは、3
9度位の、入射角になるよう光が結晶内に入るような形
状を持つ。
Crimp screw receiver 12. Crimp screw 13. A pressure-bonding plate 14 is a mechanism for pressure-bonding a film 51 on which a thin film 53 of a sample is attached and a metal vapor-deposited film 51 is attached to a reflective surface of a high refractive index prism 16. 5
1 is a film for supporting a sample 53, which is different from a Z plastic film such as PET, and has a metal such as aluminum vapor-deposited 52 thereon. Reference numeral 16 denotes a high refractive index prism, with a flat reflective surface that joins the flexible metal vapor deposition surface 52, and a prism with a refractive index of 4 where the incident light and reflected light are approximately 22.5 degrees, and the refractive index is 2.4. In prism, 3
It has a shape that allows light to enter the crystal at an incident angle of about 9 degrees.

17は水平に入射及び出射する光を必要な角度をつけて
結晶内を通過させるための反射鏡で、20の角調整機構
により、結晶への人、出射角を調整出来る。
Reference numeral 17 is a reflecting mirror for allowing horizontally incident and emitted light to pass through the crystal at the required angle, and the angle adjustment mechanism 20 allows adjustment of the angle of light entering and exiting the crystal.

本装置の動作は既に明らかなように、圧着ネジ13を回
すことにより、圧着板14をクノンヨン41と共に降下
させ、PETフィルム51、アル≧ニュウム蒸着#52
、試料53を一体として高屈折率プリズム16の反射面
に押しつけ、入射、出射角調整機構20を用いて入射光
18の入射角を調整すれぽよいわけである。
As is already clear, the operation of this device is as follows: by turning the crimp screw 13, the crimp plate 14 is lowered together with the bonding plate 41, and the PET film 51, Al≧Nium evaporation #52,
, the sample 53 is pressed as one body against the reflective surface of the high refractive index prism 16, and the incident angle of the incident light 18 is adjusted using the incident/output angle adjustment mechanism 20.

本装置による分析例を紹介する。We will introduce an example of analysis using this device.

75μm厚のポリエステルフィルムに500人位アルミ
ニュウムを蒸着した基材を用い、アルミニュウム蒸着面
にアルキド樹脂を1000人の厚みになるよう塗布した
。アルキド樹脂をトルエン中に1wt%溶かし、溶液を
マイクロシリンジで一定量計測し、アルミニュウム蒸着
面に一様になるよう溶液をのばした。
A base material in which about 500 layers of aluminum was deposited on a polyester film having a thickness of 75 μm was used, and an alkyd resin was applied to the aluminum-deposited surface to a thickness of 1000 layers. An alkyd resin was dissolved in toluene at 1 wt %, a certain amount of the solution was measured with a microsyringe, and the solution was spread uniformly over the aluminum evaporated surface.

このサンプルを4cm−’32回スキャンDTGS検出
器を用いて一般の正反射法により測定したスペクトルを
第3図に示す。
FIG. 3 shows the spectrum of this sample measured by a general specular reflection method using a 4 cm-'32 scan DTGS detector.

同しサンプルを同じ条件で本装置を用いて測定したスペ
クトルを第4図に示す。
FIG. 4 shows the spectrum of the same sample measured using this apparatus under the same conditions.

本装置により得たスペクトルは明らかにノイズが少なく
、小さいピークも明確に分かるが、正反射法による従来
のスペクトルは、ノイズが大きく、小さいピークの存在
が判別出来ない。1734cm−’附近の最大のピーク
で吸光度を比較すると、本装置で得られた1734cm
−’のピークは、正反射法で得られたピークの65倍の
吸光度が得られている。吸光度だけで感度を比較すれば
、本装置により65倍感度が改善されている。
The spectrum obtained by this device clearly has less noise and small peaks are clearly visible, but the conventional spectrum obtained by the specular reflection method has a lot of noise and the presence of small peaks cannot be determined. Comparing the absorbance at the maximum peak near 1734 cm-', the 1734 cm obtained with this device is
-' peak has an absorbance 65 times that of the peak obtained by the specular reflection method. If we compare the sensitivity based on absorbance alone, this device improves the sensitivity by 65 times.

〔発明の効果] 以上、説明したように、本発明によれば、金属の表面、
その上の薄層の試料、および高屈折率のプリズムの位置
関係が測定可能な状態に容易に設置でき、プリズム中の
光のプリズム底面方向の波数を表面電磁波の波数と一致
するよう容易に入射光の角度が調整でき、かつ十分なS
/N比の得られる、赤外線損失の少ない赤外線吸収強化
分光装置を実現できるという利点がある。
[Effects of the Invention] As explained above, according to the present invention, the surface of the metal,
It can be easily set up in a state where the positional relationship between the thin sample layer on top of the sample and the high refractive index prism can be measured, and the wave number of the light in the prism direction toward the bottom of the prism can be easily made to match the wave number of the surface electromagnetic waves. Adjustable light angle and sufficient S
This has the advantage that it is possible to realize an infrared absorption enhanced spectrometer with low infrared loss and a high /N ratio.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す正面図、第2図は同側
面図、第3図は従来の一般の正反射法により測定した分
析結果を示すスペクトル図、第4図は本発明による装置
を用いて測定した分析結果を示すスペクトル図、第5図
は表面電磁波の励起方法を示す説明図、である。 符号の説明 11・・・ベース板、12・・・圧着ネジ受、13・・
・圧着ネジ、14・・・圧着板、41・・・り、ジョン
、51・・・PET(ポリエチレンテレフタレート)フ
ィルム、52・・・アルミニュウム蒸着膜、53・・・
分析対象としての試料(サンプル)、16・・・高屈折
率プリズム、17・・・反射鏡、18・・・入射光、1
9・・・出射光、20・・・入射、出射角調整機構、第
5 図
Fig. 1 is a front view showing one embodiment of the present invention, Fig. 2 is a side view of the same, Fig. 3 is a spectrum diagram showing the analysis results measured by the conventional general specular reflection method, and Fig. 4 is a diagram showing the present invention. FIG. 5 is an explanatory diagram showing a method of excitation of surface electromagnetic waves. Explanation of symbols 11...Base plate, 12...Crimp screw receiver, 13...
- Crimping screw, 14... Crimping plate, 41... Ri, John, 51... PET (polyethylene terephthalate) film, 52... Aluminum vapor deposited film, 53...
Sample as analysis target, 16... High refractive index prism, 17... Reflecting mirror, 18... Incident light, 1
9... Outgoing light, 20... Incoming and outgoing angle adjustment mechanism, Fig. 5

Claims (1)

【特許請求の範囲】 1)入射面と反射面と出射面をもつ高屈折率プリズムの
前記反射面と、自由電子から成る固体プラズマとしての
金属と、の間に設けた間隙に分析対象の試料を薄層とし
て配置し、前記プリズムの入射面から赤外光を入射し、
反射面で全反射して出射面から抜けさせて得られる該赤
外光の吸光度特性から前記試料の分析を行うに際し、入
射面から入射した前記赤外光が、前記金属の表面及び前
記試料に表面に電磁波を励起させるようにすることによ
り、前記吸光度特性を向上させて分析感度を高めるよう
にした赤外線吸収強化分光装置において、 前記試料は、可撓性のあるポリエチレンテレフタレート
フィルムの如きフィルムに、前記固体プラズマとしての
金属であるアルミニュウムの如き金属を蒸着して成る金
属蒸着面に、付着させ、前記プリズムの反射面は、前記
試料を付着された前記フィルムの金属蒸着面が圧着機構
により均一に押しつけられるのを保持できる形状とし、
かつプリズムの入射面への入射光および出射面からの出
射光が発散しないように、前記入射面および出射面を平
面とし、 更に前記プリズムの反射面に対する赤外光の入射角度を
調整できる入射角調整機構を具備したことを特徴とする
赤外線吸収強化分光装置。 2、請求項1に記載の赤外線吸収強化分光装置において
、前記プリズムの入射面から入射した入射光が、前記プ
リズムの反射面に押しつけられている前記フィルムの金
属蒸着面上の試料に到達した所で焦点を結ぶように、入
射光を入射させることを特徴とする赤外線吸収強化分光
装置。
[Scope of Claims] 1) A sample to be analyzed is placed in a gap provided between the reflective surface of a high refractive index prism having an incident surface, a reflective surface, and an exit surface and the metal as a solid plasma composed of free electrons. is arranged as a thin layer, and infrared light is incident from the entrance surface of the prism,
When analyzing the sample based on the absorbance characteristics of the infrared light obtained by total reflection on the reflecting surface and passing through the output surface, the infrared light incident from the incident surface is transmitted to the surface of the metal and the sample. In an infrared absorption enhanced spectrometer that improves the absorbance characteristics and increases analytical sensitivity by exciting electromagnetic waves on the surface, the sample is placed on a flexible film such as a polyethylene terephthalate film, A metal such as aluminum as the solid plasma is deposited on the metal evaporation surface, and the reflective surface of the prism is formed by applying a pressure bonding mechanism to the metal evaporation surface of the film to which the sample is attached evenly. It has a shape that can hold what is pressed against it,
The entrance surface and the exit surface are made flat so that the incident light on the entrance surface of the prism and the exit light from the exit surface do not diverge, and the incident angle is such that the incidence angle of the infrared light with respect to the reflective surface of the prism can be adjusted. An infrared absorption enhanced spectrometer characterized by being equipped with an adjustment mechanism. 2. In the infrared absorption enhanced spectroscopy device according to claim 1, the point where the incident light incident from the entrance surface of the prism reaches the sample on the metal-deposited surface of the film that is pressed against the reflective surface of the prism. An infrared absorption enhanced spectrometer characterized by making incident light incident so that it is focused at .
JP5799290A 1990-03-12 1990-03-12 Infrared absorption enhanced spectrometer Pending JPH03261846A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5799290A JPH03261846A (en) 1990-03-12 1990-03-12 Infrared absorption enhanced spectrometer
US07/666,221 US5075551A (en) 1990-03-12 1991-03-07 Infrared absorption enhanced spectroscopic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5799290A JPH03261846A (en) 1990-03-12 1990-03-12 Infrared absorption enhanced spectrometer

Publications (1)

Publication Number Publication Date
JPH03261846A true JPH03261846A (en) 1991-11-21

Family

ID=13071504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5799290A Pending JPH03261846A (en) 1990-03-12 1990-03-12 Infrared absorption enhanced spectrometer

Country Status (1)

Country Link
JP (1) JPH03261846A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04282435A (en) * 1990-09-26 1992-10-07 Gec Marconi Ltd Optical sensor
JPH05288672A (en) * 1992-04-06 1993-11-02 Nippon Laser Denshi Kk Differential-motion detecting method of material to be sensed
JPH05322746A (en) * 1992-05-26 1993-12-07 Hitachi Ltd Infrared spectrum measuring method using attenuated total reflection prism
JPH0712716A (en) * 1993-06-29 1995-01-17 Atsuo Watanabe Infrared ray absorption reinforcing spectrometer
JP2000019104A (en) * 1998-04-28 2000-01-21 Fuji Photo Film Co Ltd Surface plasmon sensor
JP2003240705A (en) * 2001-12-14 2003-08-27 Fuji Photo Film Co Ltd Measurement chip

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04282435A (en) * 1990-09-26 1992-10-07 Gec Marconi Ltd Optical sensor
JPH05288672A (en) * 1992-04-06 1993-11-02 Nippon Laser Denshi Kk Differential-motion detecting method of material to be sensed
JPH05322746A (en) * 1992-05-26 1993-12-07 Hitachi Ltd Infrared spectrum measuring method using attenuated total reflection prism
JPH0712716A (en) * 1993-06-29 1995-01-17 Atsuo Watanabe Infrared ray absorption reinforcing spectrometer
JP2000019104A (en) * 1998-04-28 2000-01-21 Fuji Photo Film Co Ltd Surface plasmon sensor
JP2003240705A (en) * 2001-12-14 2003-08-27 Fuji Photo Film Co Ltd Measurement chip

Similar Documents

Publication Publication Date Title
Gay et al. Surface Wave Generation and Propagation on Metallic Subwavelength Structures Measured<? format?> by Far-Field Interferometry
JP7203431B2 (en) Field effect tunable epsilon near zero absorber
US3436159A (en) Internal reflection element for spectroscopy with film optical cavity to enhance absorption
Nath et al. Optical Salisbury screen with design-tunable resonant absorption bands
JPH03261846A (en) Infrared absorption enhanced spectrometer
US5075551A (en) Infrared absorption enhanced spectroscopic apparatus
Handke et al. External reflection Fourier transform infrared spectroscopy: theory and experimental problems
CN101451952A (en) Method implementing wideband optical spectrum surface plasma resonance
RU2173837C2 (en) Wideband spectrometer of surface electromagnetic waves
CN110703371B (en) Semiconductor super-surface electromagnetic wave absorber and preparation method thereof
Monard et al. Optical properties of silver, gold and aluminum ultra-thin granular films evaporated on oxidized aluminum
GB2192070A (en) Optical attenuator
US7317530B2 (en) Combined spatial filter and relay systems
KR100990324B1 (en) Polarization independent optical taps
Konzelmann et al. Wavelength dependence of the second harmonic generation of percolating gold thin films
US8436996B2 (en) Apparatus and method for enhancing the electromagnetic signal of a sample
Mattioli et al. Substrateless micrometric metal mesh for mid-infrared plasmonic sensors
George et al. Nanowire grid polarizers for mid-and long-wavelength infrared applications
Primeau et al. Effect of the metal film thickness on surface‐plasmon‐enhanced Raman scattering in an attenuated total reflection experiment
Abed et al. Designing High Reflectivity Omnidirectional Coating of Mirrors for Near Infrared Spectrum (700-2500 nm)
JPH0712716A (en) Infrared ray absorption reinforcing spectrometer
George et al. Improving antireflection in near-infrared wavelength range by double-sided planar coating on common substrates
Berezhinskiĭ et al. Size effects in the internal reflection in gold cluster films in polarization modulation experiments
Alieva et al. Giant enhancement of sum-frequency generation upon excitation of a surface plasmon-polariton
Wang et al. HfO2/SiO2 multilayer based reflective and transmissive optics from the IR to the UV