JPH03261662A - Ceramic composition and production of ceramic member using same composition - Google Patents
Ceramic composition and production of ceramic member using same compositionInfo
- Publication number
- JPH03261662A JPH03261662A JP2056509A JP5650990A JPH03261662A JP H03261662 A JPH03261662 A JP H03261662A JP 2056509 A JP2056509 A JP 2056509A JP 5650990 A JP5650990 A JP 5650990A JP H03261662 A JPH03261662 A JP H03261662A
- Authority
- JP
- Japan
- Prior art keywords
- ceramic
- powder
- organic binder
- water
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、セラミック粒子、金属粒子、バインダ等を
含むセラミック組成物及び該組成物によるセラミック部
材の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ceramic composition containing ceramic particles, metal particles, a binder, etc., and a method for manufacturing a ceramic member using the composition.
従来、窒化珪素質セラくノクスの泥しよう鋳込み成形方
法として、特開昭64−5977号公報に開示されたも
のがある。該成形方法は窒化珪素質セラミ7クスの泥し
ように解膠剤としてポリアクリル酸のアンモニウム塩を
泥しようの粉末に対し0.1〜0.7重量%添加し、且
つバインダとしてアクリルエマルジョンを泥しよう中に
添加して鋳込み成形したものである。A conventional method for molding silicon nitride ceramics using slurry casting is disclosed in Japanese Patent Application Laid-Open No. 64-5977. This molding method involves adding 0.1 to 0.7% by weight of ammonium salt of polyacrylic acid as a deflocculant to the slurry powder of silicon nitride ceramic 7x, and adding an acrylic emulsion as a binder to the slurry powder. It is added to the liquid and molded by casting.
また、セラくツクス製品の製法として、特開昭59−1
74571号公報に開示されたものがある。該セラミッ
クス製品の製法は、セラミックス製造用原料と有機バイ
ンダとの混合物を成形し、脱脂し、焼結してセラミック
ス製品を製造するものであり、上記有機バインダの必須
成分として熱硬化製樹脂を用い、該熱硬化製樹脂を含ん
だ有機バインダと上記セラミックス製造用原料との混合
物を、この混合物の軟化点以上に加熱して流動性を付与
し、該混合物の軟化点以下の温度で所望の形状に形威し
、次いで脱脂して焼結したものである。In addition, as a manufacturing method for Serakkusu products, JP-A-59-1
There is one disclosed in Japanese Patent No. 74571. The method for manufacturing ceramic products involves molding, degreasing, and sintering a mixture of ceramic manufacturing raw materials and an organic binder, and using thermosetting resin as an essential component of the organic binder. A mixture of an organic binder containing the thermosetting resin and the raw material for producing ceramics is heated to a temperature above the softening point of the mixture to impart fluidity, and a desired shape is formed at a temperature below the softening point of the mixture. It was shaped, then degreased and sintered.
しかしながら、前掲特開昭64−5.977号公報に開
示された成形方法は、窒化珪素質の泥しようにアクリル
エマルジョン等を添加し、アクリルエマルジョンの添加
量を坩加させても他のバインダに比較して泥しようの粘
度が大きく変化することなく、保形性を改善するもので
あるが、該泥しようを鋳込んだ状態から吸水及び焼成ま
での工程を通して寸法変化をできるだけ小さくする(こ
ろ不ソトシェイプ性)という観点では、該効果を発揮で
きない。しかるに、咳底形方法では、バインダ量が少な
いために吸水時に1〜2%、窒化珪素を含んだ泥しよう
であるために、焼成時に15〜20%の寸法収縮が発生
するからである。However, in the molding method disclosed in the above-mentioned Japanese Patent Application Laid-open No. 64-5.977, an acrylic emulsion or the like is added to a silicon nitride slurry, and even if the amount of the acrylic emulsion is In comparison, the viscosity of the slurry does not change significantly and its shape retention is improved, but the dimensional change is minimized throughout the process from the state where the slurry is cast to water absorption and firing (roller-free). This effect cannot be exhibited from the viewpoint of shapeability). However, in the cough-bottom method, since the amount of binder is small and the slurry contains 1-2% silicon nitride when water is absorbed, dimensional shrinkage of 15-20% occurs during firing.
また、前掲特開昭59−174571号公報に開示され
たセラミックス製品の製法は、アクリル樹脂を含む熱硬
化性の有機バインダを用いて所定のプロセスを施すこと
により、欠陥の発生を抑制するものである。従って、セ
ラミックス製品の製造工程において、熱硬化性の有機バ
インダが軟化点以上に加熱した時に、膨張率がないか或
いは少ないものになる。Furthermore, the manufacturing method for ceramic products disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 59-174571 suppresses the occurrence of defects by performing a prescribed process using a thermosetting organic binder containing an acrylic resin. be. Therefore, when the thermosetting organic binder is heated above its softening point in the manufacturing process of ceramic products, it has no or a small expansion coefficient.
この発明の目的は、上記の課題を解決することであり、
金属Si粉末をヘースにする粉末に、多量のアクリルバ
インダを添加したものを底形用泥しようとして用い、鋳
込み成形後、吸水、乾燥、脱バインダを行い、次いで窒
素ガス中で反応焼成を行い、それによって多量添加によ
り、吸水乾燥時の寸法収縮が極めて小さく抑えられ、ま
た焼成時には51粒子と窒素ガスとの反応で窒化珪素S
i3N4が生成され、これに寸法変化は伴わず、従って
全工程を通して寸法収縮量が極めて小さいセラミックス
を得ることができるセラミックスの製造方法を提供する
ことである。The purpose of this invention is to solve the above problems,
A large amount of acrylic binder was added to a powder made of metal Si powder, and a large amount of acrylic binder was added to the bottom shape. After casting, water absorption, drying, and binder removal were performed, followed by reaction firing in nitrogen gas. By adding a large amount of it, dimensional shrinkage during water absorption and drying can be suppressed to an extremely small level, and during firing, the reaction between the 51 particles and nitrogen gas causes silicon nitride S.
It is an object of the present invention to provide a method for producing ceramics in which i3N4 is produced, which is not accompanied by dimensional changes, and therefore can produce ceramics with extremely small dimensional shrinkage throughout the entire process.
この発明は、上記の目的を遠戚するために、次のように
構成されている。即ち、この発明は、金属S1粉末又は
該粉末にセラミック粉末を加えた混合粉末、前記金属S
i粉末又は前記混合粉末との合計重量の6〜25重量%
の添加量範囲の有機バインダ、解膠剤及び水を含むこと
を特徴とするセラミックU戒物に関する。In order to achieve the above object, the present invention is configured as follows. That is, the present invention provides metal S1 powder or a mixed powder obtained by adding ceramic powder to the metal S1 powder,
6 to 25% by weight of the total weight of i powder or the above mixed powder
The present invention relates to a ceramic U precept characterized by containing an organic binder, a deflocculant, and water in an amount range of .
このセラミック組成物において、前記セラごツク粉末は
Si、N、 、チタン酸アルミニウム、ムライト、ジル
コニア、チタン酸カリウムのうち少なくとも1種以上を
含んでいるものである。In this ceramic composition, the ceramic powder contains at least one of Si, N, aluminum titanate, mullite, zirconia, and potassium titanate.
このセラミック組成物において、前記有機バインダは熱
可塑性アクリル樹脂である。In this ceramic composition, the organic binder is a thermoplastic acrylic resin.
或いは、この発明は、金属Si粉末又は該粉末にセラミ
ック粉末を加えた混合粉末との合計重量の6〜25重量
%の添加量範囲の有機バインダ、解膠剤及び水を含むセ
ラミック組成物を多孔質材製型上の緻密質セラミック焼
結体の筒体内に注入して吸水固化する工程、吸水固化し
た組成物を加熱して前記有機バインダを揮発除去する工
程、及び揮発除去した組成物を窒素ガス雰囲気中で焼成
して肋記筒体と一体構造の焼結体を製造する工程、から
成るセラミック部材の製造方法に関する。Alternatively, the present invention provides a porous ceramic composition containing an organic binder, a deflocculant, and water in an amount ranging from 6 to 25% by weight based on the total weight of a metal Si powder or a mixed powder obtained by adding a ceramic powder to the metal Si powder. A process of injecting into a cylinder of a dense ceramic sintered body on a material mold to absorb water and solidify it, a process of heating the water-absorbed and solidified composition to volatilize and remove the organic binder, and a process of removing the volatilized composition with nitrogen. The present invention relates to a method for producing a ceramic member, which comprises a step of producing a sintered body integrally structured with an inscribed cylinder by firing in a gas atmosphere.
この発明によるセラミック組成物及び該Mi威放物よる
セラミック部材の製造方法は、以上のように構成されて
おり、次のように作用する。The ceramic composition according to the present invention and the method for manufacturing a ceramic member using the Mi-like substance are constructed as described above, and operate as follows.
このセラミック&ll戒物は、有機バインダの添加量を
該有機バインダと金属Si粉末又は混合粉末の合計重量
の6〜25重量%の範囲内としたので、鋳込み成形法に
おいて成形時の収縮率を、例えば、従来の1/10以下
に抑えられ、焼成時には、Si粒子と窒素ガスとの反応
で窒化珪素Si3N4が生成され、該窒化珪素S i
3 N−に寸法変化は伴わず、従って全工程を通して寸
法収縮量が極めて小さいセラミック部材を得ることがで
きる。In this Ceramic &ll Kaimono, the amount of organic binder added was within the range of 6 to 25% by weight of the total weight of the organic binder and metal Si powder or mixed powder, so the shrinkage rate during molding in the cast molding method was For example, it can be suppressed to 1/10 or less of the conventional value, and during firing, silicon nitride Si3N4 is generated by the reaction between Si particles and nitrogen gas, and the silicon nitride Si
There is no dimensional change in 3N-, and therefore a ceramic member with extremely small dimensional shrinkage throughout the entire process can be obtained.
また、このセラミック組成物において、有機バインダは
熱可塑性アクリル樹脂であるので、有機バインダは軟化
点以上に加熱した時に膨張率が大きくなり、この特性を
利用して寸法収縮量が極めて小さいセラミック部材を得
ることができる。In addition, since the organic binder in this ceramic composition is a thermoplastic acrylic resin, the organic binder has a large expansion coefficient when heated above its softening point, and this property can be used to create ceramic members with extremely small dimensional shrinkage. Obtainable.
或いは、この発明によるセラミック部材の製造方法は、
上記セラミック&Il放物を多孔質材製型上の緻密質セ
ラミック焼結体の筒体内に注入して吸水固化し、吸水固
化した組成物を加熱して前記有機バインダを揮発除去し
、次いで揮発除去した組成物を窒素ガス雰囲気中で焼成
して前記筒体と一体構造の焼結体を製造したので、上記
セラミック組成物を鋳込み成形後、吸水、乾燥、脱バイ
ンダを行い、次いで窒素ガス中で反応焼成を行い、それ
によって熱軟化性有機バインダの多量添加により、吸水
乾燥時の寸法収縮が極めて小さく抑えられ、焼成時には
、Si粒子と窒素ガスとの反応で窒化珪素5i)Nnが
生成される。従って、全工程を通して寸法収縮量が極め
て小さいセラミック部材を製造することができる。Alternatively, the method for manufacturing a ceramic member according to the present invention includes:
The above ceramic & Il parabolite is injected into a cylindrical body of a dense ceramic sintered body on a mold made of porous material and solidified by water absorption, and the water-absorbed and solidified composition is heated to remove the organic binder by volatilization, and then volatilization is removed. The ceramic composition was fired in a nitrogen gas atmosphere to produce a sintered body integral with the cylindrical body. After casting the ceramic composition, water absorption, drying, and binder removal were performed, and then the ceramic composition was fired in a nitrogen gas atmosphere. Reactive firing is carried out, and by adding a large amount of heat-softening organic binder, dimensional shrinkage during water absorption and drying is suppressed to an extremely small level, and during firing, silicon nitride (5i)Nn is produced by the reaction of Si particles and nitrogen gas. . Therefore, it is possible to manufacture a ceramic member with extremely small dimensional shrinkage throughout the entire process.
以下、この発明によるセラミックU放物及びセラミック
スの製造方法の実施例を詳述する。Examples of the ceramic U paraboloid and the method for manufacturing ceramics according to the present invention will be described in detail below.
この発明によるセラξツク&Il$、物は、金属Si粉
末又は金属Si粉末にセラミック粉末を加えた混合粉末
、解膠剤、水及び有機バインダから戒り、前記有機バイ
ンダの添加量を前記有機バインダと前記金属Si粉末又
は前記混合粉末の合計重量の6〜25重量%の範囲内と
したことを特徴とするものである。このセラミック粉末
は、S I 3N m、チタン酸アルミニウム、ムライ
ト、ジルコニア、チタン酸カリウムのうち少なくとも1
種以上を含んでいるものである。特に、このセラミック
組成物に含んでいる有機バインダとしては、熱可塑性ア
クリル樹脂を使用し、セラミック部材の製造工程におけ
る寸法収縮を抑制することができるものである。The ceramic & Il$ product according to the present invention is free from metal Si powder or a mixed powder of metal Si powder and ceramic powder, a deflocculant, water and an organic binder, and the amount of the organic binder added is adjusted to the amount of the organic binder. and 6 to 25% by weight of the total weight of the metal Si powder or the mixed powder. The ceramic powder contains at least one of S I 3N m, aluminum titanate, mullite, zirconia, and potassium titanate.
It contains more than one species. In particular, thermoplastic acrylic resin is used as the organic binder contained in this ceramic composition, which can suppress dimensional shrinkage during the manufacturing process of the ceramic member.
更に、この発明による上記セラミック組成物を用いてセ
ラミック部材の製造方法は、金属Si粉末又は金属Si
粉末にセラミック粉末を加えた混合粉末、解膠剤、水及
び有機バインダを含み且つ前記有機バインダの添加量を
前記有機バインダと前記金属Si粉末又は前記混合粉末
の合計重量の6〜25重量%の範囲内としたセラミック
組成物を製造する工程、該セラミック組成物を多孔質材
製型に設置した緻密質セラミック焼結体から成る筒体内
に注入して吸水固化させて成形体を形成する工程、前記
成形体を加熱して前記成形体に含まれる有機バインダを
揮発除去する工程、及び前記成形体を窒素ガス雰囲気中
で焼成して前記筒体と一体構造の焼結体を製造する工程
、から戒るものである。Furthermore, the method for manufacturing a ceramic member using the ceramic composition according to the present invention includes a method for producing a ceramic member using a metal Si powder or a metal Si powder.
A mixed powder in which ceramic powder is added to powder, a deflocculant, water and an organic binder, and the amount of the organic binder added is 6 to 25% by weight of the total weight of the organic binder and the metal Si powder or the mixed powder. A step of manufacturing a ceramic composition within the range, a step of injecting the ceramic composition into a cylinder made of a dense ceramic sintered body placed in a porous mold and solidifying it by water absorption to form a molded body. a step of heating the molded body to volatilize and remove an organic binder contained in the molded body; and a step of firing the molded body in a nitrogen gas atmosphere to produce a sintered body having an integral structure with the cylindrical body. It is something to be warned against.
このセラミック&ll放物を使用してセラミック部材を
製造する場合には、鋳込み成形における吸水時或いは乾
燥時の収縮は、スラリー中の水分減少に伴って粒子が中
心方向に向けて移動するために生しると考えられる。有
機バインダとしての熱可塑性アクリル樹脂のバインダ即
ちアクリルバインダは、スラリー中でコロイド粒子とし
て存在するが、水分量が減少していってもこのバインダ
粒子がセラミック粒子間に介在し、粒子の移動を抑制す
る。粒子移動の抑制度合いは、アクリルバインダの添加
量に依存し、該添加量が多くなるほど、セラミック粒子
の移動が抑制され、従って、セラミック組成物のスラリ
ーの吸水固化における成形体の収縮量も小さくなってい
く、更に、この発明では、スラリーの吸水固化後に、5
00℃程度まで加熱し、アクリルバインダを揮発除去す
る。この過程では、成形体は若干膨張する。この膨張作
用は、先のスラリーの吸水固化時に発生した収縮をキャ
ンセルすることができる0次いで、アクリルバインダを
揮発除去した成形体を焼成する。この場合、有機バイン
ダの揮発除去した成形体の焼成時には、Siと雰囲気ガ
ス即ち窒素ガスN2の反応によって焼成が進行し、窒化
珪素Si3N4が生成する。この反応焼結では、寸法収
縮の現象は発生しないものである。従って、例えば、窒
化珪素S r z N 4製の筒体内に形成された成形
体を焼成して該筒体と一体構造の焼結体を製造した場合
に、筒体と焼結体との間に隙間等は発生しない。When manufacturing ceramic parts using this ceramic paraboloid, shrinkage during water absorption or drying during casting is caused by particles moving toward the center as the water content in the slurry decreases. It is thought that it does. The thermoplastic acrylic resin binder as an organic binder, ie, the acrylic binder, exists in the slurry as colloidal particles, but even when the water content decreases, these binder particles intervene between the ceramic particles and suppress particle movement. do. The degree of suppression of particle movement depends on the amount of the acrylic binder added, and the larger the amount added, the more the movement of the ceramic particles is suppressed, and therefore the amount of shrinkage of the molded body during water absorption and solidification of the slurry of the ceramic composition becomes smaller. Further, in this invention, after the slurry absorbs water and solidifies, 5
The acrylic binder is evaporated and removed by heating to about 00°C. During this process, the molded body expands slightly. This expansion action can cancel the shrinkage that occurred during the water absorption and solidification of the slurry.Next, the molded body from which the acrylic binder has been volatilized and removed is fired. In this case, when the molded body from which the organic binder has been volatilized is fired, the firing progresses due to the reaction between Si and the atmospheric gas, that is, nitrogen gas N2, and silicon nitride Si3N4 is produced. In this reaction sintering, the phenomenon of dimensional shrinkage does not occur. Therefore, for example, when a molded body formed inside a cylinder made of silicon nitride S r z N 4 is fired to produce a sintered body having an integral structure with the cylinder, the gap between the cylinder and the sintered body is There are no gaps etc.
次に、この発明によるセラミック組成物でセラミック部
材の製造方法の具体的な実施例を、第1図、第2図及び
第3図を参照して説明する。Next, a specific example of a method for manufacturing a ceramic member using a ceramic composition according to the present invention will be described with reference to FIGS. 1, 2, and 3.
まず、セラミック組成物を製造するため、珪素Si、窒
化珪素5isN4、チタン酸アルジニウム及びムライト
の粉末を重量比で、珪素Si ;50、窒化珪素5iz
N4 ;20、チタン酸アルミニウム;15及びムライ
ト;15を混合して混合粉末を作った。この混合粉末に
、該混合粉末と同量の重量の蒸留水、1重量%の解膠剤
及び所定量の熱可塑性アクリル樹脂から成るアクリルバ
インダを加え、ボールミルによってlO時時間音した後
、脱泡処理してスラリー33を得た。ここで、蒸留水の
量及び粉末組成比とその全体重量は、一定にしてアクリ
ルバインダの添加量のみを変えたセラミック&Il戒物
のスラリー3Sを数種類作った。First, in order to produce a ceramic composition, powders of silicon Si, silicon nitride 5isN4, aldinium titanate, and mullite were mixed in a weight ratio of silicon Si; 50, silicon nitride 5isN4.
A mixed powder was prepared by mixing N4; 20, aluminum titanate; 15, and mullite; 15. To this mixed powder, an acrylic binder consisting of distilled water of the same weight as the mixed powder, 1% by weight of a deflocculant, and a predetermined amount of thermoplastic acrylic resin was added, and after being heated in a ball mill for 10 hours, defoaming was performed. After processing, slurry 33 was obtained. Here, several types of Ceramic & Illuminant Slurry 3S were prepared in which the amount of distilled water, powder composition ratio, and overall weight were kept constant, and only the amount of acrylic binder added was changed.
次に、第1図に示すように、石膏型lの上に内周面に環
状溝5を形成した窒化珪素5rsNa製の筒体2をスラ
リー3Sの種類だけ配置する。この筒体2については、
例えば、外径:φ80問、肉厚:311高さ: 4 (
1+m、下から6間の位置に深さ: 1.5mm及び幅
:10帥の環状溝5を形成したものである6次いで、第
2図に示すように、各筒体2内に各々のスラリー35を
それぞれ流し込み、スラリー3S中に含まれる水分を石
膏中に吸水させた。この状態で、室温で約20時間放置
すると、スラリー33は固化するが、第3図に示すよう
に、これらの吸水固化した成形体3Fを石膏型Iから取
り外し、各成形体3Fの底部を実体顕微鏡で観察し、筒
体内径を基準として粉末充填部のこの時点での半径方向
の収縮率を測定した。これらの結果を、第4図に符号へ
で示す。Next, as shown in FIG. 1, cylindrical bodies 2 made of silicon nitride 5rsNa and having annular grooves 5 formed on their inner circumferential surfaces are placed on the plaster mold l for each type of slurry 3S. Regarding this cylinder 2,
For example, outer diameter: φ80, wall thickness: 311, height: 4 (
An annular groove 5 with a depth of 1.5 mm and a width of 10 grooves was formed at a position between 1+ m and 6 from the bottom.Next, as shown in FIG. 35 were respectively poured into the plaster, and the water contained in the slurry 3S was absorbed into the plaster. If left in this state for about 20 hours at room temperature, the slurry 33 will solidify, but as shown in FIG. It was observed with a microscope and the radial shrinkage rate of the powder-filled part at this point was measured based on the inner diameter of the cylinder. These results are shown in FIG. 4 by the symbols.
次に、上記の各成形体3Fを窒素ガス雰囲気とした脱脂
炉内で最高温度500℃まで加熱し、アクリルバインダ
を揮発除去し、脱脂炉を冷却した後、上記と同様に各成
形体3Fの底部を実体顕微鏡で観察し、各成形体3Fの
各底面における半径方向の収縮率を測定した。これらの
結果を、第4図に符号Bで示す、この時点で、グラフか
ら分かるように、加熱した後の各成形体3Fの全体の収
縮率は、吸水固化直後の収縮率より小さくなっているこ
とから、成形体3Fを加熱して脱バインダ時には、約0
.1〜0.2%程度の膨張現象が生じたことが明らかで
ある。Next, each of the molded bodies 3F described above is heated to a maximum temperature of 500°C in a debinding furnace with a nitrogen gas atmosphere to volatilize and remove the acrylic binder, and after cooling the debinding furnace, each molded body 3F is heated in the same manner as above. The bottom portion was observed with a stereomicroscope, and the shrinkage rate in the radial direction at each bottom surface of each molded body 3F was measured. These results are shown by the symbol B in FIG. 4. At this point, as can be seen from the graph, the overall shrinkage rate of each molded body 3F after heating is smaller than the shrinkage rate immediately after water absorption and solidification. Therefore, when heating the molded body 3F to remove the binder, the temperature of about 0
.. It is clear that an expansion phenomenon of about 1 to 0.2% occurred.
更に、これらの成形体3Fを、9.9 kgf/cm”
の窒素ガス雰囲気中で、最高温度1400℃まで加熱し
て反応焼成し、筒体2内の内部底形体3Fを反応焼結し
て窒化珪素Si+N、とムライト或いはチタン酸アルミ
ニウムとの複合焼結体3 (第5図参照)とした、同様
に、各焼結体3の各底面における半径方向の収縮率を測
定したが、反応焼結では寸法変化は認められなかった。Furthermore, these molded bodies 3F were heated to 9.9 kgf/cm"
In a nitrogen gas atmosphere, reaction firing is performed by heating up to a maximum temperature of 1400°C, and the internal bottom body 3F in the cylinder 2 is reaction sintered to form a composite sintered body of silicon nitride Si+N and mullite or aluminum titanate. 3 (see FIG. 5), the radial shrinkage rate at each bottom surface of each sintered body 3 was similarly measured, but no dimensional change was observed in the reaction sintering.
このようにして得られた筒体2内に複合焼結体3を充填
した複合部材を縦方向に切断し、筒体2に形成した環状
溝5内への充填状態を観察した。それらの結果を、下記
表に示す、咳表から分かるように、アクリルバインダの
添加量を20.0重量%以上としたものは、スラリーの
粘度が高くなり、環状15内への充填状態は不十分であ
った。The composite member in which the composite sintered body 3 was filled in the cylinder 2 thus obtained was cut in the longitudinal direction, and the state of filling into the annular groove 5 formed in the cylinder 2 was observed. As can be seen from the cough table shown in the table below, when the amount of acrylic binder added is 20.0% by weight or more, the viscosity of the slurry becomes high and the state of filling into the annular 15 becomes unstable. That was enough.
表
更に、このセラミック部材の製造方法によって上記セラ
ミック組成物を使用して製造したセラミック部材は、例
えば、断熱エンジンのピストンに利用して極めて好まし
いものである。即ち、第5図に示すように、この断熱エ
ンジンのピストンとしては、窒化珪素Si3N、から戒
る筒体2と一体構造の焼結体3の上面を、窒化珪素5i
sNnの化学草着(CVD)によって窒化珪素5isN
4の薄膜4を形成することによって製作することができ
る。このピストンでは、焼結体3の部分は高度の断熱性
を提供でき、また窒化珪素S i 3 N mの薄膜4
及び筒体2は耐熱性、耐変形性に冨む断熱ピストンを提
供できる。しかも、この断熱ピストンの製造に当たって
は、反応焼結と化学薫着CVDの特徴を活かすことによ
って、断熱材の焼結体3、窒化珪素Si3N、の筒体2
及び窒化珪素5izN−の薄膜4に対するセラミックス
の接合技術を不要にし、しかも、製品に対する機械加工
を行う部分は極めて少なくなり、製造コストを大幅に低
減できる。また、焼結体3には、小さい気孔が多数分散
状態に存在すると共に、反応焼結による窒化珪素5i3
Na部材であるので、断熱粒子界面ミスマ・7チによる
フォノン散乱効果のため、低熱伝導性に冨むセラミック
ス部材を提供できる。Furthermore, the ceramic member manufactured using the above-mentioned ceramic composition according to this method for manufacturing a ceramic member is extremely preferable for use in, for example, a piston of an adiabatic engine. That is, as shown in FIG. 5, the piston of this adiabatic engine is made of silicon nitride Si3N, and the upper surface of the sintered body 3 integrally constructed with the cylinder 2 is covered with silicon nitride 5i.
Silicon nitride 5isN by chemical vapor deposition (CVD) of sNn
It can be manufactured by forming a thin film 4 of No. 4. In this piston, the part of the sintered body 3 can provide a high degree of thermal insulation, and the thin film 4 of silicon nitride S i 3 N m
The cylindrical body 2 can provide an adiabatic piston with excellent heat resistance and deformation resistance. Moreover, in manufacturing this heat insulating piston, by utilizing the characteristics of reaction sintering and chemical smoke CVD, we can use the sintered body 3 of the heat insulating material and the cylindrical body 2 of silicon nitride Si3N.
This eliminates the need for a ceramic bonding technique for the thin film 4 of silicon nitride 5izN-, and furthermore, the number of parts to be machined on the product is extremely reduced, making it possible to significantly reduce manufacturing costs. In addition, the sintered body 3 has a large number of small pores in a dispersed state, and silicon nitride 5i3 due to reaction sintering.
Since it is a Na member, it is possible to provide a ceramic member with low thermal conductivity due to the phonon scattering effect due to the thermal insulation particle interface misma.
この発明によるセラ鴫ツク組成物及びセラミックスの製
造方法は、以上のように構成したので、次のような効果
を有する。Since the ceramic composition and the method for producing ceramics according to the present invention are constructed as described above, they have the following effects.
即ち、このセラミック組成物は、金属S1粉末又は該粉
末にセラミック粉末を加えた混合粉末、前記金属Si粉
末又は前記混合粉末との合計重量の6〜25重量%の添
加量範囲の有機バインダ、解膠剤及び水を含むので、鋳
込み成形法において成形時の収縮率を、例えば、従来の
l/l O以下に抑えられ、焼成時には、Si粒子と窒
素ガスとの反応で窒化珪素5isN、が生成され、該窒
化珪素Si3Nmに寸法変化は伴わず、従って全工程を
通して寸法収縮量が極めて小さいセラミック部材を得る
ことができる。That is, this ceramic composition includes a metal S1 powder or a mixed powder obtained by adding a ceramic powder to the metal S1 powder, an organic binder in an amount of 6 to 25% by weight of the total weight of the metal Si powder or the mixed powder, and a solution. Since it contains glue and water, the shrinkage rate during molding in the cast molding method can be suppressed to less than the conventional l/l O, and during firing, silicon nitride 5isN is generated by the reaction between Si particles and nitrogen gas. There is no dimensional change in the silicon nitride Si3Nm, and therefore a ceramic member with extremely small dimensional shrinkage throughout the entire process can be obtained.
また、このセラミック組成物において、有機バインダは
熱可塑性アクリル樹脂であるので、有機バインダは軟化
点以上に加熱した時に膨張率が大きくなり、この特性を
利用して寸法収縮量が極めて小さいセラミック部材を得
ることができる。In addition, since the organic binder in this ceramic composition is a thermoplastic acrylic resin, the organic binder has a large expansion coefficient when heated above its softening point, and this property can be used to create ceramic members with extremely small dimensional shrinkage. Obtainable.
或いは、この発明によるセラ〈ツク部材の製造方法は、
金属3i1末又は該粉末にセラミ、り粉末を加えた混合
粉末との合計重量の6〜25重量%の添加量範囲の有機
バインダ、解膠剤及び水を含むセラミック組成物を多孔
質材製型上の緻密質セラミック焼結体の筒体内に注入し
て吸水固化する工程、吸水固化した&[l酸物を加熱し
て前記有機バインダを揮発除去する工程、及び揮発除去
したMi威放物窒素ガス雰囲気中で焼成して前記筒体と
一体構造の焼結体を製造する工程、から成るので、上記
セラミック組成物を鋳込み成形後、吸水、乾燥、脱バイ
ンダを行い、次いで窒素ガス中で反応焼成を行い、それ
によって熱軟化性有機バインダの多量添加により、吸水
乾燥時の寸法収縮が極めて小さく抑えられ、焼成時には
、Si粒子と窒素ガスとの反応で窒化珪素S I:+
N−が生成される。Alternatively, the method for manufacturing a ceramic member according to the present invention includes:
A ceramic composition containing an organic binder, a deflocculant, and water in an amount of 6 to 25% by weight based on the total weight of Metal 3i1 powder or a mixed powder obtained by adding ceramic powder to the powder is molded into a porous material. A step of injecting into the cylinder of the above dense ceramic sintered body and solidifying it by water absorption, a step of heating the water-absorbed and solidified & The process consists of firing in a gas atmosphere to produce a sintered body integrally structured with the cylindrical body, so after casting the ceramic composition, water absorption, drying, and binder removal are performed, followed by reaction in nitrogen gas. By adding a large amount of a heat-softening organic binder, dimensional shrinkage during water absorption and drying is suppressed to an extremely small level. During firing, silicon nitride SI:+ is formed by the reaction between Si particles and nitrogen gas.
N- is generated.
従って、全工程を通して、特に、寸法収縮量が極めて小
さいセラミック部材を製造することができ、製品として
クラック、亀裂等の存在しない、或いはクラック、亀裂
等が発生し難い好ましいセラミック部品を提供できる。Therefore, throughout the entire process, it is possible to manufacture a ceramic member with particularly small dimensional shrinkage, and it is possible to provide a preferable ceramic component that does not have cracks, cracks, etc., or is difficult to generate cracks, cracks, etc. as a product.
特に、このセラミック部材の製造方法は、断熱ピストン
を製作するのに極めて好ましいものである。即ち、この
セラくツク部材を断熱ピストンに製作した場合には、焼
結体の部分で高度の断熱性を、且つ、窒化珪素Si3N
、等のセラミック製の薄膜及び筒体で耐熱性、耐変形性
に冨む断熱ピストンを提供でき、薄膜の熱容量を小さく
して燃焼ガス温度に追従性の良いピストンを提供できる
。In particular, this method of manufacturing a ceramic member is highly preferred for manufacturing a heat insulating piston. In other words, when this ceramic member is made into a heat insulating piston, the sintered body part has a high degree of heat insulating property, and silicon nitride Si3N
It is possible to provide an adiabatic piston with excellent heat resistance and deformation resistance using a ceramic thin film and cylindrical body such as .
しかも、!lI造方法においては、外周のセラミック製
の筒体に、例えば、環状溝等の係止部を形成しでおくだ
けで、内部の断熱材となる焼結体と極めて良好に且つ堅
固に接合することができ、即ち、反応焼結と化学i@c
vDの特徴を活かすことによってセラミックスの接合技
術を不要にするだけでなく、製品に対するjIi械加工
を行う部分が極めて少なくなり、製造コストを大幅に低
減できる。Moreover,! In the II manufacturing method, simply by forming a locking part such as an annular groove on the outer ceramic cylinder, it can be bonded extremely well and firmly to the sintered body that serves as the internal heat insulating material. i.e. reactive sintering and chemical i@c
Utilizing the features of vD not only eliminates the need for ceramic bonding technology, but also greatly reduces the number of parts of the product that require jIi machining, significantly reducing manufacturing costs.
また、筒体と焼結体とのセラミック材を同種のものにす
ると、両者の接合状態を−N堅固に接合することができ
、特に、焼結体自体は小さい気孔を多数分散状態に有し
、且つ断熱粒子界面ミスマツチによるフォノン散乱効果
のため、極めて低熱伝導性に富む断熱ピストンを提供で
きる。In addition, if the cylinder and the sintered body are made of the same type of ceramic material, the two can be firmly joined to -N.In particular, the sintered body itself has many small pores dispersed in it. , and because of the phonon scattering effect due to the mismatch at the interface of the heat insulating particles, it is possible to provide a heat insulating piston with extremely low thermal conductivity.
第1図、第2図及び第3図はこの発明によるセラミック
&fl戒物でセラミック部材の製造方法の各工程を示す
説明図、第4図はセラごツク組成物のアクリルバインダ
添加量に対する収縮率を示すグラフ、並びに第5図はこ
の発明によるセラミックスの製造方法で製作したピスト
ンの一例を示す断面図である。
l−・−・−石膏型、2−・−−−一筒体、3・−・−
焼結体、3F−−−・−成形体、3 S−−スラリー、
4−− yi膜、5・−・−環状溝。Figures 1, 2, and 3 are explanatory diagrams showing each step of the method for manufacturing a ceramic member according to the present invention, and Figure 4 is the shrinkage rate of the ceramic composition with respect to the amount of acrylic binder added. FIG. 5 is a cross-sectional view showing an example of a piston manufactured by the ceramic manufacturing method according to the present invention. l--・-- plaster mold, 2--- monocylindrical body, 3---
Sintered body, 3F---- molded body, 3S-- slurry,
4--yi membrane, 5-- annular groove.
Claims (4)
た混合粉末、前記金属Si粉末又は前記混合粉末との合
計重量の6〜25重量%の添加量範囲の有機バインダ、
解膠剤及び水を含むことを特徴とするセラミック組成物
。(1) a metal Si powder or a mixed powder obtained by adding a ceramic powder to the powder; an organic binder in an amount range of 6 to 25% by weight of the total weight of the metal Si powder or the mixed powder;
A ceramic composition comprising a deflocculant and water.
アルミニウム、ムライト、ジルコニア、チタン酸カリウ
ムのうち少なくとも1種以上を含んでいる請求項1に記
載のセラミック組成物。(2) The ceramic composition according to claim 1, wherein the ceramic powder contains at least one of Si_3N_4, aluminum titanate, mullite, zirconia, and potassium titanate.
請求項1に記載のセラミック組成物。(3) The ceramic composition according to claim 1, wherein the organic binder is a thermoplastic acrylic resin.
た混合粉末との合計重量の6〜25重量%の添加量範囲
の有機バインダ、解膠剤及び水を含むセラミック組成物
を多孔質材製型上の緻密質セラミック焼結体の筒体内に
注入して吸水固化する工程、吸水固化した組成物を加熱
して前記有機バインダを揮発除去する工程、及び揮発除
去した組成物を窒素ガス雰囲気中で焼成して前記筒体と
一体構造の焼結体を製造する工程、から成るセラミック
部材の製造方法。(4) A ceramic composition containing an organic binder, a deflocculant, and water in an amount ranging from 6 to 25% by weight based on the total weight of the metal Si powder or a mixed powder obtained by adding ceramic powder to the metal Si powder is made into a porous material. A step of injecting into a cylinder of a dense ceramic sintered body on a mold and solidifying it by water absorption, a step of heating the water-absorbed and solidified composition to volatilize and remove the organic binder, and a step of volatilizing and removing the composition in a nitrogen gas atmosphere. A method for manufacturing a ceramic member, comprising the step of firing the ceramic member to produce a sintered body having an integral structure with the cylindrical body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2056509A JP2987867B2 (en) | 1990-03-09 | 1990-03-09 | Ceramic composition and method for producing ceramic member using the composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2056509A JP2987867B2 (en) | 1990-03-09 | 1990-03-09 | Ceramic composition and method for producing ceramic member using the composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03261662A true JPH03261662A (en) | 1991-11-21 |
JP2987867B2 JP2987867B2 (en) | 1999-12-06 |
Family
ID=13029095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2056509A Expired - Lifetime JP2987867B2 (en) | 1990-03-09 | 1990-03-09 | Ceramic composition and method for producing ceramic member using the composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2987867B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5616527A (en) * | 1993-09-13 | 1997-04-01 | Isuzu Motors Limited | Composite ceramic |
EP0774449A2 (en) | 1995-11-16 | 1997-05-21 | Sumitomo Electric Industries, Ltd. | Silicon nitride ceramic, silicon-base composition for production thereof and processes for producing these |
US6544917B1 (en) | 1999-09-06 | 2003-04-08 | Sumitomo Electric Industries, Ltd. | Si3N4 ceramic, Si-base composition for its production, and method for its production |
JPWO2015080065A1 (en) * | 2013-11-26 | 2017-03-16 | 日本碍子株式会社 | Porous material and heat insulating film |
-
1990
- 1990-03-09 JP JP2056509A patent/JP2987867B2/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5616527A (en) * | 1993-09-13 | 1997-04-01 | Isuzu Motors Limited | Composite ceramic |
EP0774449A2 (en) | 1995-11-16 | 1997-05-21 | Sumitomo Electric Industries, Ltd. | Silicon nitride ceramic, silicon-base composition for production thereof and processes for producing these |
EP0774449A3 (en) * | 1995-11-16 | 1997-11-05 | Sumitomo Electric Industries, Ltd. | Silicon nitride ceramic, silicon-base composition for production thereof and processes for producing these |
US6284690B1 (en) | 1995-11-16 | 2001-09-04 | Sumitomo Electric Industries, Ltd. | Si3N4 ceramic, Si-base composition for production thereof and processes for producing these |
CN1076331C (en) * | 1995-11-16 | 2001-12-19 | 住友电气工业株式会社 | Si3N4 ceramic, Si-base composition for production thereof and processes for producing these |
US6544917B1 (en) | 1999-09-06 | 2003-04-08 | Sumitomo Electric Industries, Ltd. | Si3N4 ceramic, Si-base composition for its production, and method for its production |
JPWO2015080065A1 (en) * | 2013-11-26 | 2017-03-16 | 日本碍子株式会社 | Porous material and heat insulating film |
US10315961B2 (en) | 2013-11-26 | 2019-06-11 | Ngk Insulators, Ltd. | Porous material and heat insulating film |
Also Published As
Publication number | Publication date |
---|---|
JP2987867B2 (en) | 1999-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR960016065B1 (en) | Method for making composite articles that include complex internal geometry | |
US3839540A (en) | Method of manufacturing silicon nitride products | |
US4248813A (en) | Process for producing high density sintered products | |
US4356136A (en) | Method of densifying an article formed of reaction bonded silicon nitride | |
JP2000202573A (en) | Core composition excellent in characteristic used for casting in application to gas turbine and article | |
US6197248B1 (en) | Process for preparing aluminum titanate powder and sintered body | |
US4019913A (en) | Process for fabricating silicon carbide articles | |
Giachello et al. | Post-sintering of reaction-bonded silicon nitride | |
KR960004427B1 (en) | Method for the manufacture of an object of a powdered material by isostatic pressing | |
JPH03261662A (en) | Ceramic composition and production of ceramic member using same composition | |
JPS6350310B2 (en) | ||
US5320989A (en) | Boron nitride-containing bodies and method of making the same | |
JP2004308004A (en) | Manufacturing method of aluminum sintered material | |
US4011076A (en) | Method for fabricating beryllium structures | |
JPH0770610A (en) | Method for sintering injection-molded product | |
JP5272656B2 (en) | Silicon oxide-based porous molded body and method for producing the same | |
JPH10231174A (en) | Composite ceramic including dispersed solid lubricant and its production | |
SU1570849A1 (en) | Method of producing porous inserts for composite castings | |
JPS61158403A (en) | Method of molding ceramic | |
JPH02279553A (en) | Ceramic molded body and its production | |
JP2924054B2 (en) | Raw material for metal powder injection molding | |
JPS63210056A (en) | Manufacture of ceramic processed body | |
JPH054949B2 (en) | ||
JP2916934B2 (en) | Method for producing sialon-based sintered body | |
JPH02172870A (en) | Production of homogeneous sintered body |