[go: up one dir, main page]

JPH03259204A - Optical wavegiide substrate by diffusion of material for increasing refractive index - Google Patents

Optical wavegiide substrate by diffusion of material for increasing refractive index

Info

Publication number
JPH03259204A
JPH03259204A JP2058355A JP5835590A JPH03259204A JP H03259204 A JPH03259204 A JP H03259204A JP 2058355 A JP2058355 A JP 2058355A JP 5835590 A JP5835590 A JP 5835590A JP H03259204 A JPH03259204 A JP H03259204A
Authority
JP
Japan
Prior art keywords
waveguide
refractive index
substrate
layer
diffused
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2058355A
Other languages
Japanese (ja)
Inventor
Nobuyuki Tanaka
信幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2058355A priority Critical patent/JPH03259204A/en
Publication of JPH03259204A publication Critical patent/JPH03259204A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain excellent optical characteristics by diffusing a material for decreasing the refractive index into a substrate deeper than the waveguide formed by diffusing a material for increasing the refractive index into the substrate and shallower than in a surface waveguide layer. CONSTITUTION:Ti is thermally diffused into the waveguide forming region of the LiNbO3 substrate 1, by which the Ti diffused waveguide 2 is formed. The surface waveguide layer 3 is then formed deeper than the Ti diffused waveguide layer 2. Further, MgO is additionally diffused in a dry atmosphere to form the low-refractive index layer 3a deeper than the Ti diffused waveguide 2 and shallower than the surface waveguide layer 3. Since the surface waveguide layer 3 is formed with the sufficient depth, the control of the depth of this diffusion is relatively easily executed. The respective layers are, therefore, formed in such a state that the waveguide 2 of the refractive index is enclosed circumferentially with the low-refractive index 3a and the high-refractive index layer 3b remains under the low-refractive index layer 3a. The optical waveguide having the good property to confine light is thus obtd. The excellent optical characteristics are obtd. in this way.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は光集積回路あるいは光機能デバイスに用いら
れる光導波路基板に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to an optical waveguide substrate used for optical integrated circuits or optical functional devices.

「従来技術」 L i N bo s基板にTiを熱拡散することによ
って作製されるTi拡散L iN bo 3導波路は、
単一モード導波路として有用である。また、LiNbO
3結晶がEO(電気光学)結晶であるため、電界を加え
ることによって導波層の光学的特性を制御することがで
き、従って、光スィッチ、光変調器あるいはモードコン
バータへの応用が可能である。
“Prior Art” A Ti-diffused L iN bo 3 waveguide fabricated by thermally diffusing Ti into a L i N bo s substrate is
Useful as a single mode waveguide. Also, LiNbO
Since the third crystal is an EO (electro-optic) crystal, the optical properties of the waveguide layer can be controlled by applying an electric field, and therefore it can be applied to optical switches, optical modulators, or mode converters. .

さて、Ti拡散LiNbO5光導波路の製造工程におい
て、Tiの熱拡散をドライ雰囲気中にて行うと、Tiが
LiNbO5基板内部へと拡散されると同時に結晶表面
からLttOが放出される(以下、この現象をLitO
の外拡散と呼ぶ)。そして、LitOの外拡散が行われ
ると、LitOが抜けることによって屈折率の高くなっ
た表面導波層がLiNbO3基板表面に形成され、外部
からの異常光線に対する閉じ込めか弱くなってしまうと
いう問題があった。
Now, in the process of manufacturing a Ti-diffused LiNbO5 optical waveguide, when Ti is thermally diffused in a dry atmosphere, Ti is diffused into the LiNbO5 substrate and at the same time LttO is released from the crystal surface (hereinafter, this phenomenon LitO
(called out-diffusion). When LiO is diffused out, a surface waveguide layer with a high refractive index is formed on the surface of the LiNbO3 substrate due to the escape of LiO, which causes a problem in that the confinement of extraordinary rays from the outside becomes weak. .

これに対し、Ti拡散をウェット雰囲気中で行うと、L
 izoの外拡散がある程度抑制される。具体的には、
1000℃前後の温度で、ArあるいはN、に水蒸気を
含ませてパージした雰囲気中でTiの熱拡散を行う方法
が報告されている。しかしながら、このような方法を用
いた場合でも、依然としてLiNbO3基板の表面から
数μの深さで表面導波層が形成される。第3図に上記の
ようにしてウェット雰囲気中にてTi拡散を行った場合
のTi拡散L iN b Os導波路を光伝搬軸に垂直
な平面で切った断面図を例示する。この図において、l
はL zN bo s基板、2はTi拡散によって形成
された導波路、3はL izoの外拡散によって形成さ
れた表面導波層である。このように表面導波層3が形成
されると、導波路2を伝搬する光が横方向に漏れ(矢印
LaおよびLb)、導波路2内への光の閉じ込めか弱く
なる。特に第4図に示すように、導波路2が曲がってい
る箇所において、横方向への光の漏れ(矢印Lc)が大
きくなる。また、Ti拡散導波路2の深さが表面導波層
3と同じく数μmオーダであるため、かえってTi拡散
導波路の光学的特性に悪影響を及ぼしてしまう。
On the other hand, when Ti diffusion is performed in a wet atmosphere, L
Outward diffusion of izo is suppressed to some extent. in particular,
A method has been reported in which Ti is thermally diffused in a purged atmosphere of Ar or N containing water vapor at a temperature of around 1000°C. However, even when such a method is used, a surface waveguide layer is still formed at a depth of several microns from the surface of the LiNbO3 substrate. FIG. 3 illustrates a cross-sectional view of a Ti-diffused LiN b Os waveguide taken along a plane perpendicular to the optical propagation axis when Ti is diffused in a wet atmosphere as described above. In this figure, l
is an L zN bos substrate, 2 is a waveguide formed by Ti diffusion, and 3 is a surface waveguide layer formed by out-diffusion of Lizo. When the surface waveguide layer 3 is formed in this manner, the light propagating through the waveguide 2 leaks laterally (arrows La and Lb), and the confinement of light within the waveguide 2 becomes weaker. In particular, as shown in FIG. 4, the leakage of light in the lateral direction (arrow Lc) increases at locations where the waveguide 2 is curved. Furthermore, since the depth of the Ti diffused waveguide 2 is on the order of several μm, like the surface waveguide layer 3, the optical characteristics of the Ti diffused waveguide are adversely affected.

そこで、上述と同様にウェット雰囲気中にてTi拡散を
行って導波路を形成した後、MgOの追拡散を行う方法
が提案されるに至った。この方法によれば、MgOがト
ープされることによって表面導波層の屈折率が低下して
導波路内への光の閉じ込めか改善される他、導波路内の
屈折率の分布が改善され、伝搬光のスポット形状がほぼ
円形になるという効果が得られる。
Therefore, a method has been proposed in which Ti is diffused in a wet atmosphere to form a waveguide as described above, and then MgO is additionally diffused. According to this method, by doping MgO, the refractive index of the surface waveguide layer is reduced and light confinement within the waveguide is improved, and the refractive index distribution within the waveguide is improved. This provides the effect that the spot shape of the propagating light becomes approximately circular.

「発明が解決しようとする課題」 しかしながら、ウェット雰囲気中でのTi拡散を行った
場合、基板に生じる表面導波層の厚さを制御することが
できず、また、表面導波層の厚さのサンプル依存性も大
きい。従って、上述したようにMgOの追拡散を行った
場合にMgOの拡散される深さが適切でないと、導波路
の光学的特性が劣化するという問題があった。例えば第
5図(a)に示すようにMgOの拡散層3aが導波路2
よりも浅く形成された場合、導波路2の底部が依然とし
て高屈折率の表面導波層3と接するので、この接合面を
介した光の漏れを生ずる。また、第5図(b)に示すよ
うに、MgOの拡散が表面導波層3より深く進行すると
、表面導波層3の下部にLiNbO3基板よりも屈折率
の低い低屈折率層1bが形成されてしまう。この結果、
MgOの拡散された表面導波層3の屈折率をn3、表面
導波層3の下部の低屈折率層1bの屈折率をn+b、 
L iN bo 3基板lの屈折率をnlとした場合に
n+b< n+ < nsなる関係が成立し、表面導波
層3を光が伝搬するようになってしまう。
"Problems to be Solved by the Invention" However, when Ti is diffused in a wet atmosphere, the thickness of the surface waveguide layer formed on the substrate cannot be controlled; is also highly sample dependent. Therefore, as described above, when additional diffusion of MgO is performed, if the depth to which MgO is diffused is not appropriate, there is a problem that the optical characteristics of the waveguide deteriorate. For example, as shown in FIG. 5(a), the MgO diffusion layer 3a is connected to the waveguide 2.
If it is formed shallower than this, the bottom of the waveguide 2 will still be in contact with the surface waveguide layer 3 having a high refractive index, resulting in light leakage through this bonding surface. Furthermore, as shown in FIG. 5(b), when the diffusion of MgO proceeds deeper than the surface waveguide layer 3, a low refractive index layer 1b having a lower refractive index than the LiNbO3 substrate is formed under the surface waveguide layer 3. It will be done. As a result,
The refractive index of the surface waveguide layer 3 in which MgO is diffused is n3, and the refractive index of the low refractive index layer 1b below the surface waveguide layer 3 is n+b.
When the refractive index of the LiN bo 3 substrate l is nl, the relationship n+b<n+<ns holds, and light propagates through the surface waveguide layer 3.

この発明は上述した事情に鑑みてなされたものであり、
光学的特性に優れ、かつ、安定して製造することが可能
な高屈折率化材料拡散による光導波路基板を提供するこ
とを目的とする。
This invention was made in view of the above circumstances,
It is an object of the present invention to provide an optical waveguide substrate using diffusion of a high refractive index material that has excellent optical properties and can be manufactured stably.

「課題を解決するための手段」 この発明は、ドライ雰囲気中にて、基板に対して高屈折
率化材料を拡散することにより、該基板の表面に導波路
を形成し、 ドライ雰囲気中にて、前記導波路よりも深く、かっ、前
記導波路の形成に伴って形成される表面導波層よりは浅
く、低屈折率化材料を拡散したことを特徴としている。
"Means for Solving the Problems" The present invention forms a waveguide on the surface of a substrate by diffusing a high refractive index material onto the substrate in a dry atmosphere. , deeper than the waveguide, and shallower than the surface waveguide layer formed with the formation of the waveguide, and is characterized by having a low refractive index material diffused therein.

「作用」 上記構成の場合、 導波路の深さく低屈折率層の深さく表面導波層の深さ という関係が成立し、導波路内のみを光が伝搬する。ま
た、高屈折率化材料および低屈折率材料の拡散を共にド
ライ雰囲気中にて行うので、上記各層の深さの関係が成
立するように制御することが容易であり、製造時、高い
歩留りが得られる。
"Operation" In the case of the above configuration, the relationship of the depth of the waveguide, the depth of the low refractive index layer, and the depth of the surface waveguide layer is established, and light propagates only within the waveguide. In addition, since both the high refractive index material and the low refractive index material are diffused in a dry atmosphere, it is easy to control the depth relationships of each layer as described above, and a high yield can be achieved during manufacturing. can get.

「実施例」 以下、この発明の一実施例による高屈折率化材料拡散に
よる光導波路基板について説明する。本実施例では、L
iNbO3基板に対し、高屈折率化材料としてTiを、
低屈折率化材料としてMgOを拡散する場合を例に説明
する。なお、基板材料としては、L iN b Osの
他、L iT ao 2、PLZT。
Embodiment An optical waveguide substrate using diffusion of a high refractive index material according to an embodiment of the present invention will be described below. In this example, L
Ti is used as a high refractive index material for the iNbO3 substrate.
The case where MgO is diffused as a material for lowering the refractive index will be explained as an example. In addition to L iN b Os, the substrate materials include L iT ao 2 and PLZT.

S B N ST iB ao 3、ZnOなどの酸化
物誘電体材料あるいは石英ガラス、光学ガラス等のガラ
ス材料を用いることが可能である。また、導波路材とし
ての高屈折率化材料はTiの他、T11SFe、 Ag
、La、Yなどを用いることが可能である。また、低屈
折率化材料としては、MgOの他、Na、O1LitO
lBed、F、B2O2などを用いることか可能である
It is possible to use an oxide dielectric material such as S B N ST iB ao 3, ZnO, or a glass material such as quartz glass or optical glass. In addition to Ti, high refractive index materials used as waveguide materials include T11SFe, Ag
, La, Y, etc. can be used. In addition to MgO, materials for lowering the refractive index include Na, O1LitO
It is possible to use lBed, F, B2O2, etc.

さて、第1図を参照し、本実施例による光導波路基板の
製造方法を説明する。まず、例えばリフトオフ法により
、L iN bo s基板1の導波路形成領域に対し、
選択的にTiのスパッタリングを行う。次いでドライ雰
囲気中にて、Tiの熱拡散を行う。この結果、第1図(
a)に示すように、Ti拡散導波路2が形成されると共
に、LizOの外拡散が行われることにより、Ti拡散
導波路2よりも深く、を−数100μm程度の厚さで表
面導波層3が形成される。このように表面導波層3を深
く形成した状態において表面導波層3内の屈折率の分布
を見ると、表面付近では屈折率が低く、表面からかなり
深い所で屈折率が最大となっている。従って、屈折率の
最大となる位置よりもさらに深い位置から光が導入され
ない限り、表面導波路層3内を光が伝搬することはない
Now, with reference to FIG. 1, a method of manufacturing an optical waveguide substrate according to this embodiment will be explained. First, for example, by a lift-off method, a waveguide formation region of the LiN bos substrate 1 is
Ti is selectively sputtered. Next, Ti is thermally diffused in a dry atmosphere. As a result, Figure 1 (
As shown in a), the Ti diffused waveguide 2 is formed and LizO is diffused out to form a surface waveguide layer deeper than the Ti diffused waveguide 2 with a thickness of about 100 μm. 3 is formed. When looking at the distribution of refractive index within the surface waveguide layer 3 with the surface waveguide layer 3 formed deeply in this way, the refractive index is low near the surface and reaches its maximum at a considerable depth from the surface. There is. Therefore, light does not propagate within the surface waveguide layer 3 unless the light is introduced from a position deeper than the position where the refractive index is maximum.

次いでドライ雰囲気中にてMgOの追拡散を行い、第2
図(b)に示すように、Ti拡散導波路2よりも深く、
かつ、表面導波層3よりは浅く、低屈折率層3aを形成
する。この拡散の深さの制御は、表面導波層3が十分な
深さで形成されているため、比較的容易に行うことがで
きる。この結果、高屈折率の導波路2の周囲が低屈折率
層3aによって囲まれ、低屈折率層3aの下部に高屈折
率層3bが残った状態に各層が形成され、導波路2内へ
の光の閉じ込め性の良い光導波路が得られる。
Next, additional diffusion of MgO is performed in a dry atmosphere, and a second
As shown in Figure (b), deeper than the Ti diffusion waveguide 2,
Moreover, a low refractive index layer 3a is formed shallower than the surface waveguide layer 3. This diffusion depth can be controlled relatively easily because the surface waveguide layer 3 is formed with a sufficient depth. As a result, the high refractive index waveguide 2 is surrounded by the low refractive index layer 3a, and each layer is formed with the high refractive index layer 3b remaining below the low refractive index layer 3a. An optical waveguide with good light confinement properties can be obtained.

「発明の効果」 以上説明したように、この発明によれば、ドライ雰囲気
中にて、基板に対して高屈折率化材料を拡散することに
より、該基板の表面に導波路を形成し、ドライ雰囲気中
にて、前記導波路よりも深く、かつ、前記導波路の形成
に伴って形成される表面導波層よりは浅く、低屈折率化
材料を拡散したので、光学的特性に優れ、かつ、高い歩
留りで製造することが可能な高屈折率化材料拡散による
光導波路基板を実現することができるという効果が得ら
れる。
"Effects of the Invention" As explained above, according to the present invention, by diffusing a high refractive index material onto a substrate in a dry atmosphere, a waveguide is formed on the surface of the substrate, and a waveguide is formed on the surface of the substrate. Since the low refractive index material is diffused in the atmosphere deeper than the waveguide and shallower than the surface waveguide layer formed with the formation of the waveguide, it has excellent optical properties and , it is possible to realize an optical waveguide substrate by diffusion of a high refractive index material that can be manufactured at a high yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例によるTi拡散LiNb0
.光導波路の製造方法を説明する図、第2図は同実施例
における表面導波層3内の屈折率の分布を示す図、第3
図〜第5図は従来の製造方法によって製造されたTi拡
散L i N bo 3の問題点を説明する図である。 第1図 To) +1)1 1・・・・・・L iN bo 、基板、2・・・・・
・Ti拡散導波路、3・・・・・・表面導波層、3a・
・・・・低屈折率層、3b・・・・高屈折率層。
FIG. 1 shows Ti-diffused LiNb0 according to an embodiment of the present invention.
.. FIG. 2 is a diagram illustrating the method of manufacturing an optical waveguide, FIG. 2 is a diagram showing the refractive index distribution in the surface waveguide layer 3 in the same example, and FIG.
5 to 5 are diagrams for explaining the problems of Ti-diffused L i N bo 3 manufactured by the conventional manufacturing method. Figure 1 To) +1) 1 1...L iN bo , substrate, 2...
・Ti diffusion waveguide, 3...Surface waveguide layer, 3a・
...Low refractive index layer, 3b...High refractive index layer.

Claims (1)

【特許請求の範囲】 ドライ雰囲気中にて、基板に対して高屈折率化材料を拡
散することにより、該基板の表面に導波路を形成し、 ドライ雰囲気中にて、前記導波路よりも深く、かつ、前
記導波路の形成に伴って形成される表面導波層よりは浅
く、低屈折率化材料を拡散したことを特徴とする高屈折
率化材料拡散による光導波路基板。
[Claims] A waveguide is formed on the surface of the substrate by diffusing a high refractive index material into the substrate in a dry atmosphere, and a waveguide is formed deeper than the waveguide in the dry atmosphere. An optical waveguide substrate by diffusion of a high refractive index material, characterized in that the low refractive index material is diffused shallower than the surface waveguide layer formed in conjunction with the formation of the waveguide.
JP2058355A 1990-03-09 1990-03-09 Optical wavegiide substrate by diffusion of material for increasing refractive index Pending JPH03259204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2058355A JPH03259204A (en) 1990-03-09 1990-03-09 Optical wavegiide substrate by diffusion of material for increasing refractive index

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2058355A JPH03259204A (en) 1990-03-09 1990-03-09 Optical wavegiide substrate by diffusion of material for increasing refractive index

Publications (1)

Publication Number Publication Date
JPH03259204A true JPH03259204A (en) 1991-11-19

Family

ID=13082016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2058355A Pending JPH03259204A (en) 1990-03-09 1990-03-09 Optical wavegiide substrate by diffusion of material for increasing refractive index

Country Status (1)

Country Link
JP (1) JPH03259204A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128624A (en) * 1993-11-01 1995-05-19 Sumitomo Osaka Cement Co Ltd Production of waveguide optical element
US7310453B2 (en) 2002-08-30 2007-12-18 Sumitomo Osaka Cement Co., Ltd. Optical modulator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128624A (en) * 1993-11-01 1995-05-19 Sumitomo Osaka Cement Co Ltd Production of waveguide optical element
US7310453B2 (en) 2002-08-30 2007-12-18 Sumitomo Osaka Cement Co., Ltd. Optical modulator

Similar Documents

Publication Publication Date Title
US4006963A (en) Controllable, electro-optical grating coupler
US5479552A (en) Waveguide-type optical device
US4983006A (en) Polarization-independent optical waveguide switch
US3923373A (en) Coupling to graded index waveguide
US4775208A (en) Planar waveguide mode converter device
JPH08166565A (en) Optical control device
JP2001235714A (en) Traveling-wave optical modulator and its manufacturing method
US7463808B2 (en) Optical waveguide, optical device, and manufacturing method of the optical waveguide
JPH0667130A (en) Light control element
JPH03259204A (en) Optical wavegiide substrate by diffusion of material for increasing refractive index
JPH06186451A (en) Optical waveguide device
JPH0281005A (en) Waveguide type optical device
JP2613942B2 (en) Waveguide type optical device
JPH0675195A (en) Optical control device
JPS6396626A (en) Waveguide type light control element
JPS59176731A (en) Optical switch
US6404968B1 (en) Optical waveguide elements and a process for producing the same
JP2705790B2 (en) Optical waveguide and method for forming the same
KR100374345B1 (en) Method for manufacturing buried optical waveguide
JPH06222403A (en) Directional coupling type optical waveguide
JP2641238B2 (en) Polarizer
JPS62187310A (en) Production of diffraction grating type optical coupler
JPH02114243A (en) Optical control device and its manufacture
JPH0473605A (en) Optical waveguide
JPS59195622A (en) Branched optical waveguide