[go: up one dir, main page]

JPH0325861A - Operation of hybrid fuel cell - Google Patents

Operation of hybrid fuel cell

Info

Publication number
JPH0325861A
JPH0325861A JP1159420A JP15942089A JPH0325861A JP H0325861 A JPH0325861 A JP H0325861A JP 1159420 A JP1159420 A JP 1159420A JP 15942089 A JP15942089 A JP 15942089A JP H0325861 A JPH0325861 A JP H0325861A
Authority
JP
Japan
Prior art keywords
fuel cell
voltage
storage battery
upper limit
terminal voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1159420A
Other languages
Japanese (ja)
Inventor
Yutaka Mizuno
裕 水野
Hiroaki Takechi
裕章 武智
Tomio Yasuma
富男 安間
Masaki Ito
雅樹 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP1159420A priority Critical patent/JPH0325861A/en
Publication of JPH0325861A publication Critical patent/JPH0325861A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To prevent the overcharge of a storage battery without use of an automatic voltage controller by comparing the terminal voltage of a storage battery with allowable upper limit voltage which is previously set and controlling at least one of hydrogen supply amount and air supply amount to a fuel cell to maintain the terminal voltage to the allowable upper limit voltage or lower. CONSTITUTION:In operation of a hybrid fuel cell, the terminal voltage of a storage battery 3 detected with a voltage sensor 27 is compared with the upper limit voltage V set in a memory in a computing unit of a controller 32. When the terminal voltage exceeds the upper limit voltage, a revolution number decrease signal based on voltage difference is outputted to a fuel pump 13 and/or a blower 22 and supply amount of hydrogen and/or air to a fuel cell 2 is controlled. Output of the fuel cell 2 is decreased and the terminal voltage of the storage battery 3 is maintained so as to come near the upper limit voltage. Overcharge is prevented and charging efficiency is increased.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は蓄電池を併設したハイブリッド燃料電池の運転
方法に関し、さらに詳しくは蓄電池の過充電を防止する
ハイブリッド燃料電池の運転方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method of operating a hybrid fuel cell equipped with a storage battery, and more particularly to a method of operating a hybrid fuel cell that prevents overcharging of the storage battery.

〔従来技術〕[Prior art]

燃料電池は水素と空気(酸素)とを反応させて水と電気
を発生するようにしたものである.このような燃料電池
を負荷に接続して運転する場合、始動時などの補助電源
として蓄電池を併設し、かつその蓄電池を燃料電池によ
って充電可能にしたものがある. このように蓄電池を併設したハイブリッド燃料電池では
、蓄電池に対する充電が過充電になると、蓄電池の寿命
を低下させることになるので、このような過充電を゛起
こさないように保護する必要がある.自動車等のように
発電電源としてマグネトーを装備したものでは、補助電
源の蓄電池の過充電防止に自動電圧調整器を取り付ける
ようにしているのが一般的である。しかしながら、この
自動電圧調整器は周知の通り装置が大型であり、かつ電
気的ロスも大きいという欠点があった。
A fuel cell is a device that generates water and electricity by reacting hydrogen and air (oxygen). When such a fuel cell is connected to a load and operated, there are some that are equipped with a storage battery as an auxiliary power source during startup, etc., and the storage battery can be charged by the fuel cell. In such a hybrid fuel cell equipped with a storage battery, overcharging of the storage battery will shorten the life of the storage battery, so it is necessary to protect the battery from overcharging. Vehicles equipped with a magneto as a power source for power generation, such as automobiles, are generally equipped with an automatic voltage regulator to prevent overcharging of storage batteries serving as auxiliary power sources. However, as is well known, this automatic voltage regulator has the drawbacks of being large-sized and having large electrical losses.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、装置の大型化や電気的ロスを伴う自動
電圧調整器を使用することなく、蓄電池の過充電防止を
可能にするハイブリッド燃料電池の運転方法を提供する
ことにある.〔課題を解決するための手段〕 上記目的を達或する本発明は、水素と空気を反応させて
発電を行う燃料電池に蓄電池を併設すると共に、該蓄電
池を前記燃料電池により充電可能にしたハイブリッド燃
料電池の・運転において、前記蓄電池の端子電圧を検出
し、この検出した端子電圧を予め設定した許容上限電圧
と比較して前記燃料電池に対する水素供給量と空気供給
量の少なくとも一方を調整し、前記端子電圧を前記許容
上限電圧の近傍またはそれ以下に維持することを特徴と
するものである.以下、図に示す実施例を参照して、本
発明の運転方法を説明する。
An object of the present invention is to provide a method for operating a hybrid fuel cell that makes it possible to prevent overcharging of a storage battery without increasing the size of the device or using an automatic voltage regulator that causes electrical loss. [Means for Solving the Problems] The present invention, which achieves the above object, provides a hybrid system in which a storage battery is attached to a fuel cell that generates electricity by reacting hydrogen and air, and the storage battery can be charged by the fuel cell. During operation of the fuel cell, detecting the terminal voltage of the storage battery, comparing the detected terminal voltage with a preset allowable upper limit voltage to adjust at least one of the hydrogen supply amount and the air supply amount to the fuel cell, The present invention is characterized in that the terminal voltage is maintained close to or below the allowable upper limit voltage. Hereinafter, the operating method of the present invention will be explained with reference to the embodiments shown in the figures.

第1図は本発明の運転方法が実施されるハイブリッド燃
料電池を概略的に示すものである。
FIG. 1 schematically shows a hybrid fuel cell in which the operating method of the present invention is implemented.

1は水素を生成する改質装置、2は水素と空気とを反応
させて発電を行う燃料電池、3は燃料電池2に充電可能
に併設された蓄電池、4は燃料電池2と蓄電池3との両
電池に接続された負荷である. 改質装置1は、液体原料気化用の蒸発器5と気化した原
料ガスを反応させる反応層6を有し、その下方に加熱用
に2種類のバーナ7m.7hを有している.この実施例
ではバーナとしてメタノールを燃料とするバーナ7mの
ほか、余剰水素を燃料に利用するバーナ7hが設けられ
ているが、もちろん111!1だけであっても差し支え
ない.また、反応装置下部には空気を供給する送風機1
1が接続されている. 8は燃焼用の燃料(メタノール)を貯留した燃料タンク
である。この燃料タンク8から燃料が供給ボンブ9によ
りバルブ10を介してバーナ7■に供給され、送風機1
1から供給された空気によって燃焼して加熱ガスになる
。加熱ガスは上記蒸発器5と反応層6との加熱を行う。
1 is a reformer that generates hydrogen; 2 is a fuel cell that generates electricity by reacting hydrogen with air; 3 is a storage battery that is attached to the fuel cell 2 so that it can be charged; 4 is a system that combines the fuel cell 2 and the storage battery 3. This is the load connected to both batteries. The reformer 1 has an evaporator 5 for vaporizing liquid raw material and a reaction layer 6 for reacting the vaporized raw material gas, and below the evaporator 5 there are two types of burners 7m for heating. It has 7h. In this embodiment, in addition to the burner 7m that uses methanol as fuel, a burner 7h that uses excess hydrogen as fuel is provided, but of course it is also possible to use only 111!1. In addition, a blower 1 is installed at the bottom of the reactor to supply air.
1 is connected. 8 is a fuel tank that stores fuel for combustion (methanol). Fuel is supplied from this fuel tank 8 to the burner 7■ via a valve 10 by a supply bomb 9, and the blower 1
It is combusted by the air supplied from 1 and becomes heated gas. The heated gas heats the evaporator 5 and the reaction layer 6.

一方、12は反応用の液体原料(メタノールと水との混
合液)を貯留した原料タンクである。
On the other hand, 12 is a raw material tank that stores a liquid raw material for reaction (mixture of methanol and water).

液体原料は供給ボンブl3によりバルブl4を介して蒸
発器5に供給され、蒸発器5で気化されたのち反応層6
で反応して水素主体の改質ガスに変えられる。
The liquid raw material is supplied to the evaporator 5 by the supply bomb 13 via the valve 14, and after being vaporized in the evaporator 5, it is transferred to the reaction layer 6.
It reacts and is converted into a hydrogen-based reformed gas.

反応層6で生戒した水素主体の改質ガスは、供給管15
により貯留タンク16,バルブ17を経て燃料電池2に
供給される。貯留タンク16では改質ガスを一時的に貯
留し、所定量を燃料電池2に供給する。余剰の改質ガス
はリリーフ弁18又は/及びバイパス弁l9を介してバ
ーナ7hに還流され、燃焼用として消費される.また、
このバーナ7hには、燃料電池2で未反応のまま排気さ
れた余剰の水素ガスも、リクレイマ20,バルブ2lを
経て供給される.燃料電池2において、上記水素と反応
させる空気は、送風機22からバルブ23を介して供給
される。送風機22の上流側には四方弁24が接続され
、大気中の低温空気と改質装置1の高温空気とのいずれ
か一方が適宜選択されて導入されるようにしてある。燃
料電池2で反応に供せられなかった余剰の空気は、バル
プ25を介して外気へ排出される. 燃料電池2は、発電電力を外部の負荷4に供給するよう
に接続されるが、その補助電源として蓄電池3を並列に
接続し、かつこの蓄電池3を充電するようにしている.
また、燃料電池2および蓄電池3には、システム用の補
機26が接続されている。この補機26としては、図に
示すように特別の機器を設ける場合に限らず、システム
内に設けられるボンブ9やバルブ10などの内部負荷の
駆動部である場合もある。30は負荷4に対する電流を
オン,オフする手動の負荷スイッチであり、31は蓄電
池3に対する充電電流をオン,オフする保護スイッチで
ある.さらに、上記電気回路には燃料電池2の出力電流
I,を検知する電流センサ28、蓄電池3の端子電圧■
,を検知する電圧センサ27、同じく充電電流I,を検
知する電流センサ29などが接続されている。
The hydrogen-based reformed gas recovered in the reaction layer 6 is fed to the supply pipe 15.
The fuel is supplied to the fuel cell 2 via the storage tank 16 and valve 17. The storage tank 16 temporarily stores the reformed gas and supplies a predetermined amount to the fuel cell 2 . Excess reformed gas is returned to the burner 7h via the relief valve 18 and/or the bypass valve 19, and is consumed for combustion. Also,
Excess hydrogen gas exhausted unreacted by the fuel cell 2 is also supplied to this burner 7h via a reclaimer 20 and a valve 2l. In the fuel cell 2, air to be reacted with the hydrogen is supplied from a blower 22 via a valve 23. A four-way valve 24 is connected to the upstream side of the blower 22 so that either low-temperature air in the atmosphere or high-temperature air from the reformer 1 is appropriately selected and introduced. Excess air that is not used in the reaction in the fuel cell 2 is discharged to the outside air via the valve 25. The fuel cell 2 is connected to supply generated power to an external load 4, and a storage battery 3 is connected in parallel as an auxiliary power source for charging the storage battery 3.
Furthermore, a system auxiliary device 26 is connected to the fuel cell 2 and the storage battery 3. The auxiliary equipment 26 is not limited to the case where a special device is provided as shown in the figure, but may also be a drive unit for an internal load such as a bomb 9 or a valve 10 provided within the system. 30 is a manual load switch that turns on and off the current to the load 4, and 31 is a protection switch that turns on and off the charging current to the storage battery 3. Furthermore, the above electric circuit includes a current sensor 28 for detecting the output current I of the fuel cell 2, and a terminal voltage (I) of the storage battery 3.
, a voltage sensor 27 that detects charging current I, a current sensor 29 that also detects charging current I, and the like are connected.

32は記憶部,演算部などを有するマイクロ?ンピュー
タからなる制御部であり、液体原料の供給ボンプ13や
送風機22に対して回転数制御信号を出力するようにな
っている.この制御部32は、上記のほか他のボンブ9
、送風機11,バルブ10.14.17.19.21,
23,24,25、スイッチ31などに制御信号を出力
するようにしている.また、制御部32には上記電圧セ
ンサ27、電流センサ29.28から蓄電池の端子電圧
,充電電流および燃料電池の出力電流の検出信号や、温
度センサ41.42,43.44から反応層温度,バー
ナ温度,燃料電池反応温度,雰囲気温度などの検出信号
が入力されるようになっている.上記ハイブリッド燃料
電池の制御部32には、その記憶部に蓄電池3に対する
充電を許容しうる上限電圧V l/+saxが予めセッ
トされている.この上限電圧Vl/■8としては、充電
末期に起こるガッシング現象が発生する以前の値(約7
0〜80%充電相当)が設定され、例えば通常の鉛蓄電
池の場合であれば、単セル当たり2.5ボル?位が選ば
れることになる. このようなハイブリッド燃料電池の運転において、電圧
センサ27が検出した蓄電池3の端子電圧V,は、制御
部32の演算部において記憶部にセットされた上限電圧
V m/waxと比較され、端子電圧vlが上限電圧v
.7.■を越えるときは、その差圧に基づいて燃料ボン
プl3及び/又は送風機22に対して回転数低下の信号
を出力し、燃料電池2に対する水素及び/又は空気の供
給量を調整する.このような調整により燃料電池2の出
力は低下し、蓄電池3の端子電圧vlを上限電圧Vl/
■8の近傍になるように維持する.したがって、過充電
は防止され、かつ充電効率を向上する.また、ガッシン
グによる水のロスがなく、補水量が少なくてすむためメ
ンテナンスを容易にする. 第2図A,Bは、上述のようなハイブリッド燃料電池を
、負荷スイッチ30をオン,オフしながら運転する場合
の過充電防止制御を示すものである.第2図Aは燃料電
池の出力電流!。
32 is a micro ? This is a control unit consisting of a computer, and outputs a rotation speed control signal to the liquid raw material supply pump 13 and the blower 22. This control section 32 controls other bombs 9 in addition to those mentioned above.
, blower 11, valve 10.14.17.19.21,
Control signals are output to 23, 24, 25, switch 31, etc. The control unit 32 also receives detection signals of the terminal voltage of the storage battery, charging current, and output current of the fuel cell from the voltage sensor 27 and current sensor 29.28, and the reaction layer temperature and temperature from the temperature sensors 41.42 and 43.44. Detection signals such as burner temperature, fuel cell reaction temperature, and ambient temperature are input. In the control unit 32 of the hybrid fuel cell, an upper limit voltage V l/+sax that allows charging of the storage battery 3 is preset in its storage unit. This upper limit voltage Vl/■8 is the value before the gassing phenomenon that occurs at the end of charging (approximately 7
For example, in the case of a normal lead-acid battery, the voltage is 2.5 volts per single cell. The position will be chosen. In operation of such a hybrid fuel cell, the terminal voltage V of the storage battery 3 detected by the voltage sensor 27 is compared with the upper limit voltage Vm/wax set in the storage section in the calculation section of the control section 32, and the terminal voltage vl is the upper limit voltage v
.. 7. When exceeds (2), a signal is output to the fuel pump 13 and/or the blower 22 to reduce the rotational speed based on the differential pressure, and the amount of hydrogen and/or air supplied to the fuel cell 2 is adjusted. Through such adjustment, the output of the fuel cell 2 decreases, and the terminal voltage vl of the storage battery 3 is lowered to the upper limit voltage Vl/
■Maintain it near 8. Therefore, overcharging is prevented and charging efficiency is improved. In addition, there is no water loss due to gassing, and the amount of water replenishment is small, making maintenance easier. FIGS. 2A and 2B show overcharge prevention control when the above-described hybrid fuel cell is operated while the load switch 30 is turned on and off. Figure 2 A is the output current of the fuel cell! .

?出力電圧■。との関係を示し、また第2図Bは上記燃
料電池の出力に対応する蓄電池の充電電流Lと端子電圧
Vmとの関係を示している.第2図Bに示すように、燃
料電池2からの充電が進行して蓄電池3の端子電圧V,
が上昇し、その充電量が進むにつれて充電電流!.は次
第に低下していく.その端子電圧Vlが上限電圧Vl/
@■に達すると、上述した運転操作によって水素及び/
又は空気の供給量を低下させて燃料電池の出力を低下し
、充電電流I.を次第に低下させながら端子電圧vlを
上限電圧の近傍に維持するようにしている。一方、第2
図Aに示すように、燃料電池の出力電流!。と出力電圧
VCとは、上記蓄電池の充電電流■,と端子電圧V.の
変化とほぼ比例した変化をし、端子電圧VIが上限電圧
V./.■に達すると出力電圧VCも上限電圧VC/+
m■の近傍を維持して出力電流■。を低下させていく。
? Output voltage■. 2B shows the relationship between the charging current L of the storage battery and the terminal voltage Vm corresponding to the output of the fuel cell. As shown in FIG. 2B, as charging from the fuel cell 2 progresses, the terminal voltage V of the storage battery 3,
As the amount of charge increases, the charging current! .. gradually decreases. The terminal voltage Vl is the upper limit voltage Vl/
When @■ is reached, hydrogen and/or
Alternatively, the output of the fuel cell may be reduced by reducing the amount of air supplied, and the charging current I. The terminal voltage vl is maintained near the upper limit voltage while gradually decreasing the voltage. On the other hand, the second
As shown in Figure A, the output current of the fuel cell! . and the output voltage VC are the charging current of the storage battery mentioned above, and the terminal voltage V. The terminal voltage VI changes almost in proportion to the change in the upper limit voltage V. /. ■When the output voltage VC reaches the upper limit voltage VC/+
The output current ■ maintains the vicinity of m■. decrease.

なお、燃料電池の出力電圧V,と蓄電池の端子電圧V.
との間は、ダイオードによる電位降?をv0とすると、
Vc−V,+V,cD関係にある.ダイオードの特性に
もよるが、VDはほぼ0.6〜0.7ボルトである。し
たがって、蓄電池の端子電圧V.をチェックすれば、燃
料電池の出力電圧■,を管理することができる.また、
上記ハイブリッド燃料電池の運転を停止するときは、次
のようにして行うことができる.まず、負荷スイッチ3
0をオフしたのち上記充電操作は継続し、蓄電池3の端
子電圧V,が上限電圧Vl/■8に達したら、燃料電池
に対する水素及び/又は空気の供給量を低下させながら
上限電圧Vl/■8を維持する。そして充電電流■.が
予め設定した最小充電電流I l/sinまで低下した
ら、次のような終了処理を実行するのである. この終了処理を行うとき、燃料電池2は外部負荷4に対
して遮断されているが、蓄電池3や補機26に対しては
接続状態になっている。この状態で、まず燃料電池2に
対する水素の供給を停止するが、反応空気は供給を継続
して発電?より水素分圧を低下させる.そして、その出
力電流値が所定以下になってから空気の供給を停止する
。このように空気だけを継続供給することによってカソ
ードに発生した水蒸気を系外に運び出すことができる。
Note that the output voltage V of the fuel cell and the terminal voltage V of the storage battery.
Is there a potential drop between the diode and the diode? Let v0 be,
There is a relationship between Vc-V, +V, and cD. Depending on the characteristics of the diode, VD is approximately 0.6-0.7 volts. Therefore, the terminal voltage of the storage battery V. By checking , you can control the output voltage of the fuel cell. Also,
When stopping the operation of the above hybrid fuel cell, it can be done as follows. First, load switch 3
0 is turned off, the above charging operation continues, and when the terminal voltage V of the storage battery 3 reaches the upper limit voltage Vl/■8, the upper limit voltage Vl/■ is increased while decreasing the amount of hydrogen and/or air supplied to the fuel cell. Maintain 8. And charging current ■. When the charging current decreases to the preset minimum charging current Il/sin, the following termination process is executed. When performing this termination process, the fuel cell 2 is cut off from the external load 4, but is connected to the storage battery 3 and the auxiliary equipment 26. In this state, first the supply of hydrogen to the fuel cell 2 is stopped, but the reaction air continues to be supplied to generate electricity. This further reduces the hydrogen partial pressure. Then, the supply of air is stopped after the output current value becomes equal to or less than a predetermined value. By continuously supplying only air in this manner, water vapor generated at the cathode can be carried out of the system.

また、蓄電池3や補機26などとは接続状態のままであ
るので、燃料電池2が開放電位をもつことによる触媒の
劣化を招くことがない。水素および空気の供給が停止し
たら、外気との接触を遮断するため、水素および空気の
供給バルブおよび排気バルブをそれぞれ閉止し、以後自
然冷却保管するのである。
Further, since the storage battery 3, the auxiliary equipment 26, etc. remain connected, the catalyst does not deteriorate due to the fuel cell 2 having an open potential. When the supply of hydrogen and air is stopped, the hydrogen and air supply valves and exhaust valves are closed to cut off contact with the outside air, and the products are then stored to cool naturally.

また、本発明によるハイブリッド燃料電池の運転では、
上述のように蓄電池の端子電圧V.が上限電圧Vl/■
8に達したのち、燃料電池に対する水素及び/または空
気の流量を低下させながら端子電圧Vlを上@電圧近傍
に維持する場合、電流センサ29によって充!電流II
を検知し、その充電電流I3が予め定めた所定値まで低
下したら、燃料電池の出力電流Icを補?26に対して
出力するような制御をしてもよい。この制御において蓄
電池の充電電流■、は0または0以下(放電)に制御さ
れる。すなわち、補機に対する電流をIAとするとき、
Ie =In +Ig ,   1g≦0の関係に制御
される。
Furthermore, in the operation of the hybrid fuel cell according to the present invention,
As mentioned above, the terminal voltage V. of the storage battery. is the upper limit voltage Vl/■
8, when the terminal voltage Vl is maintained near the upper voltage while reducing the flow rate of hydrogen and/or air to the fuel cell, the current sensor 29 detects the charging voltage. Current II
is detected, and when the charging current I3 decreases to a predetermined value, the output current Ic of the fuel cell is supplemented? It is also possible to control the output to 26. In this control, the charging current (2) of the storage battery is controlled to 0 or less than 0 (discharge). That is, when the current to the auxiliary equipment is IA,
It is controlled to have a relationship of Ie=In+Ig, 1g≦0.

上記のように燃料電池の出力電流を補機に対して供給す
るようにした場合、蓄電池の充電電流I,をOまたはO
以下となるようにする制御を、電流センサ29で検出し
た充電電流I.の信号によって行うようにしてもよい。
When the output current of the fuel cell is supplied to the auxiliary equipment as described above, the charging current I of the storage battery is set to O or O.
The charging current I detected by the current sensor 29 is controlled to be as follows. This may be done using a signal.

また、上記運転において、端子電圧V,が上限電圧V.
/.■に達したとき保護スイッチ3lをオフにすると共
に、燃料電池に対する水素及び/又は空気の供給量を低
減して、その燃料電池の出力電流I,を補機26に対し
て必要なレベルになるように供給するようにしてもよい
In addition, in the above operation, the terminal voltage V, is the upper limit voltage V.
/. When reaching ■, the protection switch 3l is turned off and the amount of hydrogen and/or air supplied to the fuel cell is reduced to bring the output current I of the fuel cell to the level required for the auxiliary equipment 26. It may be supplied as follows.

このような制御の場合、上記補@26に対する出力電流
の供給を行わないで、水素及び/又は空気の流量を低下
させながら最後には燃料電池4. を停止させるような制御にしてもよい.〔発明の効果〕 上述したように本発明によるハイブリッド燃料電池の運
転方法では、蓄電池の端子電圧を検出し、この検出した
端子電圧を予め設定した許容上限電圧と比較して、燃料
電池に対する水素供給量と空気供給量の少なくとも一方
を調整し、上記端子電圧を許容上限電圧の近傍またはそ
れ以下に維持するようにしたので、従来の大型で、電気
的ロスの大きな自動電圧調整器を使用することなく、蓄
電池の過充電防止を行うことができる。また、許容上限
電圧の近傍に維持しながら充電するため充電効率を向上
することができ、かつ補水量を少なくするためメンテナ
ンスを容易にする。
In the case of such control, no output current is supplied to the supplementary cell 26, and the flow rate of hydrogen and/or air is reduced, and finally the fuel cell 4. Control may also be used to stop the . [Effects of the Invention] As described above, in the method of operating a hybrid fuel cell according to the present invention, the terminal voltage of the storage battery is detected, and the detected terminal voltage is compared with a preset allowable upper limit voltage to determine the hydrogen supply to the fuel cell. Since the terminal voltage is maintained near or below the allowable upper limit voltage by adjusting at least one of the air supply amount and the air supply amount, it is no longer necessary to use a conventional automatic voltage regulator that is large and has a large electrical loss. Therefore, overcharging of the storage battery can be prevented. Furthermore, since charging is performed while maintaining the voltage close to the allowable upper limit voltage, charging efficiency can be improved, and maintenance is facilitated because the amount of water replenishment is reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の運転方法を実施するハイブリッド燃料
電池の概略図、第2図Aは燃料電池の出力電流!,と出
力電圧V,との関係を示す図、第2図Bは燃料電池の出
力に対応するM電池の充電電流■.と端子電圧■,との
関係を示す図である。 1・・・改質装置、2・・・燃料電池、3・・・蓄電池
、4・・・負荷、13・・・(液体原料の)供給ポンプ
、22・・・(空気の)送風機、27・・・電圧センサ
、32・・・制御部。
Fig. 1 is a schematic diagram of a hybrid fuel cell that implements the operating method of the present invention, and Fig. 2 A shows the output current of the fuel cell! , and the output voltage V, FIG. 2B shows the charging current of the M battery corresponding to the output of the fuel cell. FIG. 3 is a diagram showing the relationship between DESCRIPTION OF SYMBOLS 1... Reformer, 2... Fuel cell, 3... Storage battery, 4... Load, 13... (Liquid raw material) supply pump, 22... (Air) blower, 27 . . . Voltage sensor, 32 . . . Control unit.

Claims (1)

【特許請求の範囲】[Claims] 水素と空気を反応させて発電を行う燃料電池に蓄電池を
併設すると共に、該蓄電池を前記燃料電池により充電可
能にしたハイブリッド燃料電池の運転において、前記蓄
電池の端子電圧を検出し、この検出した端子電圧を予め
設定した許容上限電圧と比較して前記燃料電池に対する
水素供給量と空気供給量の少なくとも一方を調整し、前
記端子電圧を前記許容上限電圧の近傍またはそれ以下に
維持するハイブリッド燃料電池の運転方法。
In operation of a hybrid fuel cell in which a storage battery is attached to a fuel cell that generates electricity by reacting hydrogen and air, and the storage battery can be charged by the fuel cell, a terminal voltage of the storage battery is detected, and the terminal voltage of the detected terminal is A hybrid fuel cell wherein at least one of hydrogen supply amount and air supply amount to the fuel cell is adjusted by comparing the voltage with a preset allowable upper limit voltage, and the terminal voltage is maintained near or below the allowable upper limit voltage. how to drive.
JP1159420A 1989-06-23 1989-06-23 Operation of hybrid fuel cell Pending JPH0325861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1159420A JPH0325861A (en) 1989-06-23 1989-06-23 Operation of hybrid fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1159420A JPH0325861A (en) 1989-06-23 1989-06-23 Operation of hybrid fuel cell

Publications (1)

Publication Number Publication Date
JPH0325861A true JPH0325861A (en) 1991-02-04

Family

ID=15693356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1159420A Pending JPH0325861A (en) 1989-06-23 1989-06-23 Operation of hybrid fuel cell

Country Status (1)

Country Link
JP (1) JPH0325861A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218519A (en) * 2005-02-10 2006-08-24 Denso Corp Welded structure and common rail
JP2006294341A (en) * 2005-04-07 2006-10-26 Toyota Motor Corp Fuel cell system
JP2007005038A (en) * 2005-06-21 2007-01-11 Toyota Motor Corp Fuel cell system and moving body
JP2009054397A (en) * 2007-08-27 2009-03-12 Nissan Motor Co Ltd Energy control system for fuel cell vehicle
EP2192647A1 (en) * 2007-11-21 2010-06-02 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP2010170887A (en) * 2009-01-23 2010-08-05 Sony Corp Fuel cell system and electronic equipment
CN109808513A (en) * 2017-11-22 2019-05-28 丰田自动车株式会社 vehicle control device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218519A (en) * 2005-02-10 2006-08-24 Denso Corp Welded structure and common rail
JP2006294341A (en) * 2005-04-07 2006-10-26 Toyota Motor Corp Fuel cell system
JP2007005038A (en) * 2005-06-21 2007-01-11 Toyota Motor Corp Fuel cell system and moving body
US8361666B2 (en) 2005-06-21 2013-01-29 Toyota Jidosha Kabushiki Kaisha Fuel cell apparatus, vehicle including the fuel cell apparatus, and power management method for a system equipped with fuel cell unit
JP2009054397A (en) * 2007-08-27 2009-03-12 Nissan Motor Co Ltd Energy control system for fuel cell vehicle
EP2192647A1 (en) * 2007-11-21 2010-06-02 Toyota Jidosha Kabushiki Kaisha Fuel cell system
EP2192647A4 (en) * 2007-11-21 2011-06-15 Toyota Motor Co Ltd FUEL CELL SYSTEM
US8722265B2 (en) 2007-11-21 2014-05-13 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP2010170887A (en) * 2009-01-23 2010-08-05 Sony Corp Fuel cell system and electronic equipment
CN109808513A (en) * 2017-11-22 2019-05-28 丰田自动车株式会社 vehicle control device

Similar Documents

Publication Publication Date Title
US5334463A (en) Hybrid fuel battery system and the operation method thereof
US5154986A (en) Shut-off device for fuel cell system
US5527632A (en) Hydrocarbon fuelled fuel cell power system
US7059436B2 (en) Operating load control for fuel cell power system in fuel cell vehicle
EP1195287B1 (en) DC power supply using fuel cell
CN102244282B (en) fuel cell system
CN101569044B (en) fuel cell system
CN105609836B (en) The method for controlling of operation of fuel cell system and fuel cell system
JP4492824B2 (en) Fuel cell system
JP2001339810A (en) Controlling device of fuel cell system
JP2005073475A (en) Controller for fuel-cell mounting vehicle
KR102316963B1 (en) Fuel cell system
GB2268322A (en) A hydrocarbon fuelled fuel cell power system
CN101326666B (en) Fuel battery system and mobile object
JPH0325861A (en) Operation of hybrid fuel cell
JP4308479B2 (en) Fuel cell power supply
JP2002110210A (en) Hybrid fuel cell system
JP3698101B2 (en) Control device for fuel reforming fuel cell system
JPH02170369A (en) Fuel battery with hydrogen supplying function
JP2819154B2 (en) Operating method of hybrid fuel cell
JPH0451466A (en) Output control device for fuel cell power generation system
JPH06327161A (en) Hybrid power-supply apparatus
JP2006109650A (en) Vehicle control unit and vehicle control method
KR102102969B1 (en) Fuel cell-Engine hybrid power generation system using engine-generated power for system operation
KR20210147908A (en) Fuel cell system