[go: up one dir, main page]

JPH03256023A - Production of liquid crystal element - Google Patents

Production of liquid crystal element

Info

Publication number
JPH03256023A
JPH03256023A JP5530690A JP5530690A JPH03256023A JP H03256023 A JPH03256023 A JP H03256023A JP 5530690 A JP5530690 A JP 5530690A JP 5530690 A JP5530690 A JP 5530690A JP H03256023 A JPH03256023 A JP H03256023A
Authority
JP
Japan
Prior art keywords
silicon oxide
liquid crystal
oxide film
substrates
liq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5530690A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamazoe
山添 博司
Katsuhiko Kumakawa
克彦 熊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5530690A priority Critical patent/JPH03256023A/en
Publication of JPH03256023A publication Critical patent/JPH03256023A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To obtain a good display grade by allowing a minute ice group to collide with a silicon oxide film formed on the principal planes of the first and second substrates at a specified incident angle, opposing the principal planes of the first and second substrates to each other, sealing both substrates with a specified gap in between and then injecting a liq. crystal composition into the gap. CONSTITUTION:A silicon oxide film is formed on the principal planes of the first and second substrates 1 and 2. Water is then atomized by an ultrasonic atomizer to obtain solid ice grains, the grain group is blown against the silicon oxide film at an angle of about 30 deg., clear nitrogen is blown against the substrate which is dried, and the silicon oxide layers 5 and 6 are obtained as the oriented film. The principal planes of the substrates 1 and 2 are opposed to each other and sealed with a specified gap in between, and then a specified liq. crystal composition for SBE is injected into the gap to obtain a liq. crystal element, namely a panel. Consequently, the liq. crystal molecule is oriented with good reproducibility at a low cost, and a liq. crystal element having a good display grade is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、特に液晶分子の配向方法に係る液晶素子の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a liquid crystal element, particularly a method for aligning liquid crystal molecules.

従来の技術 液晶分子の配向膜は、液晶デイスプレィには必須のもの
である。
BACKGROUND OF THE INVENTION A liquid crystal molecule alignment film is essential for liquid crystal displays.

前記配向膜としては、無機質の斜方蒸着膜、布等で摩擦
(すなわちラビング)された高分子樹脂膜等が使われ(
例えば文献「液晶エレクトロニクスの基礎と応用」佐々
木 昭夫編)、また高分子樹脂としては、主にポリイミ
ドが使われる。
As the alignment film, an inorganic obliquely evaporated film, a polymer resin film rubbed with cloth, etc. is used (
For example, see the literature ``Basics and Applications of Liquid Crystal Electronics'' (edited by Akio Sasaki), and polyimide is mainly used as the polymer resin.

近年注目されている、ネマチック液晶を90゜以上捻っ
た構造を持つSBE (スーパーツウィステッドバイア
フリンジェンスエフェクト)方式等の液晶素子では、5
°以上のブレ・チルト角を有する傾斜配向が望まれる。
Liquid crystal elements such as the SBE (super twisted bias fringe effect) method, which has a structure in which a nematic liquid crystal is twisted by more than 90 degrees, which has been attracting attention in recent years, are
A tilted orientation having a shake/tilt angle of .degree. or more is desired.

プレ・チルト角が約5°以上である傾斜配向が得られる
有機高分子材料が開発され、コストの点から、これをラ
ビングすることによる配向法が生産に使われている。
An organic polymer material that can obtain a tilted orientation with a pre-tilt angle of about 5° or more has been developed, and from the viewpoint of cost, an orientation method by rubbing the material is used in production.

また強誘電液晶を使った界面安定化モード、ホメオトロ
ピックに近いモードを使った液晶素子においても、配向
法は重要な問題であって、現実的、コストの安い配向法
ないし、液晶素子の製造方法が望まれる。
In addition, the alignment method is an important issue in liquid crystal devices using an interface stabilization mode using ferroelectric liquid crystals or a mode close to homeotropy. is desired.

発明が解決しようとする課題 しかしながら、従来の有機高分子膜のラビング法におい
ては、液晶素子を構成した後の液晶分子のブレ・チルト
角が経時変化したり、再現性に乏しい等の課題があった
。また、このプロセスでは、ゴミが発生しやすく、生産
現場の無塵化の要求との整合性が難しいこと、ラビング
布の管理に厳密さが要求それること等の問題があった。
Problems to be Solved by the Invention However, in the conventional rubbing method for organic polymer films, there are problems such as changes in the shake/tilt angle of liquid crystal molecules over time after forming a liquid crystal element, and poor reproducibility. Ta. In addition, this process has problems such as easy generation of dust, difficulty in meeting the requirements for dust-free manufacturing sites, and strict management of the rubbing cloth.

また、斜方蒸着法は装置のコストが大きく、製造原価を
著しく上昇させていた。
Additionally, the oblique evaporation method requires large equipment costs, which significantly increases manufacturing costs.

本発明はかかる点に鑑み、再現性良く、低コストで液晶
分子を配向でき、良好な表示品位の液晶素子の製造方法
を提供せんとするものである。
In view of these points, the present invention aims to provide a method for manufacturing a liquid crystal element that can orient liquid crystal molecules with good reproducibility and at low cost and has good display quality.

課題を解決するための手段 本発明は上記目的を達するため、第1および第2基板の
主面上に酸化硅素膜を形成する過程と、この酸化硅素膜
に微小氷群を所定の入射角度で衝突させる過程と、前記
第1および第2基板の主面を対向させ、所定の隙間を保
って封着した後に形成された間隙内に液晶組成物を注入
する過程をこの順に為すものである。
Means for Solving the Problems In order to achieve the above object, the present invention includes a process of forming a silicon oxide film on the main surfaces of the first and second substrates, and a process of forming a microscopic ice group on the silicon oxide film at a predetermined incident angle. The process of colliding the liquid crystal composition and the process of injecting the liquid crystal composition into the gap formed after the main surfaces of the first and second substrates are faced to each other and sealed with a predetermined gap maintained are performed in this order.

作用 本発明の本質的な部分、すなわち液晶分子の配向法にお
いて、装置のコストは小さく、これが製造原価に大きく
はねかえることはない。
Operation In the essential part of the present invention, that is, the method for aligning liquid crystal molecules, the cost of the device is small, and this does not significantly increase the manufacturing cost.

本発明の内容の内、液晶分子の配向法について述べる。Among the contents of the present invention, a method for aligning liquid crystal molecules will be described.

第1および第2基板の主面上に酸化硅素膜を形成する。A silicon oxide film is formed on the main surfaces of the first and second substrates.

これは、蒸着やスパッター等の手段を使ってもよく、ま
た有機シリコーン樹脂をスピナー等で塗布し、熱処理し
てもよい。但し、できた酸化硅素膜は若干、柔らかい方
が好結果を生む。常温で微小水滴からなる、霧を得て後
、液体窒素等で冷却し、固体微小氷群を得、これを所定
の角度で基板上の酸化硅素膜に吹きつける。このように
することにより、酸化硅素膜に極微の溝が形成されるか
、または酸化硅素膜の高分子が配向する。
This may be done by means such as vapor deposition or sputtering, or by applying an organic silicone resin using a spinner or the like and heat-treating it. However, better results will be obtained if the resulting silicon oxide film is slightly softer. After obtaining a mist consisting of microscopic water droplets at room temperature, it is cooled with liquid nitrogen or the like to obtain solid microscopic ice, which is sprayed at a predetermined angle onto the silicon oxide film on the substrate. By doing so, microscopic grooves are formed in the silicon oxide film or polymers in the silicon oxide film are oriented.

液晶分子は前記の溝または配向した高分子に沿って、配
向する。
The liquid crystal molecules are aligned along the grooves or aligned polymers.

前述の固体微小氷群は、基板上の酸化硅素膜に激突の後
、自然に気化するか、または窒素ガスまたは清浄空気を
吹きつけるか、若干加熱することにより、前述の物質は
基板から容易に除去される。
After the aforementioned solid micro-ice particles collide with the silicon oxide film on the substrate, they can be vaporized naturally, or the aforementioned substances can be easily removed from the substrate by blowing nitrogen gas or clean air on them, or by slightly heating them. removed.

これから理解されるように、ゴミ等は全く発生せず、生
産上、歩留り等の向上に資すること大である。また、実
質上、従来のラビング後の洗浄も兼ねている。
As will be understood from this, no dust is generated, which greatly contributes to improving production yields and the like. In fact, it also serves as cleaning after conventional rubbing.

実施例 以下、本発明の実施例を図面を用いて説明する。Example Embodiments of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例によって得られる液晶素子
を示す断面図である。同図において、1.2は例えば、
透明ガラスからなる第1基板およびjF!2基板、3,
4は主面上の、例えばITO膜からなる矩形状の透明な
導電電極、5,6は配向膜としての酸化硅素膜、7は液
晶層である。
FIG. 1 is a sectional view showing a liquid crystal element obtained according to an embodiment of the present invention. In the same figure, 1.2 is, for example,
A first substrate made of transparent glass and jF! 2 boards, 3,
4 is a rectangular transparent conductive electrode made of, for example, an ITO film on the main surface; 5 and 6 are silicon oxide films as alignment films; and 7 is a liquid crystal layer.

主面に微細加工された導電電極3,4を有するガラス基
板1,2を覆うように、触媒化成■製、有機シリコーン
樹脂、ZQ−3レジンをスピナーで塗布した後、150
”Cで60分加熱して酸化硅素膜を得る。この膜はかな
り、有機の基を含んでおり、硬度は非常に小さい。
After coating the glass substrates 1 and 2 with conductive electrodes 3 and 4 microfabricated on their main surfaces with ZQ-3 resin, an organic silicone resin manufactured by Catalyst Kasei, using a spinner,
A silicon oxide film is obtained by heating at C for 60 minutes. This film contains a considerable amount of organic groups and has very low hardness.

次に、水を超音波を使ったアトマイザ−で霧状にする。Next, the water is atomized using an atomizer that uses ultrasonic waves.

多分この時は霧の粒子は液体状である。The fog particles are probably in liquid form at this time.

これを液体窒素で冷却されたパイプの中を通すことによ
り、固体状氷粒子になるようにする。冷却には十分され
るようにする。この粒子群を、サンド・ブラスト装置を
改良した装置で、前記酸化硅素膜に約30’(基板面と
粒子群の入射方向とのなす角度)で吹きつける。吹き付
は速度は音速に近くしている。
By passing this through a pipe cooled with liquid nitrogen, it becomes solid ice particles. Make sure it is sufficiently cooled. The particles are blasted onto the silicon oxide film at an angle of about 30' (the angle between the substrate surface and the direction of incidence of the particles) using an improved sand blasting device. The speed of spraying is close to the speed of sound.

その後、清浄窒素を基板に吹きつけ、乾燥させることに
より、配向膜としての酸化硅素層5.6を得る。次に第
1基板1および第2基板2の主面を対向させ、所定の間
隙を保って封着した後に形成された間隙内にSBE用の
特定液晶組成物を注入させて、液晶素子、すなわちパネ
ルを得る。
Thereafter, clean nitrogen is blown onto the substrate and the substrate is dried to obtain a silicon oxide layer 5.6 as an alignment film. Next, the main surfaces of the first substrate 1 and the second substrate 2 are made to face each other and sealed with a predetermined gap maintained, and then a specific liquid crystal composition for SBE is injected into the gap formed to form a liquid crystal element, i.e. Get the panel.

以上の方法でそれぞれ単一条件6個の液晶素子を作製し
、磁場法でプレ・チルト角を測定した。
Six liquid crystal elements were manufactured using the above method under each single condition, and the pre-tilt angles were measured using a magnetic field method.

結果は、酸化硅素膜に微小氷群を吹きつけた場合には、
30.2±0.4°であり、従来の場合(ラビング法)
では平均約0.5°であり、分布は0゜から約5°に渡
っていた。本実施例の液晶素子の表示特性は均一で、再
現性が良く優れたものであった。
The results show that when microscopic ice is sprayed onto a silicon oxide film,
30.2±0.4°, in the conventional case (rubbing method)
The average angle was about 0.5°, and the distribution ranged from 0° to about 5°. The display characteristics of the liquid crystal element of this example were uniform and excellent in reproducibility.

また、ZQ−3レジンを塗布後。200℃で約1時間熱
処理し、酸化硅素膜を得た。これに前記のようにして、
パネルを得る場合においても、同様な効果が得られた。
Also, after applying ZQ-3 resin. Heat treatment was performed at 200° C. for about 1 hour to obtain a silicon oxide film. Do this as described above,
Similar effects were obtained when obtaining panels.

また、もう一方のサンプルは、ZQ−3レジンを塗布後
、150℃で約1時間熱処理し、酸化硅素膜を得、その
後前記のように微小氷群をこの酸化硅素膜に衝突させ、
その後よく乾燥させ、更に200℃で1時間熱処理し、
前記と同様にしてパネルを得た。この場合も本発明の効
果は顕著に発揮された。
In addition, the other sample was coated with ZQ-3 resin and then heat treated at 150°C for about 1 hour to obtain a silicon oxide film, after which micro ice groups were allowed to collide with this silicon oxide film as described above.
After that, it was thoroughly dried and further heat-treated at 200°C for 1 hour.
A panel was obtained in the same manner as above. In this case as well, the effects of the present invention were significantly exhibited.

なお、本実施例では、ツウィスト・モードについて述べ
たが、強誘電液晶を使った界面安定化モード、ホメオト
ロピックに近いモードを使った液晶素子の、特に、液晶
分子の配向性においても本発明は有効である。
Although twist mode has been described in this embodiment, the present invention can also be applied to liquid crystal elements using ferroelectric liquid crystal in interface stabilization mode and near-homeotropic mode, especially in the orientation of liquid crystal molecules. It is valid.

ホメオトロピックに近い制御された傾斜配向を得るには
、基板面と粒子群の入射方向とのなす角度を精密に約9
0°近くにするか、またはこの角度を精密に約06とす
ることと、さらに垂直配向剤塗布とを組合せることによ
り、配向膜を得る。
To obtain a controlled tilt orientation that is close to homeotropic, the angle between the substrate surface and the direction of incidence of the particle group must be precisely adjusted to approximately 9
An alignment film is obtained by making the angle close to 0° or by making this angle precisely about 0° in combination with vertical alignment agent application.

発明の効果 以上のように本発明は、優れた液晶分子の配向性を提供
するものであり、結果、良好な表示品位の液晶素子が得
られる。
Effects of the Invention As described above, the present invention provides excellent alignment of liquid crystal molecules, and as a result, a liquid crystal element with good display quality can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例によって得られる液晶素子の
概略断面図である。 1・・・・・・第1基板、2・・・・・・第2基板、3
.4・・・・・・導電電極、5.6・・・・・・酸化硅
素層、7・・・・・・液晶層。
FIG. 1 is a schematic cross-sectional view of a liquid crystal element obtained according to an embodiment of the present invention. 1...First substrate, 2...Second substrate, 3
.. 4... Conductive electrode, 5.6... Silicon oxide layer, 7... Liquid crystal layer.

Claims (1)

【特許請求の範囲】[Claims] 第1基板および第2基板の主面上に酸化硅素膜を形成す
る過程と、この酸化硅素膜に微小氷群を所定の入射角度
で衝突させる過程と、前記第1基板および第2基板の主
面を対向させ、所定の間隙を保って封着した後に形成さ
れた間隙内に液晶組成物を注入する過程をこの順に為す
ことを特徴とする液晶素子の製造方法。
A process of forming a silicon oxide film on the main surfaces of the first substrate and the second substrate, a process of colliding the silicon oxide film with microscopic ice at a predetermined incident angle, and a process of forming a silicon oxide film on the main surfaces of the first substrate and the second substrate. A method for manufacturing a liquid crystal element, comprising the steps of: placing the surfaces facing each other and sealing with a predetermined gap maintained, and then injecting a liquid crystal composition into the gap formed in this order.
JP5530690A 1990-03-07 1990-03-07 Production of liquid crystal element Pending JPH03256023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5530690A JPH03256023A (en) 1990-03-07 1990-03-07 Production of liquid crystal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5530690A JPH03256023A (en) 1990-03-07 1990-03-07 Production of liquid crystal element

Publications (1)

Publication Number Publication Date
JPH03256023A true JPH03256023A (en) 1991-11-14

Family

ID=12994886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5530690A Pending JPH03256023A (en) 1990-03-07 1990-03-07 Production of liquid crystal element

Country Status (1)

Country Link
JP (1) JPH03256023A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713162A (en) * 1993-06-29 1995-01-17 Taiyo Sanso Co Ltd Orientation treatment of liquid crystal display element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713162A (en) * 1993-06-29 1995-01-17 Taiyo Sanso Co Ltd Orientation treatment of liquid crystal display element

Similar Documents

Publication Publication Date Title
JPH05273537A (en) Ferroelectric liquid crystal display element and its production
EP0040975A1 (en) Method of preparation of a substrate for a liquid crystal display device, a positive display type liquid crystal display device, and a method of constructing such a device
US20090290118A1 (en) Method and system for improving ion beam alignment for liquid crystal displays by a grooving under layer
JPS6327817A (en) Liquid crystal display device
JP2509082B2 (en) Method of introducing tilt horizontal alignment to liquid crystal
JP2873822B2 (en) Liquid crystal display device and manufacturing method thereof
JPH03256023A (en) Production of liquid crystal element
JPH05150246A (en) Liquid crystal display element with plastic substrate
JPH04294321A (en) Ferroelectric liquid crystal element
JPH03163527A (en) Production of liquid crystal element
JPH06337418A (en) Liquid crystal electro-optical device
JPH01120536A (en) Ferroelectric liquid crystal element
JPH0229624A (en) Production of oriented film of ferroelectric liquid crystal element
JPS6348523A (en) Production of liquid crystal element
JPH032829A (en) Formation of oriented film for liquid crystal
JPH01243026A (en) Cell for liquid crystal display
JP2548390B2 (en) Method for manufacturing ferroelectric liquid crystal panel
JPH09281500A (en) Liquid crystal orienting film and liquid crystal display element
JPH06160858A (en) Liquid crystal display element
JPS63304227A (en) Production of liquid crystal element
JPH08286190A (en) Production of ferroelectric liquid crystal element
JPH04177324A (en) Liquid crystal panel and spacer for liquid crystal panel
JPS6396630A (en) Preparation of liquid crystal display element
JPS62111236A (en) Liquid crystal element
JPH01145629A (en) Liquid crystal display device