[go: up one dir, main page]

JPH03253577A - Surface treatment of aluminum cylinder block - Google Patents

Surface treatment of aluminum cylinder block

Info

Publication number
JPH03253577A
JPH03253577A JP4962190A JP4962190A JPH03253577A JP H03253577 A JPH03253577 A JP H03253577A JP 4962190 A JP4962190 A JP 4962190A JP 4962190 A JP4962190 A JP 4962190A JP H03253577 A JPH03253577 A JP H03253577A
Authority
JP
Japan
Prior art keywords
temperature
surface treatment
cleaning
liquid
bore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4962190A
Other languages
Japanese (ja)
Other versions
JP2679335B2 (en
Inventor
Masahiko Iiizumi
飯泉 雅彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2049621A priority Critical patent/JP2679335B2/en
Publication of JPH03253577A publication Critical patent/JPH03253577A/en
Application granted granted Critical
Publication of JP2679335B2 publication Critical patent/JP2679335B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE:To prevent trouble due to the temp. difference between cylinder bores by controlling the temp. of a washing soln. or a treating soln. for each of the bores in accordance with the temp. of each of the bores measured before filling the treating soln. CONSTITUTION:When the surfaces of the cylinder bores in an aluminum multicylinder block 25 are washed with a washing soln. and a treating soln. is filled to carry out chemical treatment, the temp. of each of the bores is measured with a thermometer 18 and the temp. of at least one of the washing soln. and the treating soln. for each of the bores is controlled in accordance with the measured temp. with a temp. controlling system 16. Equal amts. of silicon crystals can be protruded from the surfaces of the bores.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、珪素(Si)を含むアルミニウム合金製の
シリンダブロックのシリンダボア部へのピストンの焼き
つき防止のために、シリンダボア部を設ける代わりにそ
のボア部表面に化学反応により珪素結晶を露出させる表
面処理を施す場合に用いて好適な、アルミシリンダブロ
ックの表面処理方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) This invention provides an alternative to providing a cylinder bore in order to prevent pistons from seizing in the cylinder bore of a cylinder block made of an aluminum alloy containing silicon (Si). The present invention relates to a surface treatment method for an aluminum cylinder block, which is suitable for use when surface treatment is performed to expose silicon crystals on the surface of the bore portion through a chemical reaction.

(従来の技術) 従来のかかる表面処理を行うシステムとしては例えば、
第5図に示すものがある。
(Prior art) Examples of conventional systems for performing such surface treatment include:
There is one shown in Figure 5.

このシステムは、前洗浄ステーション1と、表面処理ス
テーション2と、後洗浄ステーション3とを具えてなり
、ここで、前洗浄および後洗浄ステーション1.3には
各々、洗浄液タンク4,6が設けられ、また、表面処理
ステーション2には処理液タンク5が設けられており、
さらにそれらのタンク4〜6には互いに独立した液温度
管理システム7〜9が設けられている。
The system comprises a pre-cleaning station 1, a surface treatment station 2 and a post-cleaning station 3, where the pre-cleaning and post-cleaning stations 1.3 are each provided with a cleaning liquid tank 4, 6. In addition, the surface treatment station 2 is provided with a treatment liquid tank 5.
Further, the tanks 4 to 6 are provided with mutually independent liquid temperature control systems 7 to 9.

かかる表面処理システムでは、機械加工工程である前工
程10で加工されたワークとしてのアルミシリンダブロ
ックのシリンダボア部に、前洗浄ステーションlで洗浄
液による前洗浄を施し、表面処理ステーション2で処理
液により表面に珪素結晶を露出させる化学処理を施し、
その後、後洗浄ステーション3で後洗浄を施す、という
工程を行い、表面処理後のアルミシリンダブロックにつ
いては、検査工程である後工程11で各シリンダボア部
の内径等を検査する。
In such a surface treatment system, the cylinder bore of an aluminum cylinder block as a workpiece processed in the pre-process 10, which is a machining process, is pre-cleaned with a cleaning liquid in a pre-cleaning station 1, and the surface is cleaned with a treatment liquid in a surface treatment station 2. A chemical treatment is applied to expose the silicon crystals,
Thereafter, a post-cleaning step is performed at a post-cleaning station 3, and the aluminum cylinder block after the surface treatment is inspected for the inner diameter of each cylinder bore portion, etc. in a post-process 11, which is an inspection process.

そして、上記システムでは、各液温度管理システム7〜
9が、それぞれ対応するステーションのタンク4〜6内
の液温度を、ワーク温度にかかわりなく、洗浄および表
面処理の効率上問題のない程度に維持管理している。
In the above system, each liquid temperature management system 7 to
No. 9 maintains and manages the liquid temperature in the tanks 4 to 6 of the corresponding stations to a level that does not cause problems in cleaning and surface treatment efficiency, regardless of the workpiece temperature.

(発明が解決しようとする課題) ところで、化学反応による表面処理は、処理対象の表面
温度の影響を大きく受ける。
(Problems to be Solved by the Invention) Surface treatment by chemical reaction is greatly influenced by the surface temperature of the object to be treated.

例えば第6図は、常温中にあった、アルミシリンダブロ
ックと同質の複数の試験片を、濃度および液温度を異な
らせた処理液中に各々30秒間浸漬し、各試験片の表面
の珪素結晶の突出量を測定した結果を示しており(この
試験では処理液としてNaOH水溶液を用い、図中αは
10%、βは35%、γは60%の濃度の場合をそれぞ
れ示す)、図から明らかなように、何れの濃度でも液温
度を異ならせて試験片の表面温度を異ならせると突出量
に大きな差異が生ずる。
For example, Fig. 6 shows that a plurality of test pieces of the same quality as an aluminum cylinder block, which were at room temperature, were immersed for 30 seconds in processing solutions of different concentrations and liquid temperatures, and silicon crystals on the surface of each test piece were removed. (In this test, a NaOH aqueous solution was used as the treatment liquid, and in the figure, α is 10%, β is 35%, and γ is 60%.) As is clear, at any concentration, if the liquid temperature is varied and the surface temperature of the test piece is varied, a large difference will occur in the amount of protrusion.

従って、表面処理の際には、その処理効率を上げる必要
上アルミシリンダブロックのシリンダボア部の表面温度
を外気温度よりもかなり高くする必要があるので、前洗
浄ステーション1における洗浄液の液温度もかなり高く
する必要があり、それゆえ、シリンダボア部は、前洗浄
ステーションlでの洗浄後、表面処理ステーション2で
処理液により表面処理をするまでの間に、大気中で冷却
されることになる。
Therefore, during surface treatment, it is necessary to raise the surface temperature of the cylinder bore of the aluminum cylinder block considerably higher than the outside air temperature in order to increase the treatment efficiency, so the temperature of the cleaning liquid at pre-cleaning station 1 is also quite high. Therefore, the cylinder bore is cooled in the atmosphere after cleaning at the pre-cleaning station 1 and before surface treatment with a treatment liquid at the surface treatment station 2.

しかして、シリンダブロックが多気筒の場合は、通常ボ
ア部間で熱容量が異なることから、例えば四気筒の場合
には両端に位置するシリンダボア部が特に冷却され易い
等、ボア部間で冷却速度が異なる。
However, when a cylinder block has multiple cylinders, the heat capacity usually differs between the bores, so for example, in the case of a four-cylinder block, the cylinder bores located at both ends are particularly easy to cool, and the cooling rate between the bores varies. different.

従って、前洗浄終了時にボア部間で温度が等しくても、
表面処理を開始する際にはボア部間で温度差が生じてし
まう。
Therefore, even if the temperatures are equal between the bores at the end of pre-cleaning,
When starting surface treatment, a temperature difference occurs between the bores.

また、前洗浄ステーション1に入る以前に、シリンダブ
ロックは前工程10での機械加工で熱を持っており、そ
の前工程から前洗浄までの間の冷却によっても、ボア部
間で上記と同様の温度差が生じてしまうことが多い。
In addition, before entering the pre-cleaning station 1, the cylinder block has heat due to machining in the pre-process 10, and cooling between the pre-process and the pre-cleaning causes a similar phenomenon between the bore parts as described above. Temperature differences often occur.

それゆえ、表面処理の際にボア部間で均一な珪素結晶の
突出量を得るのが極めて困難であった。
Therefore, it is extremely difficult to obtain a uniform amount of silicon crystal protrusion between the bore portions during surface treatment.

この発明は、かかる課題を有利に解決した表面処理方法
を提供するものである。
The present invention provides a surface treatment method that advantageously solves these problems.

(課題を解決するための手段) この発明のアルミシリンダブロックの表面処理方法は、
多気筒アルミシリンダブロックの各シリンダボア部の表
面を、洗浄液での洗浄後に処理液を充填して化学処理す
るに際し、洗浄液での洗浄後、処理液の充填に先立ち各
シリンダボア部の温度を測定して、この温度に基づき各
シリンダボア部毎に洗浄液および処理液の少なくとも一
方の液温度を制御することを特徴とするものである。
(Means for Solving the Problems) The method for surface treatment of an aluminum cylinder block of the present invention is as follows:
When chemically treating the surface of each cylinder bore of a multi-cylinder aluminum cylinder block by cleaning it with a cleaning liquid and filling it with a processing liquid, the temperature of each cylinder bore is measured after cleaning with the cleaning liquid and before filling it with the treatment liquid. The present invention is characterized in that the temperature of at least one of the cleaning liquid and the processing liquid is controlled for each cylinder bore portion based on this temperature.

(作用) かかる方法によれば、処理液の充填前の各シリンダボア
部の温度の測定結果から得た、実際の温度差に基づいて
、洗浄液および処理液の少なくとも一方の液温度に各シ
リンダボア部間で差を付ける制御を行い得るので、洗浄
液の液温度を制御する場合は、冷却速度が速いボア部に
供給する洗浄液の液温度を高めにすることにて、処理液
の充填前にボア部間の表面温度差を解消し、また、処理
液の液温度を制御する場合は、冷却速度が速いボア部に
供給する処理液の液温度を高めにすることにて、表面処
理を行っている間にボア部間の温度差を適宜減少させる
ことができ、従って、各シリンダボア部間で均一な珪素
結晶の突出量を得ることができる。
(Function) According to this method, the liquid temperature of at least one of the cleaning liquid and the processing liquid is adjusted between each cylinder bore part based on the actual temperature difference obtained from the measurement results of the temperature of each cylinder bore part before filling with the processing liquid. Therefore, when controlling the liquid temperature of the cleaning liquid, the liquid temperature of the cleaning liquid supplied to the bore part where the cooling rate is high is increased, and the temperature between the bore parts is increased before filling with the processing liquid. If you want to eliminate the difference in surface temperature and control the temperature of the processing liquid, increase the temperature of the processing liquid supplied to the bore part where the cooling rate is fast, so that the temperature of the processing liquid increases during surface treatment. The temperature difference between the bore portions can be appropriately reduced, and therefore a uniform amount of silicon crystal protrusion can be obtained between the cylinder bore portions.

尚、洗浄液と処理液の両方の液温度を制御すれば、表面
処理システムの各ステーションでのタクト時間が短く、
一つのステーションのみでは温度差を充分解消できない
場合でも、表面処理ステーションにおいて、各シリンダ
ボア部間で均一な珪素結晶の突出量を得ることができる
Furthermore, by controlling the liquid temperature of both the cleaning liquid and the processing liquid, the takt time at each station of the surface treatment system can be shortened.
Even if the temperature difference cannot be sufficiently eliminated with only one station, a uniform amount of silicon crystal protrusion can be obtained between each cylinder bore at the surface treatment station.

さらに、この方法によれば、表面処理の際にボア部間の
温度差をほとんどもしくは完全に解消しているので、後
洗浄後の後工程でボア部間の温度差に起因する不具合が
生ずるのを防止することができ、例えば、後洗浄後の後
工程で検査を行う場合にも、温度差による計測誤差がほ
とんどもしくは全く生じず、従って計測作業を容易なら
しめることができる。
Furthermore, according to this method, the temperature difference between the bore parts is almost or completely eliminated during surface treatment, so there are no problems caused by the temperature difference between the bore parts in the post-cleaning process. For example, even when an inspection is performed in a post-process after post-cleaning, there is little or no measurement error due to temperature differences, and therefore measurement work can be made easier.

(実施例) 以下に、この発明の実施例を図面に基づき詳細に説明す
る。
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図は、この発明のアルミシリンダブロックの表面処
理方法の一実施例に用いる表面処理システムを例示する
構成図であり、図中従来のシステムと同一の部分は、そ
れと同一の符号にて示す。
FIG. 1 is a block diagram illustrating a surface treatment system used in an embodiment of the aluminum cylinder block surface treatment method of the present invention, and in the figure, the same parts as the conventional system are designated by the same reference numerals. .

すなわち、ここにおける表面処理システムは、前洗浄ス
テーション1と、表面処理ステーション12と、後洗浄
ステーション13とを具えてなり、ここで、前洗浄およ
び後洗浄ステーション1,13には各々、洗浄液タンク
4,15が設けられ、また、表面処理ステーション12
には処理液タンク14が設けられており、さらにそれら
のタンク4〜6には互いに独立した液温度管理システム
7 、16.17が設けられている。
That is, the surface treatment system here includes a pre-cleaning station 1, a surface treatment station 12, and a post-cleaning station 13, where the pre-cleaning and post-cleaning stations 1 and 13 each have a cleaning liquid tank 4. , 15 are provided, and a surface treatment station 12
is provided with a processing liquid tank 14, and furthermore, these tanks 4 to 6 are provided with mutually independent liquid temperature control systems 7, 16, and 17.

またここで、表面処理ステーション12には、ボア部温
度測定装置18が設けられている。
Here, the surface treatment station 12 is also provided with a bore temperature measuring device 18 .

第2図は、上記表面処理ステーション12、処理液タン
ク14、液温度管理システム16およびボア部温度測定
装置18の構成をさらに詳細に示しており、この実施例
における表面処理ステーション12は、直列四気筒のア
ルミシリンダ25に対応すべく、シリンダボア部毎に独
立した、四本の処理液供給ノズル12aと、それらのノ
ズル12aに管路を介し各々接続された四台の図示しな
いポンプとを具えている。
FIG. 2 shows the configuration of the surface treatment station 12, treatment liquid tank 14, liquid temperature management system 16, and bore temperature measurement device 18 in more detail. In order to correspond to the aluminum cylinder 25 of the cylinder, each cylinder bore section is equipped with four independent processing liquid supply nozzles 12a, and four pumps (not shown) each connected to these nozzles 12a via a pipe line. There is.

また、表面処理ステーション12に設けられたボア部温
度測定装置18は、二台の赤外放射温度計18aを具え
ている。この赤外放射温度計を用いたのは、ここでは充
分な計測精度があり、かつ計測時間が極めて短く、表面
処理システムのタクト時間をほとんど延長せずに温度計
測を行い得るからであり、計測精度と計測時間との点で
問題がないものであれば、他の温度測定手段を用いても
良い。
Further, the bore temperature measuring device 18 provided in the surface treatment station 12 includes two infrared radiation thermometers 18a. This infrared radiation thermometer was used because it has sufficient measurement accuracy and the measurement time is extremely short, making it possible to measure temperature without extending the takt time of the surface treatment system. Other temperature measurement means may be used as long as there are no problems in terms of accuracy and measurement time.

この一方、処理液タンク14は、これも直列四気筒のア
ルミシリンダ25に対応すべく、シリンダボア部毎に独
立した、各々例えばNaOH水溶液等の処理液26を貯
留する四つの処理液槽14aと、それらの処理液槽14
a内に各々位置する四本の処理液吸引ノズル14bとを
具えており、それらの処理液吸引ノズル14bは、表面
処理ステーション12の上記四台のポンプに管路を介し
各々接続されている。
On the other hand, the processing liquid tank 14 has four processing liquid tanks 14a each storing a processing liquid 26 such as an NaOH aqueous solution, which are independent for each cylinder bore, in order to correspond to the in-line four-cylinder aluminum cylinder 25. Those processing liquid tanks 14
The treatment liquid suction nozzles 14b are respectively connected to the four pumps of the surface treatment station 12 via pipes.

尚、ここにおける表面処理システムは、各ステーション
で使用した液を、図示しないフィルタ等により異物を除
去した後に図示しない管路を経て各タンク内へ戻す、液
循環システムを採用している。
The surface treatment system here employs a liquid circulation system in which the liquid used at each station is returned to each tank via a pipe (not shown) after removing foreign matter using a filter (not shown).

そして、液温度管理システム16は、処理液タンク14
内に各処理液槽14a毎に設けられた四台の例えば電気
ヒータ等の加熱装置16aと、これも処理液タンク14
内に各処理液吸引ノズル14b毎に設けられた四つの例
えば熱電対等の液温度センサ16bと、上記二台の赤外
放射温度計18aの作動を制御するとともにそれらの赤
外放射温度計18aの出力信号BTおよび上記四つの液
温度センサ16bの出力信号LTを人力してそれらの信
号に基うき上記四台の加熱装置16aの作動を独立に制
御する例えばマイクロコンピュータ内蔵の制御装置16
cとを具えている。
The liquid temperature management system 16 also controls the processing liquid tank 14.
There are four heating devices 16a, such as electric heaters, provided for each processing liquid tank 14a within the processing liquid tank 14.
It controls the operation of four liquid temperature sensors 16b, such as thermocouples, provided for each processing liquid suction nozzle 14b, and the two infrared radiation thermometers 18a, and also controls the operation of the two infrared radiation thermometers 18a. A control device 16 with a built-in microcomputer, for example, which manually controls the operation of the four heating devices 16a based on the output signal BT and the output signal LT of the four liquid temperature sensors 16b.
It is equipped with c.

さらに、第1図において、後洗浄ステーション13も、
上記表面処理ステーション12と同様のシリンダボア部
毎に独立した構成を具え、洗浄液タンク15および液温
度管理システム17も、上記処理液タンク14および液
温度管理システム16と同様のシリンダボア部毎に独立
した構成を具えており、その液温度管理システム17も
、上記二台の赤外放射温度計18aの出力信号BTを入
力する。
Furthermore, in FIG. 1, the post-cleaning station 13 is also
The cleaning liquid tank 15 and liquid temperature management system 17 have an independent configuration for each cylinder bore similar to the surface treatment station 12, and the cleaning liquid tank 15 and liquid temperature management system 17 also have an independent configuration for each cylinder bore similar to the treatment liquid tank 14 and liquid temperature management system 16. The liquid temperature management system 17 also receives the output signals BT from the two infrared radiation thermometers 18a.

かかる表面処理システムでは、機械加工工程である前工
程10で加工されたワークとしての直列四気筒のアルミ
シリンダブロックの、四箇所のシリンダボア部の各々に
、前洗浄ステーション1で洗浄液による前洗浄を施し、
表面処理ステーション12で処理液により表面に珪素結
晶を露出させる化学処理を施し、その後、後洗浄ステー
ション13で後洗浄を施す、という工程を行い、表面処
理後のアルミシリンダブロックについては、検査工程で
ある後工程11で各シリンダボア部の内径等を検査する
In this surface treatment system, each of the four cylinder bores of an in-line four-cylinder aluminum cylinder block as a workpiece processed in a pre-process 10, which is a machining process, is pre-cleaned with a cleaning liquid at a pre-cleaning station 1. ,
The surface treatment station 12 performs a chemical treatment to expose silicon crystals on the surface using a treatment solution, and then the post-cleaning station 13 performs post-cleaning.The aluminum cylinder block after the surface treatment is inspected in the inspection process. In a certain post-process 11, the inner diameter and the like of each cylinder bore are inspected.

しかして、前洗浄ステーションlでの洗浄液による前洗
浄は、液温度管理システム7が常温よりも高い後述する
液温度に維持管理している、一つの洗浄液タンク4内の
洗浄液を全てのボア部に供給し、互いに等しい液温度の
洗浄液を用いて行っており、この結果として、第2図に
示す如く前洗浄を終えて表面処理ステーション12に搬
入されたアルミシリンダブロック25は、機械加工工程
から前洗浄までの間の冷却および、前洗浄から表面処理
までの間の冷却によって、シリンダボア部間で温度差を
生している。
Therefore, in the pre-cleaning with the cleaning liquid at the pre-cleaning station l, the cleaning liquid in one cleaning liquid tank 4, which is maintained at a liquid temperature described later by the liquid temperature management system 7 which is higher than room temperature, is applied to all the bore parts. As a result, as shown in FIG. 2, the aluminum cylinder block 25 that has been pre-cleaned and delivered to the surface treatment station 12 has no pre-machining process. Cooling before cleaning and cooling between pre-cleaning and surface treatment create a temperature difference between cylinder bores.

このボア部間の温度差の、化学処理への影響を無くすた
め、表面処理ステーション12では、処理液の充填に先
立ち、アルミシリンダブロック25の搬入を示す起動信
号により、先ず制御装置16cが二台の赤外放射温度計
18aに、そのシリンダブロック25の各シリンダボア
部の温度を計測させ、その出力信号BTを入力する。
In order to eliminate the influence of this temperature difference between the bore parts on the chemical processing, in the surface treatment station 12, before filling the processing liquid, the two control devices 16c are first activated by a start signal indicating the loading of the aluminum cylinder block 25. The infrared radiation thermometer 18a measures the temperature of each cylinder bore of the cylinder block 25, and its output signal BT is input.

ここで、各赤外放射温度計18aは、計測画面内に三箇
所のシリンダボア部が入るように配置されており、赤外
放射温度計18aの出力信号BTは、計測画面内におけ
る温度分布を示している。このため制御装置16cは、
計測画面内のボア部に対応する位置にウィンドウを設け
る画像処理を行って、特に各ボア部の表面付近の温度を
求める。
Here, each infrared radiation thermometer 18a is arranged so that three cylinder bores fit within the measurement screen, and the output signal BT of the infrared radiation thermometer 18a indicates the temperature distribution within the measurement screen. ing. For this reason, the control device 16c
Image processing is performed to create a window at a position corresponding to the bore in the measurement screen, and the temperature particularly near the surface of each bore is determined.

従って、赤外放射温度計18aの数は、アルミシリンダ
ブロックの種類や気筒数、必要な温度計測精度等に応じ
て適宜変更することができる。
Therefore, the number of infrared radiation thermometers 18a can be changed as appropriate depending on the type of aluminum cylinder block, the number of cylinders, required temperature measurement accuracy, etc.

そして制御装置16cは、上記計測した各ボア部の表面
付近の温度から、表面処理直前の各ボア部間の実質的な
表面温度差を求め、その温度差に基づき以下の如く各処
理液槽14aに対応する加熱装置16aを作動させる。
Then, the control device 16c determines the substantial surface temperature difference between the respective bore portions immediately before surface treatment from the measured temperature near the surface of each bore portion, and based on the temperature difference, performs the following in each treatment liquid tank 14a. The corresponding heating device 16a is activated.

すなわち、多気筒シリンダブロックの、ある所定の基準
温度よりも低い表面温度のボア部内に、その基準温度よ
りも高い液温度の処理液を充填すると、そのボア部の表
面温度は、充填直後に基準温度を越えて一旦当初の処理
液温度近くまで上昇した後、ボア部の周辺部分への熱伝
導により、そのボア部内の処理液温度とともに低下する
。この一方、当初の表面温度が基準温度に等しい他のボ
ア部内に、基準温度に等しい液温度の処理液を充填して
も、ボア部の周辺部分への熱伝導がほとんど生じないた
めボア部の表面温度も処理液温度もほとんど変化しない
In other words, when a processing liquid with a liquid temperature higher than the reference temperature is filled into the bore of a multi-cylinder cylinder block whose surface temperature is lower than a certain predetermined reference temperature, the surface temperature of the bore becomes equal to the reference temperature immediately after filling. After the temperature of the processing liquid exceeds the temperature and once rises to near the initial temperature of the processing liquid, the temperature of the processing liquid inside the bore decreases due to heat conduction to the peripheral portion of the bore. On the other hand, even if a processing liquid with a liquid temperature equal to the reference temperature is filled into another bore whose initial surface temperature is equal to the reference temperature, there is almost no heat conduction to the surrounding areas of the bore. Both the surface temperature and the processing liquid temperature hardly change.

従って、当初の表面温度が基準温度よりも低いボア部に
ついては、先に述べた処理液温度と珪素結晶突出量との
関係に基づき、処理終了時にそのボア部の表面温度が基
準温度よりも若干低くなるように当初の処理液温度を基
準温度よりも高めて適宜設定すれば、処理の開始から終
了までの間、そのボア部の表面温度が遷移するため化学
反応速度は遷移するものの、処理終了時のそのボア部表
面の珪素結晶の突出量は、当初の表面温度が基準温度に
等しいボア部における処理終了時の珪素結晶の突出量に
実質上等しくなる。
Therefore, for bores whose initial surface temperature is lower than the reference temperature, based on the relationship between the processing liquid temperature and the amount of silicon crystal protrusion mentioned above, the surface temperature of the bore at the end of the treatment will be slightly lower than the reference temperature. If the initial treatment liquid temperature is set higher than the reference temperature and set appropriately, the surface temperature of the bore will change from the start to the end of the process, and the chemical reaction rate will change, but the process will not end. The amount of protrusion of the silicon crystal on the surface of the bore portion at this time is substantially equal to the amount of protrusion of the silicon crystal at the end of the treatment in the bore portion where the initial surface temperature is equal to the reference temperature.

第3図は実際の直列四気筒のアルミシリンダブロックに
ついて従来の表面処理システムでこの実施例と同様にし
て前洗浄を行った後にホア部表面温度の分布状態を計測
した結果を示しており、図中実線Aで示す如く、内側の
第2および第3シリンダよりも、外側の第1および第4
シリンダの方が低いものとなる。かかる温度差を有する
各ボア部のうち、第2および第3シリンダのボア部に供
給する処理液の液温度と、第1および第4シリンダのボ
ア部に供給する処理液の液温度とに、図中鎖線Bで示す
如く後者の液温度を高める温度差を与え、それらの処理
液を各ボア部に充填して表面処理を行った結果、実際に
各ボア部間で等しい珪素結晶の突出量が得られた。
Figure 3 shows the results of measuring the surface temperature distribution of the bore area after pre-cleaning an actual in-line four-cylinder aluminum cylinder block using a conventional surface treatment system in the same manner as in this example. As shown by solid line A, the outer first and fourth cylinders are smaller than the inner second and third cylinders.
The cylinder will be lower. Among the bores having such a temperature difference, the liquid temperature of the processing liquid supplied to the bores of the second and third cylinders and the liquid temperature of the processing liquid supplied to the bores of the first and fourth cylinders, As shown by the dashed line B in the figure, as a result of applying a temperature difference that increases the temperature of the latter liquid and filling each bore with these treatment liquids to perform surface treatment, the protrusion amount of silicon crystals is actually the same between each bore. was gotten.

かかる理論に基づきこの表面処理システムでは、上記基
準温度を、表面処理の効率を良好ならしめる液温度に設
定するとともに、前洗浄を終えて表面処理ステーション
12に搬入されたアルミシリンダブロック25の、内側
の第2.第3シリンダのボア部の表面温度が第3図に実
線で示す如くその基準温度となるように、前洗浄ステー
ションlの液温度管理システム7が洗浄液の液温度を調
節し、このことから、表面処理ステーション12に対応
する上記制御装置16cが、例えば第3図に鎖線Bで示
す如く、第2および第3シリンダに各々供給する処理液
の液温度を上記基準温度にするとともに、第1および第
4シリンダに各々供給する処理液の液温度を、前記計測
した温度差に基づきその基準温度よりも適宜高めるよう
に、各処理液槽14aに対応する加熱装置16aを作動
させて各処理液槽14a内の処理液温度を調節している
Based on this theory, in this surface treatment system, the reference temperature is set to a liquid temperature that improves the efficiency of surface treatment, and the inside of the aluminum cylinder block 25, which has been carried into the surface treatment station 12 after pre-cleaning, is The second. The liquid temperature control system 7 of the pre-cleaning station l adjusts the liquid temperature of the cleaning liquid so that the surface temperature of the bore of the third cylinder becomes the reference temperature as shown by the solid line in FIG. The control device 16c corresponding to the processing station 12 sets the liquid temperature of the processing liquid supplied to the second and third cylinders respectively to the reference temperature as shown by the chain line B in FIG. The heating device 16a corresponding to each processing liquid tank 14a is operated to increase the temperature of the processing liquid supplied to each of the four cylinders from the reference temperature based on the measured temperature difference. The temperature of the processing liquid inside is adjusted.

尚、処理開始前のシリンダボア部間の温度差と、各ボア
部に供給する処理液の、処理終了時の珪素結晶の突出量
を互いに等しくし得る液温度との関係は、シリンダブロ
ックの種類や形式等が異なれば熱容量分布も異なるため
変化するので、シリンダブロックの種類や形式等毎にあ
らかじめ計測して求めておく必要があり、このシステム
でも上記四気筒のものにつきあらかじめ計測して、上記
制御装置16cに記憶させである。
The relationship between the temperature difference between the cylinder bores before the start of processing and the temperature of the processing liquid supplied to each bore at which the protrusion amount of silicon crystals at the end of the processing can be made equal to each other depends on the type of cylinder block and the temperature of the processing liquid supplied to each bore. Since the heat capacity distribution differs depending on the type, etc., it will change, so it is necessary to measure and find it in advance for each type and type of cylinder block, etc. In this system, we also measure the four cylinders mentioned above in advance and perform the above control. The information is stored in the device 16c.

上述の如くして、この表面処理システムによれば、各シ
リンダボア部間で均一な珪素結晶の突出量を得ることが
できるとともに、表面処理終了時の各シリンダボア部間
の温度差も概ね解消することができる。
As described above, according to this surface treatment system, it is possible to obtain a uniform amount of silicon crystal protrusion between each cylinder bore, and also to almost eliminate the temperature difference between each cylinder bore at the end of the surface treatment. I can do it.

しかして、この表面処理システムではさらに、表面処理
ステーション12で、表面処理の終了後もう一度制御装
置16cが二台の赤外放射温度計18aにそのシリンダ
ブロック25の各シリンダボア部の温度を計測させ、そ
の出力信号BTは、後洗浄ステーション13に対応する
液温度管理システム17の、上記制御装置16cと同様
の構成を持つ制御装置が入力する。
In this surface treatment system, furthermore, in the surface treatment station 12, after the surface treatment is finished, the control device 16c once again causes the two infrared radiation thermometers 18a to measure the temperature of each cylinder bore of the cylinder block 25. The output signal BT is inputted to a control device of the liquid temperature management system 17 corresponding to the post-cleaning station 13, which has a configuration similar to the above-mentioned control device 16c.

そして上記液温度管理システム17は、表面処理終了か
ら後洗浄までの間の冷却および、後洗浄から後工程まで
の間の冷却を考慮し、表面処理ステーション12におけ
る液温度管理システム16と同様にして、温度が低下し
易い第1.第4シリンダのボア部へ供給する洗浄液の液
温度を第2.第3シリンダのボア部へ供給する洗浄液の
液温度よりも高めるように、洗浄液タンク15の各洗浄
液槽内の洗浄液の液温度を調節している。
The liquid temperature management system 17 is configured in the same manner as the liquid temperature management system 16 in the surface treatment station 12, taking into account cooling from the end of surface treatment to post-cleaning and cooling from post-cleaning to post-processing. , the first, where the temperature tends to drop. The liquid temperature of the cleaning liquid supplied to the bore of the fourth cylinder is set to 2. The temperature of the cleaning liquid in each cleaning liquid tank of the cleaning liquid tank 15 is adjusted so as to be higher than the temperature of the cleaning liquid supplied to the bore of the third cylinder.

従ってこの表面処理システムによれば、後工程11で検
査を行う際にもシリンダボア部間の温度差を解消し得て
、温度差によるボア部間での計測誤差の発生を避けるこ
とができ、ひいては、計測作業を極めて容易ならしめる
ことができる。
Therefore, according to this surface treatment system, it is possible to eliminate the temperature difference between the cylinder bore parts even when inspecting in the post-process 11, and it is possible to avoid the occurrence of measurement errors between the bore parts due to the temperature difference. , measurement work can be made extremely easy.

尚、当該表面処理システムにおける各ステーションでの
一個のワーク当たりのタクト時間内に所要の液温度調節
を行い得るよう、処理液タンク14や洗浄液タンク15
内の液量と加熱装置の加熱能力とを設定することは、実
際上効率的でないので、ここでは、処理液タンク14や
洗浄液タンク15内にある程度の液量を持つとともに加
熱装置の加熱能力を従来と同様とし、表面処理システム
の稼働開始時には、あらかじめ計測したシリンダボア部
間の温度差に基づき、処理液タンク14や洗浄液タンク
15内の、各ボア部に対応する液温度を調整しておき、
表面処理システムの稼働開始後は、そこを流れているシ
リンダブロックで測定した温度差に基づきある程度の時
間をかけて条件を安定させる制御を行う。
In addition, the processing liquid tank 14 and the cleaning liquid tank 15 are arranged in such a way that the required liquid temperature can be adjusted within the takt time per workpiece at each station in the surface treatment system.
Since it is practically inefficient to set the amount of liquid in the processing liquid tank 14 or the cleaning liquid tank 15 and the heating capacity of the heating device, it is necessary to set a certain amount of liquid in the processing liquid tank 14 and the cleaning liquid tank 15 and the heating capacity of the heating device. Same as before, when the surface treatment system starts operating, the liquid temperature corresponding to each bore part in the processing liquid tank 14 and cleaning liquid tank 15 is adjusted based on the temperature difference between the cylinder bore parts measured in advance.
After the surface treatment system starts operating, control is performed to stabilize conditions over a certain period of time based on the temperature difference measured in the cylinder block flowing through it.

第4図は、この発明の他の実施例に用いる表面処理シス
テムを例示する構成国であり;図中従来例または先の実
施例と同一の部分は、それと同一の符号にて示す。
FIG. 4 is a diagram illustrating a structure of a surface treatment system used in another embodiment of the present invention; in the figure, parts that are the same as those of the conventional example or the previous embodiment are designated by the same reference numerals.

すなわちこの表面処理システムでは、前洗浄ステーショ
ン19および後洗浄ステーション20が、先の実施例中
の表面処理ステーション12と同様の、シリンダボア部
毎に独立した洗浄液供給排出経路を具え、それらの洗浄
ステーション19.20に対応する洗浄液タンク21.
22か、先の実施例中の表面処理ステーション12で用
いた処理液タンク14と同様の、シリンダボア部毎に独
立した洗浄液槽を具え、そしてそれらの洗浄液タンク2
1.22に各々対応する液温度管理システム23.24
が、先の実施例中の表面処理ステーションI2で用いた
液温度管理システム16と同様の、各洗浄液槽内の洗浄
液の液温度を別個に調節する加熱装置および制御装置を
具えている。
That is, in this surface treatment system, the pre-cleaning station 19 and the post-cleaning station 20 are provided with independent cleaning fluid supply and discharge paths for each cylinder bore, similar to the surface treatment station 12 in the previous embodiment, and these cleaning stations 19 Cleaning liquid tank 21. corresponding to .20.
22, each cylinder bore has an independent cleaning liquid tank similar to the treatment liquid tank 14 used in the surface treatment station 12 in the previous embodiment, and these cleaning liquid tanks 2
Liquid temperature management system corresponding to 1.22 respectively 23.24
However, similar to the liquid temperature management system 16 used in the surface treatment station I2 in the previous embodiment, it includes a heating device and a control device for separately adjusting the liquid temperature of the cleaning liquid in each cleaning liquid tank.

またここでは、従来例と同様の表面処理ステージョン2
に、先の実施例中の表面処理ステーション12で用いた
と同様のボア部温度測定装置18が設けてあり、このボ
ア部温度測定装置18の出力信号BTを、両洗浄ステー
ション19.20に各々対応する液温度管理システム2
3.24の、先の実施例中の制御装置16cと同様の構
成を持つ制御装置が入力する。
Also, here, surface treatment stage 2 similar to the conventional example is used.
A bore temperature measuring device 18 similar to that used in the surface treatment station 12 in the previous embodiment is provided, and the output signal BT of this bore temperature measuring device 18 is applied to both cleaning stations 19 and 20, respectively. Liquid temperature management system 2
3.24, a control device having the same configuration as the control device 16c in the previous embodiment inputs.

かかる表面処理システムでは、先の実施例と同様に、機
械加工工程である前工程10で加工されたワークとして
のアルミシリンダブロックの各シリンダボア部の表面に
、前洗浄と、珪素結晶を露出させる化学処理と、後洗浄
とを施す工程を行い、表面処理後のアルミシリンダブロ
ックについては後工程11で検査を行う。
In this surface treatment system, as in the previous embodiment, the surface of each cylinder bore portion of an aluminum cylinder block as a workpiece processed in the pre-process 10, which is a machining process, is subjected to pre-cleaning and chemical treatment to expose silicon crystals. Processing and post-cleaning are performed, and the aluminum cylinder block after surface treatment is inspected in post-process 11.

しかしてここでは、表面処理ステーション2にて、アル
ミシリンダブロックの各シリンダボア部内への処理液の
充填に先立ち、ボア部温度測定装置18が各シリンダボ
ア部の温度を計測し、その計測結果の出力信号BTに基
づき、前洗浄ステーション19に対応する液温度管理シ
ステム23の上記制御装置が、機械加工工程から前洗浄
までの間の冷却および、前洗浄から表面処理までの間の
冷却を考慮し、先の実施例の表面処理ステーション12
における液温度管理システム16と同様にして、前洗浄
ステーション19で各シリンダボア部へ供給する洗浄液
の液温度を、温度が低下し易い第1.第4シリンダのボ
ア部については第2.第3シリンダのボア部よりも高め
るように、洗浄液タンク21の各洗浄液槽内の洗浄液の
液温度を調節している。
However, in the surface treatment station 2, before filling the processing liquid into each cylinder bore of the aluminum cylinder block, the bore temperature measurement device 18 measures the temperature of each cylinder bore, and outputs the measurement result. Based on BT, the control device of the liquid temperature management system 23 corresponding to the pre-cleaning station 19 takes into account the cooling between the machining process and the pre-cleaning, and the cooling between the pre-cleaning and the surface treatment. Surface treatment station 12 according to an embodiment of
In the same manner as the liquid temperature management system 16 in the pre-cleaning station 19, the liquid temperature of the cleaning liquid supplied to each cylinder bore part is controlled in the first station where the temperature tends to decrease. Regarding the bore part of the fourth cylinder, see the second section. The liquid temperature of the cleaning liquid in each cleaning liquid tank of the cleaning liquid tank 21 is adjusted so as to be higher than that in the bore of the third cylinder.

従ってこの表面処理システムによれば、表面処理ステー
ション2における表面処理開始前のシリンダボア部間の
温度差を実質的に解消し得て、各シリンダボア部間で均
一な珪素結晶の突出量を得ることができるとともに、表
面処理終了時の各シリンダボア部間の温度差も概ね解消
することができる。
Therefore, according to this surface treatment system, it is possible to substantially eliminate the temperature difference between the cylinder bores before the start of surface treatment in the surface treatment station 2, and it is possible to obtain a uniform protrusion amount of silicon crystal between each cylinder bore. At the same time, the temperature difference between the cylinder bores at the end of the surface treatment can also be almost eliminated.

そして、この表面処理システムではさらに、表面処理ス
テーション2で、表面処理の終了後もう一度ボア部温度
測定装置18が各シリンダボア部の温度を計測し、その
計測結果の出力信号BTに基づき、後洗浄ステーション
20に対応する液温度管理システム24の上記制御装置
が、表面処理終了から後洗浄までの間の冷却および、後
洗浄から後工程までの間の冷却を考慮し、上記前洗浄ス
テーション19における液温度管理システム23と同様
にして、後洗浄ステーション20で各シリンダボア部へ
供給する洗浄液の液温度を、温度が低下し易い第1゜第
4シリンダのボア部については第2.第3シリンダのボ
ア部よりも高めるように、洗浄液タンク22の各洗浄液
槽内の洗浄液の液温度を調節している。
In this surface treatment system, furthermore, in the surface treatment station 2, after the surface treatment is finished, the bore temperature measuring device 18 measures the temperature of each cylinder bore once again, and based on the output signal BT of the measurement result, the post-cleaning station The control device of the liquid temperature management system 24 corresponding to the liquid temperature control system 20 controls the liquid temperature at the pre-cleaning station 19, taking into account cooling between the end of surface treatment and post-cleaning, and cooling between post-cleaning and post-processing. Similarly to the management system 23, the liquid temperature of the cleaning liquid supplied to each cylinder bore in the post-cleaning station 20 is adjusted such that the temperature of the cleaning liquid supplied to each cylinder bore is adjusted such that the temperature of the cleaning liquid supplied to the bore of the first and fourth cylinders, where the temperature tends to drop, is adjusted to the second. The liquid temperature of the cleaning liquid in each cleaning liquid tank of the cleaning liquid tank 22 is adjusted so as to be higher than that in the bore of the third cylinder.

従ってこの表面処理システムによれば、後工程11で検
査を行う際にもシリンダボア部間の温度差を解消し得て
、温度差によるボア部間での計測誤差の発生を避けるこ
とができ、ひいては、計測作業を極めて容易ならしめる
ことができる。
Therefore, according to this surface treatment system, it is possible to eliminate the temperature difference between the cylinder bore parts even when inspecting in the post-process 11, and it is possible to avoid the occurrence of measurement errors between the bore parts due to the temperature difference. , measurement work can be made extremely easy.

以上、図示例に基づき説明したが、この発明は上述の舛
に限定されるものでなく、例えば、表面処理システムに
おける各ステーションでの一個のワーク当たりのタクト
時間が短く、一つのステーションのみではボア部間の温
度差を充分解消できない場合には、前洗浄ステーション
における洗浄液と表面処理ステーションにおける処理液
の両方の液温度を制御しても良く、このようにすれば、
表面処理ステーションにおいて、各シリンダボア部間で
充分均一な珪素結晶の突出量を得ることができるととも
に、表面処理終了時の各シリンダボア部間の温度差も充
分解消することができる。
Although the above has been explained based on the illustrated example, the present invention is not limited to the above-mentioned machine. For example, the takt time per workpiece at each station in a surface treatment system is short, and if only one station If the temperature difference between the parts cannot be sufficiently eliminated, the liquid temperature of both the cleaning liquid in the pre-cleaning station and the processing liquid in the surface treatment station may be controlled.
In the surface treatment station, it is possible to obtain a sufficiently uniform protrusion amount of silicon crystal between the cylinder bores, and also to sufficiently eliminate the temperature difference between the cylinder bores at the end of the surface treatment.

また上記ボア部温度測定装置を前洗浄ステーションに設
けて、前洗浄直後のシリンダボア部間の温度差を測定し
、その測定結果から、機械加工工程から前洗浄までの間
の冷却および、前洗浄から表面処理までの間の冷却を考
慮して、各シリンダボア部毎に洗浄液および処理液の少
なくとも一方の液温度を制御することとしても良く、か
かる方法によっても、上述した実施例と同様の作用効果
をもたらすことができる。
In addition, the above-mentioned bore temperature measurement device is installed in the pre-cleaning station to measure the temperature difference between the cylinder bores immediately after pre-cleaning, and from the measurement results, it is possible to determine whether the cooling between the machining process and pre-cleaning is The temperature of at least one of the cleaning liquid and the processing liquid may be controlled for each cylinder bore in consideration of cooling up to the surface treatment, and such a method can also achieve the same effects as the above-mentioned embodiment. can bring.

(発明の効果) かくしてこの発明の表面処理方法によれば、各シリンダ
ボア部間で均一な珪素結晶の突出量を得ることかできる
とともに、後洗浄後の後工程でボア部間の温度差に起因
する不具合が生ずるのを防止することができる。
(Effects of the Invention) Thus, according to the surface treatment method of the present invention, it is possible to obtain a uniform amount of protrusion of silicon crystals between each cylinder bore, and to reduce the amount of silicon crystals that are caused by temperature differences between the bores in the post-cleaning process. It is possible to prevent such problems from occurring.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明のアルミシリンダブロックの表面処理
方法の一実施例に用いる表面処理システムを例示する構
成図、 第2図は上記表面処理システムにおける表面処理ステー
ション、処理液タンク、液温度管理システムおよびボア
部温度測定装置についてさらに詳細に示す構成図、 第3図は実際の四気筒アルミシリンダブロックの、前洗
浄後で表面処理前のシリンダボア部表面温度の分布状態
の計測結果と、その場合のボア部毎の処理液温度の制御
例とを示す特性図、第4図は、この発明の他の実施例に
用いる表面処理システムを例示する構成図、 第5図は従来の表面処理方法に用いる表面処理システム
を示す構成図、 第6図は処理液の液温度および濃度と珪素結晶の突出量
との関係を試験により測定した結果を示す関係線図であ
る。 1.19・・・前洗浄ステーション 2.12・・・表面処理ステーション 4、15.21.22・・・洗浄液タンク5.14・・
・処理液タンク 7、8.16.17.23.24・・・液温度管理シス
テム10・・・前工程      11・・・後工程1
3、20・・・後洗浄ステーション 18・・・ボア部温度測定装置 25・・・アルミシリンダ 第3図 第1図 / 0 1’/ 刀て′ア杏n立(【 第4 図 第5図
Figure 1 is a configuration diagram illustrating a surface treatment system used in an embodiment of the surface treatment method for aluminum cylinder blocks of the present invention, and Figure 2 is a surface treatment station, treatment liquid tank, and liquid temperature control system in the above surface treatment system. and a configuration diagram showing further details of the bore temperature measuring device. Figure 3 shows the measurement results of the cylinder bore surface temperature distribution state of an actual four-cylinder aluminum cylinder block after pre-cleaning and before surface treatment, and the results in that case. FIG. 4 is a configuration diagram illustrating a surface treatment system used in another embodiment of the present invention, and FIG. 5 is a characteristic diagram showing an example of controlling the processing liquid temperature for each bore section. FIG. 6 is a diagram showing the configuration of the surface treatment system. FIG. 6 is a relationship diagram showing the results of a test on the relationship between the temperature and concentration of the treatment liquid and the protrusion amount of silicon crystals. 1.19...Pre-cleaning station 2.12...Surface treatment station 4, 15.21.22...Cleaning liquid tank 5.14...
・Processing liquid tank 7, 8.16.17.23.24...Liquid temperature management system 10...Pre-process 11...Post-process 1
3, 20...Post-cleaning station 18...Bore temperature measuring device 25...Aluminum cylinder

Claims (1)

【特許請求の範囲】[Claims] 1.多気筒アルミシリンダブロックの各シリンダボア部
の表面を、洗浄液での洗浄後に処理液を充填して化学処
理するに際し、 洗浄液での洗浄後、処理液の充填に先立ち各シリンダボ
ア部の温度を測定して、この温度に基づき各シリンダボ
ア部毎に洗浄液および処理液の少なくとも一方の液温度
を制御することを特徴とする、アルミシリンダブロック
の表面処理方法。
1. When chemically treating the surface of each cylinder bore of a multi-cylinder aluminum cylinder block by cleaning it with a cleaning liquid and filling it with a treatment liquid, the temperature of each cylinder bore is measured after cleaning with the cleaning liquid and before filling it with the treatment liquid. A method for surface treatment of an aluminum cylinder block, characterized in that the temperature of at least one of a cleaning liquid and a treatment liquid is controlled for each cylinder bore portion based on this temperature.
JP2049621A 1990-03-02 1990-03-02 Surface treatment method for aluminum cylinder block Expired - Fee Related JP2679335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2049621A JP2679335B2 (en) 1990-03-02 1990-03-02 Surface treatment method for aluminum cylinder block

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2049621A JP2679335B2 (en) 1990-03-02 1990-03-02 Surface treatment method for aluminum cylinder block

Publications (2)

Publication Number Publication Date
JPH03253577A true JPH03253577A (en) 1991-11-12
JP2679335B2 JP2679335B2 (en) 1997-11-19

Family

ID=12836305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2049621A Expired - Fee Related JP2679335B2 (en) 1990-03-02 1990-03-02 Surface treatment method for aluminum cylinder block

Country Status (1)

Country Link
JP (1) JP2679335B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101507107B1 (en) * 2012-07-17 2015-04-01 (주)화백엔지니어링 Apparatus and method for forming oil pocket of minute configuration on a curved inner surface

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5119258A (en) * 1974-08-06 1976-02-16 Hideo Okamoto SOTAITE KISHUDOBUZAI
JPS579900A (en) * 1980-05-24 1982-01-19 Daimler Benz Ag Exposing of silicon crystal to surface of matter comprising aluminum alloy with high silicon content
JPS6194105A (en) * 1984-08-10 1986-05-13 ヘンケル・コーポレイション Metal working process control
JPS6225754A (en) * 1985-07-27 1987-02-03 Konishiroku Photo Ind Co Ltd Silver halide photographic sensitive material
JPH0222483A (en) * 1988-07-08 1990-01-25 Toppan Printing Co Ltd Controlling device for etching stage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5119258A (en) * 1974-08-06 1976-02-16 Hideo Okamoto SOTAITE KISHUDOBUZAI
JPS579900A (en) * 1980-05-24 1982-01-19 Daimler Benz Ag Exposing of silicon crystal to surface of matter comprising aluminum alloy with high silicon content
JPS6194105A (en) * 1984-08-10 1986-05-13 ヘンケル・コーポレイション Metal working process control
JPS6225754A (en) * 1985-07-27 1987-02-03 Konishiroku Photo Ind Co Ltd Silver halide photographic sensitive material
JPH0222483A (en) * 1988-07-08 1990-01-25 Toppan Printing Co Ltd Controlling device for etching stage

Also Published As

Publication number Publication date
JP2679335B2 (en) 1997-11-19

Similar Documents

Publication Publication Date Title
KR101417701B1 (en) Abnormality determination system of processing device and abnormality determination method of same
EP1308783A2 (en) Resist coating-developing apparatus
JPH0827109B2 (en) Liquid cooling device
US20050201747A1 (en) Semiconductor wafer washing system and method of supplying chemicals to the washing tanks of the system
US5539855A (en) Apparatus for measuring the temperature of a substrate
JPH03253577A (en) Surface treatment of aluminum cylinder block
US20060157197A1 (en) Substrate processing apparatus
JP2007152195A (en) Supercritical fluid cleaner
KR20210047448A (en) Internal temperature management system of chamber comprising semiconductor equipment
CN116499859A (en) Cold and hot fatigue test device
JP2000249440A (en) Substrate processing apparatus
JP2002043271A (en) Processing liquid temperature control method and apparatus
JP2525097B2 (en) Leak inspection method for hollow structures
JPH033316A (en) Reduction projection type exposure device
KR20220001914A (en) Apparatus and method for monitoring leakage of components of vehicle
JPH06280054A (en) Etching device
KR200164680Y1 (en) Chemical Supply Device for Semiconductor Manufacturing
JP2002197920A (en) Water supply device for temperature control
JPH11162812A (en) Substrate treatment equipment
KR20190106386A (en) Automatic testing machine for soundness of aggregate
JPH0482624A (en) Air-conditioning management system of wire-cut electric discharge machine
KR19990009040A (en) Motor Cooling System of Semiconductor Manufacturing Equipment
KR101749962B1 (en) Preprocessing for Polishing Joint Surface of Mass Flow Controller
KR20170077655A (en) System for coating of water-cooled heat exchanger
JP2004286713A (en) Reflow heating testing device and reflow heating testing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees