[go: up one dir, main page]

JPH0325352A - Flame tomographic measuring method - Google Patents

Flame tomographic measuring method

Info

Publication number
JPH0325352A
JPH0325352A JP15955389A JP15955389A JPH0325352A JP H0325352 A JPH0325352 A JP H0325352A JP 15955389 A JP15955389 A JP 15955389A JP 15955389 A JP15955389 A JP 15955389A JP H0325352 A JPH0325352 A JP H0325352A
Authority
JP
Japan
Prior art keywords
wavelength
laser
measured
fluorescence
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15955389A
Other languages
Japanese (ja)
Inventor
Fumio Kato
文雄 加藤
Yoji Ishibashi
石橋 洋二
Takashi Hashimoto
孝 橋本
Takashi Omori
隆司 大森
Hiroshi Inoue
洋 井上
Shigeyuki Akatsu
赤津 茂行
Michio Kuroda
黒田 倫夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15955389A priority Critical patent/JPH0325352A/en
Publication of JPH0325352A publication Critical patent/JPH0325352A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To image and measure the density values of plural components of an intermediate product produced in an elementary reaction process of combustion instantaneously at the same time by synthesizing laser light beams which match the absorption spectrum wavelength of a body to measured together, putting the light beams into a sheet shape and irradiating the body to be measured with the light beams. CONSTITUTION:The laser light beams from dye lasers 12 and 13 are tuned and mixed through a mirror 14, a dichroic mirror 15, a cylindrical lens system 16 and a beam splitter 17 so as to match absorption spectra of plural materials to be measured at the same time, and then the beams are changed from circular section to sheet section, and the body to be measured is irradiated with the beams. Consequently, materials in the section absorb light energy to rise in energy potential from base states to excited states and then return to the original base states in short times to emit fluorescent light. The fluorescent light is observed on a lower-wavelength side than the absorption spectrum wavelength. Those two kinds of the fluorescent light are observed by a high-sensitivity camera device 24 arranged at right angles to the tomographic surface. The fluorescent light beams are separated by an optical filter 18, so simultaneous video formation becomes possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 ?発明は、燃焼火炎の内部を断層計測する光学計測法に
関する。
[Detailed description of the invention] [Industrial application field] ? The present invention relates to an optical measurement method for tomographically measuring the inside of a combustion flame.

(従来の技術) 燃焼計測は従来、点や線(一次元)であったものが面(
二次元)の計測、さらに、三次元計測へと計測領域も広
がる傾向にあり、また、計測手法も従来の接触式のもの
から、レーザ計測に代表されるような非接触式のものが
多くなって来ている。
(Conventional technology) Combustion measurement has traditionally been performed using points or lines (one-dimensional), but instead of measuring points or lines (one-dimensional).
The measurement field is expanding from two-dimensional (2-dimensional) measurement to three-dimensional measurement, and measurement methods are also changing from conventional contact methods to non-contact methods such as laser measurement. It's coming.

一方,時間分解能の点からは、非定常性の強い乱流燃焼
を究明するうえで瞬時計測が求められている. このような背景や■技術開発の進展から今後は、ますま
す、現象を面、すなわち、イメージで捉え、かつ、瞬時
高速計測が必要で、そのための要素技術開発が進むもの
と思われる。
On the other hand, from the point of view of time resolution, instantaneous measurement is required to investigate highly unsteady turbulent combustion. Against this background and progress in technological development, it is expected that in the future it will become increasingly necessary to capture phenomena in terms of surfaces, that is, images, and to perform instantaneous high-speed measurements, and the development of elemental technologies for this will likely progress.

従来、レーザ光をシート状にして火炎断面の計測を行う
ものとして燃焼生成物や外部より供給したシード材から
の散乱光を利用して流動や濃度をイメージ化(画像化)
したものや、燃焼生戒物をレーザ光で電子のエネルギ準
位間で励起し、励起状態から基底状態のエネルギ準位へ
遷移する過程で発生する蛍光やりん光を利用して生或物
の濃度や温度をイメージ解析したものがある。
Conventionally, the flame cross section was measured using a sheet of laser light, and the flow and concentration were imaged using scattered light from combustion products and seed material supplied from outside.
The energy level of the electrons is excited between the energy levels of the burned or combustible materials using a laser beam, and the fluorescence and phosphorescence generated during the transition from the excited state to the ground state energy level are used to excite the raw materials. There is an image analysis of concentration and temperature.

ところで燃焼現象は、一般に、多くの燃焼パラメータが
複雑にからんで究明を難しくしているが、その究明の和
として、まず,燃焼反応過程で発生する中間生或物(ラ
ジカル等)濃度の時間的,空間的分布状況を知る意義は
大きい。中間生成物は空間断面についてみてもその種類
は多くまた濃度レベルもまちまちであることが予想され
る。本発明のポイントは,これらの各種生戒物のうち、
複数種の生或物の濃度を空間的に同一断層面で、同時に
イメージ計測が行なえる点にある。本発明に関連する公
知技術はKychakoff等によって行われたOHラ
ジカルの蛍光断層画像計測等がある.(Quantit
ive  uisualization  of  c
ombustionspecies in a pla
ne.Georga Kychakoff et al
Applied OPTICS Lo Q 21NQ1
8 Sep.1982).〔発明が解決しようとする課
題〕 従来のレーザ光を利用した断層計測法は単一物質濃度の
計測に限られていた. 本発明の目的は、燃焼の素反応過程で発生する中間生成
物の複数成分の濃度を同時、且つ、瞬時にイメージ計測
する光学、及び、計測システムを提供することにある. 〔課題を解決するための手段〕 上記目的を達或するために同時に計測する複数の物質の
それぞれの吸収スペクトルに一致するようにレーザ光(
コヒーレント光)をチューニングし、且つ、混合した後
、シリンドリカルレンズ等を用いてビームを円形断面か
らシード状断面に変更し、被測定物に照射すると断面上
にある物質は光エネルギを吸収し、基底状態から励起状
態にエネルギ準位を上げ、その後短時間内(約10″″
8秒程度)に元の基底状態に遷移する過程で蛍光やりん
光を発する.この蛍光やりん光は吸収スペクトル波長よ
りも長波長側(振動数の底い側)で観測される場合が多
い. 今、被測定物質が二個の場合を例にとると吸収スペクト
ル波長λL,λ2にチューニングされたレ一ザ光を照射
すると照射断層面からそれぞれ▲λl,Δλ2だけ波長
の長いλ1+Δλhλ2+Δλ2の蛍光が発生する。こ
の二種の蛍光を断層面に直角方向に配置した高感度カメ
ラ装置でsi8l!する.波長の分離はビームスプリツ
タ及び光学フィルタ等の手段を用いて行なうようにした
ものである.〔作用〕 上記の構或によれば被測定物質の吸収スペクトルの波長
にチューニングしたレーザ光によって、照射断層面に存
在する物質から発生する波長の異なる蛍光(複数種)を
光学フィルタにより容易に分離し、同時映像化ができる
点で、複数種の生成物濃度の相対比較が可能となり、燃
焼性の診断,評価をより確度の高いものにすることがで
きる。
By the way, combustion phenomena are generally difficult to investigate because many combustion parameters are complicated, but as a summation of the investigation, we first need to understand the temporal concentration of intermediate products or substances (radicals, etc.) generated during the combustion reaction process. , it is of great significance to know the spatial distribution status. It is expected that there are many types of intermediate products and that their concentration levels also vary when looking at the spatial cross section. The point of the present invention is that among these various living substances,
The advantage is that image measurements of the concentrations of multiple species of organisms can be performed simultaneously on the same cross-sectional plane. Known techniques related to the present invention include fluorescence tomographic image measurement of OH radicals performed by Kychakoff et al. (Quantit
ive visualization of c
ombustion species in a plastic
ne. Georga Kychakoff et al.
Applied OPTICS Lo Q 21NQ1
8 Sep. 1982). [Problems to be solved by the invention] Conventional tomographic measurement methods using laser light have been limited to measuring the concentration of a single substance. An object of the present invention is to provide an optical system and a measurement system that simultaneously and instantaneously image-measure the concentrations of multiple components of intermediate products generated in the elementary reaction process of combustion. [Means for solving the problem] To achieve the above purpose, laser light (
After tuning and mixing the beam (coherent light), the beam is changed from a circular cross section to a seed-like cross section using a cylindrical lens, etc., and when it is irradiated onto the object to be measured, the material on the cross section absorbs the light energy and The energy level is raised from the state to the excited state, and then within a short time (approximately 10″
During the transition to the original ground state (about 8 seconds), it emits fluorescence or phosphorescence. This fluorescence or phosphorescence is often observed on the longer wavelength side (lower frequency side) than the absorption spectrum wavelength. Now, taking the case of two substances to be measured as an example, when laser light tuned to the absorption spectrum wavelengths λL and λ2 is irradiated, fluorescence of λ1 + Δλhλ2 + Δλ2, which has a longer wavelength by ▲λl and Δλ2, is generated from the irradiated tomographic plane, respectively. do. si8l! is a high-sensitivity camera device that arranges these two types of fluorescence perpendicular to the tomographic plane! do. Wavelength separation is performed using means such as beam splitters and optical filters. [Operation] According to the above structure, by using a laser beam tuned to the wavelength of the absorption spectrum of the substance to be measured, fluorescence (multiple types) with different wavelengths generated from the substance existing on the irradiated cross section can be easily separated using an optical filter. However, since simultaneous imaging is possible, relative comparisons of the concentrations of multiple types of products are possible, and flammability diagnosis and evaluation can be made with higher accuracy.

吸収スペクトル波長へのレーザ光チューニング方法とし
ては高出力のレーザ光を光源として波長可変の色素レー
ザを使用するのが現実的である。
As a method of laser beam tuning to the wavelength of the absorption spectrum, it is practical to use a wavelength-tunable dye laser using a high-power laser beam as a light source.

発生する蛍光は、一般に、微弱である場合が多く、さら
に、光学系を通過する過程で減衰するので、映像の増強
器が必要で、本発明ではこの増強器にイメージインテン
シファイヤを用いた。
Generally, the generated fluorescence is often weak and further attenuates during the process of passing through an optical system, so an image intensifier is required, and in the present invention, an image intensifier is used as the intensifier.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図ないし第3図により説
明する。第1図は本発明の基本的な計測システムの系統
図で、ここでは一例として被測定物質が二個の場合を示
した。被測定物が2個以上ある場合も、光学的配置の基
本的な考え方は同じである. 1は燃料を燃焼させるための燃焼筒を示す。ここに示し
た燃焼筒は最も一般的な構或を示すもので、燃焼筒の上
流側中心部に燃焼ノズル3を配置し、ノズルの外側に環
状通気孔2をもち、旋回器4を通過した空気は旋回しな
がら環状通気孔2を流れ、燃料ノズルから噴射される燃
料と混合し、燃焼反応によって火炎5が形威される.ま
た、燃焼筒にはシート状のレーザ光が貫通できるだけの
レーザ照射用窓6,6′及び観測用窓7,7′が設けら
れる.燃焼反応過程の生成物を観測する目的のためには
急激な反応がみられるノズル出口近傍が観測できるよう
に窓を配置すべきである.また、計測断面も縦方向断面
と横方向断面(後述)があるので後者の計測の場合は上
部観測用窓8が有効となる。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 3. FIG. 1 is a system diagram of the basic measurement system of the present invention, and here, as an example, the case where there are two substances to be measured is shown. The basic concept of optical arrangement is the same even when there are two or more objects to be measured. 1 indicates a combustion tube for burning fuel. The combustion tube shown here has the most common structure, with a combustion nozzle 3 located at the center of the upstream side of the combustion tube, an annular vent 2 on the outside of the nozzle, and a swirler 4 passing through the combustion tube. The air flows through the annular vent hole 2 while swirling, mixes with the fuel injected from the fuel nozzle, and a flame 5 is formed by a combustion reaction. Further, the combustion tube is provided with laser irradiation windows 6, 6' and observation windows 7, 7', which are large enough to allow the sheet-shaped laser beam to pass through. For the purpose of observing the products of the combustion reaction process, a window should be placed so that the area near the nozzle exit where rapid reactions can be observed can be observed. Furthermore, since there are two types of measurement cross sections: a vertical cross section and a horizontal cross section (described later), the upper observation window 8 is effective for the latter measurement.

次に、シート状レーザ光の作成法について述べる。二成
分の同時蛍光測定の場合には、これら或分の吸収スペク
トル波長に一致した,すなわち、図に示す波長λl,λ
2の二つのレーザ光(コヒーレント光)が必要であり、
従来の技術ではレーザソース11を励起光として波長可
変色素レーザを二台用いるのが一般的である.本光学方
式では被測定物の数と色素レーザの数は同数となる.色
素レーザ1,12より得られた波長λ2の光はミラー1
4で方向を90’変更する。一方、色素レーザ2,13
で得られた波長λ1の光は45@ダイクロイツクミラ−
15により90’方向を変更する.このダイクロイツク
ミラ−15は波長λ2に対しては完全透過、λlに対し
ては完全反射するように特殊コーデングされたミラーで
ある.従って、ダイクロイツクミラ−15を出たレーザ
光は波長λlとλ2の混合光となる。この時点ではレー
ザ光の特性にもよるがビーム形状はほぼ円形に近い形を
している,これをシリンドリカルレンズ系16を通すこ
とによりシート状のビームに変えることができる.本光
学系では複数種の波長の光を通す必要があるのでシリン
ドリカルレンズ系15は、特に、波長に対する色収差の
少ないレンズを配置する必要がある。
Next, a method for producing a sheet-shaped laser beam will be described. In the case of simultaneous fluorescence measurement of two components, the wavelengths λl and λ shown in the figure, which correspond to certain absorption spectrum wavelengths, are used.
Two laser beams (coherent beams) are required,
In conventional technology, it is common to use two wavelength-tunable dye lasers using the laser source 11 as excitation light. In this optical method, the number of objects to be measured and the number of dye lasers are the same. The light of wavelength λ2 obtained from the dye lasers 1 and 12 is sent to the mirror 1.
4 changes direction by 90'. On the other hand, dye lasers 2, 13
The light with wavelength λ1 obtained at 45@dichroitsch mirror
15 to change the 90' direction. This dichroic mirror 15 is a mirror specially coded to completely transmit wavelength λ2 and completely reflect wavelength λl. Therefore, the laser light exiting the dichroic mirror 15 becomes a mixed light of wavelengths λl and λ2. At this point, although it depends on the characteristics of the laser beam, the beam shape is almost circular, but by passing it through the cylindrical lens system 16, it can be changed into a sheet-shaped beam. Since this optical system needs to pass light of a plurality of wavelengths, the cylindrical lens system 15 especially needs to include lenses with little chromatic aberration with respect to wavelength.

シート状ビーム10は図に示すように左側のレーザ光照
射用窓6から入り、火炎5を通過し、右側のレーザ光照
射用窓6′を通って燃焼筒1外へ出る.燃焼筒外に出た
レーザ光は1−ラップ9等を用い減衰除去される。
As shown in the figure, the sheet-shaped beam 10 enters through the left laser beam irradiation window 6, passes through the flame 5, and exits the combustion tube 1 through the right laser beam irradiation window 6'. The laser beam exiting the combustion tube is attenuated and removed using a 1-lap 9 or the like.

波長λhλ2のシート状レーザ光が照射される火炎断層
面では吸収スペクトル波長λ棗,λ2をもつ物質1.物
質2はレーザ光からエネルギを吸収し電子エネルギ準位
の安定な基底状態から励起状態に移行し、次の短時間(
約10−δ秒程度)の間に元の基底状態にエネルギ遷移
する過程で物質は蛍光を発する.蛍光には波長582n
mのNa原子のD線のように吸収波長と蛍光波長が同じ
もの(共鳴放射)もあるが、一般には、吸収波長よりも
長波長側に発生する.例えば、炭化水素系燃料の燃焼素
反応過程で重要な役割をはたしている紫外域に存在する
OHラジカルは285nm付近に吸収帯をもち.306
.4  nmから315nm付近の間に蛍光帯をもつ(
ここでは蛍光発生のエネルギ遷移等にツイてはA , 
G .Gaydonの著書(TheIdentific
ation of Molecular Spectr
a;CHAPMA}!AND }IALL)等に述べら
れており、詳述は省<).第3図は二成分の蛍光発生の
波長分布を模擬的に示したものである。今、物質1,物
gt2の吸収波長をそれぞれλ1,λ2(λ2〉λ1と
する。λ1,λ2にチューニングされたシート状レーザ
光を物質1,物質2に照射すると、そのシート状レーザ
光の断層面から、蛍光の中心波長まで、それぞれ,Δλ
1,Δλ2だけ長波長側にシフトした蛍光が発生する。
In the flame tomography plane irradiated with the sheet-shaped laser beam of wavelength λhλ2, a substance with absorption spectrum wavelength λn, λ2 1. Substance 2 absorbs energy from the laser beam, transitions from the stable ground state of the electronic energy level to the excited state, and in the next short period of time (
The substance emits fluorescence during the energy transition to its original ground state in about 10-δ seconds). Fluorescence has a wavelength of 582n
Although there are some cases where the absorption wavelength and fluorescence wavelength are the same (resonant radiation), such as the D line of the Na atom in m, the emission wavelength generally occurs on the longer wavelength side than the absorption wavelength. For example, OH radicals present in the ultraviolet region, which play an important role in the combustion element reaction process of hydrocarbon fuels, have an absorption band around 285 nm. 306
.. It has a fluorescent band between 4 nm and around 315 nm (
Here, regarding the energy transition of fluorescence generation, A,
G. Gaydon's book (The Identific
ation of Molecular Spectrum
a;CHAPMA}! AND }IAL), etc., and details are provided in the Ministry <). FIG. 3 schematically shows the wavelength distribution of two-component fluorescence. Now, assume that the absorption wavelengths of substance 1 and object gt2 are λ1 and λ2 (λ2>λ1, respectively).When sheet-shaped laser beams tuned to λ1 and λ2 are irradiated to substance 1 and substance 2, the sheet-shaped laser beam's cross section from the surface to the center wavelength of fluorescence, respectively, Δλ
Fluorescence shifted to the long wavelength side by 1, Δλ2 is generated.

蛍光は電子エネルギ準位の中の振動エネルギ準位の各準
位へ遷移する確率をもつので、一般には図に示したよう
に蛍光の波長はある幅をもつことになる。図中、レーザ
ー散乱光と示したのは,物質にレーザ光を照射すると、
物質(分子,原子を含む)の表面で反射、すなわち、散
乱現象を起す.この散乱はエネルギ的には光(光量子)
と物質との弾性衝突であり、波長の変更を伴わない.分
子レベルでの微弱なレーザー散乱も、粉末や固体粒子と
なると散乱のエネルギレベルも高くなる.後者のような
散乱断面積の大きなもののレーザー散乱を特にミュー(
Mie)散乱と呼んで区別している. 次に蛍光の検出方法について述べる。第1図の右に示す
図は燃焼筒工のレーザ照射用窓6,6′面で切った横方
向断面図である。レーザ照射用窓6,6′に対して直角
の位置に1181!I用窓7,7′を設けてある。この
観測用窓の7、又は、7′はいずれか一方向から検出す
る場合について図に基づいて説明する.本発明では、二
種類の蛍光分布を同時計測する光学映像方式を採ること
を特徴と゜しており,それらは次のように行なわれる。
Since fluorescence has a probability of transitioning to each vibrational energy level among the electronic energy levels, the wavelength of fluorescence generally has a certain width as shown in the figure. In the figure, the laser scattered light indicates that when a substance is irradiated with laser light,
Reflection, or scattering, occurs on the surface of substances (including molecules and atoms). In terms of energy, this scattering is light (photon)
This is an elastic collision between the object and the material, and does not involve a change in wavelength. Even though laser scattering is weak at the molecular level, the energy level of scattering becomes high when it comes to powders and solid particles. In particular, mu (
Mie) It is called scattering to distinguish it. Next, a method for detecting fluorescence will be described. The figure shown on the right side of FIG. 1 is a lateral sectional view taken along the plane of the laser irradiation windows 6 and 6' of the combustion pipework. 1181 at a position perpendicular to the laser irradiation windows 6, 6'! I windows 7, 7' are provided. The case where the observation window 7 or 7' is detected from either one direction will be explained based on the diagram. The present invention is characterized by the adoption of an optical imaging method that simultaneously measures two types of fluorescence distributions, which are carried out as follows.

まず,IRim用窓7を通って外部に放射された帯状の
蛍光像はビームスプリツタl7を用いてそれぞれ直角方
向に二分割される。分割された映像はそれぞれ光学フィ
ルタ18.18’ を用い、λl+Δλ1の蛍光とλ2
+Δλ2の蛍光のみの光が抽出される。
First, the band-shaped fluorescent image radiated to the outside through the IRim window 7 is divided into two parts at right angles using the beam splitter 17. The divided images are filtered using optical filters 18 and 18' to separate the fluorescence of λl+Δλ1 and the fluorescence of λ2.
Only fluorescence light of +Δλ2 is extracted.

なお、光学フィルタには誘電体や金属薄膜の光干渉を利
用した干渉膜フィルタが使用される.第3図に蛍光観測
用の光学フィルタの波長特性を破線で示した。フィルタ
特性は使用する波長帯に依存するが、最少半値幅は近紫
外(〜300nm)用で約10nm程度、可視用(40
0〜700nm)で約0.9  nm程度のものが製造
できる.光学フィルタ18.18’以降の映像装置の光
学配置は同一である。光学フィルタ18.18’で抽出
されたλ1+Δλ1の蛍光、及び、λ2+^1.の蛍光
は、それぞれ、対物レンズ19.19’ を用いて蛍光
像を増強するためのイメージインテンシファイア20.
20’の光電面に結像される。
The optical filter used is an interference film filter that utilizes optical interference of dielectric or metal thin films. In FIG. 3, the wavelength characteristics of the optical filter for fluorescence observation are shown by broken lines. Filter characteristics depend on the wavelength band used, but the minimum half-width is about 10 nm for near ultraviolet (~300 nm) and about 40 nm for visible wavelengths (~300 nm).
(0 to 700 nm), and can manufacture products with a thickness of approximately 0.9 nm. The optical arrangement of the imaging device after the optical filters 18, 18' is the same. The fluorescence of λ1+Δλ1 extracted by the optical filter 18.18' and the fluorescence of λ2+^1. The fluorescence of 19, 19' and 20, respectively are image intensifiers for intensifying the fluorescence images using objective lenses 19 and 19'.
The image is formed on the photocathode 20'.

光電面で光から電子に光電変換が行われ、電子はイメー
ジインテンシファイア内で増強され、イメージインテン
ジファイア後端の蛍光面に衝突することにより新たに蛍
光面に充分な照度の像全再生する。この像をリレーレン
ズ21,21’等の手段により、高感度カメラ22.2
2’の撮像管、又は,撮像素子に結像し、映像信号に変
換された後,コンピュータ23の制御によって各種モニ
タに写されると共に録画することもできる.また、取込
まれた映像はコンピュータ23の制御の下で画像解析装
!124を用い各種の画像処理が行われ、被測定物質の
濃度分布の比較等が定量的に行なわれる。なお、高感度
カメラは撮像管タイプのものであればSIPカメラ等が
,撮像素子のものであれば冷却型CODカメラ等が優れ
ている。
Photoelectric conversion is performed from light to electrons at the photocathode, and the electrons are intensified in the image intensifier and collide with the phosphor screen at the rear end of the image intensifier, thereby regenerating a new image with sufficient illuminance on the phosphor screen. do. This image is captured by a high-sensitivity camera 22.2 using means such as relay lenses 21, 21'.
After the image is formed on the image pickup tube 2' or the image pickup device and converted into a video signal, it can be displayed on various monitors and also recorded under the control of the computer 23. In addition, the captured images are processed by an image analysis device under the control of the computer 23! 124 is used to perform various types of image processing, and quantitative comparisons of concentration distributions of substances to be measured are performed. Note that, as a high-sensitivity camera, an SIP camera or the like is better if it is an image pickup tube type camera, or a cooled COD camera or the like is better if it is an image sensor type camera.

ところで,蛍光の強度を上げる方法として励起用レーザ
光の出力が高い方が有利であり、その点、尖頭出力の高
いバルスレーザが用いられることが多い.パルスレーザ
の繰返し数は現在では数十〜数百Hzのものがある。火
炎中での蛍光計測では、火炎からの発光や固体スス等か
ら発生する連続スペクトルなどの雑音によって蛍光強度
のS/N比が低下することが起こるので,パルスレーザ
を用いる場合には、レーザ光が発射されている時間、す
なわち、近似的に蛍光が観測される時間(前述の約10
−a秒程度)のみ蛍光像を取込むようにするのがよい。
By the way, as a method of increasing the intensity of fluorescence, it is advantageous to use a high output laser beam for excitation, and in this respect, a pulsed laser with a high peak output is often used. Currently, the repetition rate of pulsed lasers is several tens to several hundred Hz. When measuring fluorescence in a flame, the S/N ratio of the fluorescence intensity decreases due to noise such as light emission from the flame and continuous spectra generated from solid soot, etc. Therefore, when using a pulsed laser, it is necessary to is being emitted, that is, approximately the time when fluorescence is observed (approximately 10
It is preferable to capture the fluorescent image only for about -a seconds).

このために用いられるがゲーテイングユニット25であ
る.これはレーザソース(パルスレーザの場合)11の
パルスに同期してゲート信号を発する機器であり、この
ゲート信号はイメージインテンシファイア20.20’
に送られゲート信号に同期してイメージインテンシファ
イアに印加される高電圧のオン,オフ制御が行われる。
A gating unit 25 is used for this purpose. This is a device that emits a gate signal in synchronization with the pulse of the laser source (in the case of a pulsed laser) 11, and this gate signal is transmitted to the image intensifier 20.20'
On/off control of the high voltage applied to the image intensifier is performed in synchronization with the gate signal sent to the image intensifier.

すなわち、ゲート信号が送られているときはゲート幅(
時間)に対応して電圧が印加され、ゲート信号が来ない
場合にはオフの状態になる.この結果、高感度カメラ2
2.22’でlI!測される蛍光像はレーザパルスに同
期して観測されることになる. 第1図では被測定物質が二個の場合について説明したが
、三個以上の場合にも基本的構成は同じで、吸収スペク
トル波長に一致したレーザ光発生装置(本文では色素レ
ーザ)が被測定物質の数だけ必要となる。被測定物質の
数が多くなった場合の問題点はレーザソースに、さらに
、高出力のものが必要となる。また,吸収スペクトルに
一致したレーザ光を混合する場合のダイクロイツクミラ
−15の光学的性能にも依存する。ダイクロイックミラ
ーの波長特性にも製作限度があるので、被測定物質の吸
収スペクトル波長とダイクロイックミラーの特性を勘案
した波長選択が求められる。
In other words, when the gate signal is being sent, the gate width (
A voltage is applied corresponding to the time), and if the gate signal does not come, it is turned off. As a result, high-sensitivity camera 2
lI at 2.22'! The measured fluorescence image will be observed in synchronization with the laser pulse. In Figure 1, we explained the case where there are two substances to be measured, but the basic configuration is the same even when there are three or more substances, and a laser beam generator (dye laser in this text) matching the absorption spectrum wavelength is Only the number of substances is required. The problem when the number of substances to be measured increases is that a high-output laser source is required. It also depends on the optical performance of the dichroic mirror 15 when mixing laser beams matching the absorption spectrum. Since the wavelength characteristics of dichroic mirrors also have production limits, it is necessary to select a wavelength that takes into account the absorption spectrum wavelength of the substance to be measured and the characteristics of the dichroic mirror.

第1図はシート状レーザ光を燃焼筒の長手方向に配置し
た場合を示したが、燃焼筒の横断面に配置する場合も当
然ありうる. 第2図はこの横断面にレーザ光を配置した場合を示す.
この場合はレーザシート面に直角方向にw48I!1部
を設ける必要があり,第2図では上部Il!測用窓8か
ら採光する様子を示した。映像検出部は第1図で示した
ものと同一であるので省略する.以上、二測定物質の蛍
光分布計測について述べて来たが、本発明の変形例とし
て蛍光とレーザー散乱光に基づく画像計測を実施するこ
とも可能である. 第3図に示したように、λヱ,λ2のレーザ光波長に対
してレーザ光の波長と同じ波長の光が物質から反射され
る。これがレーザー散乱と呼ばれることは先に述べた。
Although Fig. 1 shows the case where the sheet-shaped laser beam is arranged in the longitudinal direction of the combustion tube, it is naturally possible to arrange it in the cross section of the combustion tube. Figure 2 shows the case where a laser beam is placed on this cross section.
In this case, w48I! in the direction perpendicular to the laser sheet surface! It is necessary to provide one part, and in Fig. 2, the upper Il! It shows how light is brought in through the measuring window 8. The image detection unit is the same as that shown in Figure 1, so its description is omitted. The above has described the fluorescence distribution measurement of two measuring substances, but as a modification of the present invention, it is also possible to perform image measurement based on fluorescence and laser scattered light. As shown in FIG. 3, for the laser beam wavelengths λ2 and λ2, light having the same wavelength as the laser beam wavelength is reflected from the substance. As mentioned earlier, this is called laser scattering.

レーザー散乱の強度はその物質の固有の散乱断面積と関
係している。火炎中で生成される物質の散乱断面積は空
気の散乱断面積に対して同等レベルであるので普通は火
炎中での散乱光の検出は難しい。そこでTiOzのよう
な微粒子を燃料と空気ラインに入れてやり,火炎の各断
面での粒子密度分布をTiltのレーザー散乱から求め
ることができる.この粒子密度分布から、燃料の拡散や
、流動に関する情報を得ることができる.レーザー散乱
光の波長選択は蛍光計測で説明したのと同種の光学フィ
ルターを用いればよく、他の映像機器の配置も先の方式
と同じでよい. 〔発明の効果〕 本発明は、以下説明したように構成されているので以下
に記載されるような効果を奏する.すなわち、被測定物
の吸収スペクトル波長に合致したレーザ光を合成し、シ
ート状にして照射することにより、火炎断層内の被測定
物質濃度の情報が蛍光強度分布画像として得られる。被
測定物の数は光学系や、レーザソースの出力により制限
されるが二,三個の計測の同時計測は現技術レベルで問
題なくできる. バルスレーザを用いることが本発明を効率よく運用する
うえで有利であり、バルスレーザと同期した映像のオン
ーオフ制御を行うことにより、S/N比の高い映像と瞬
時映像化が可能となる。
The intensity of laser scattering is related to the material's intrinsic scattering cross section. Since the scattering cross section of substances generated in a flame is on the same level as the scattering cross section of air, it is normally difficult to detect scattered light in a flame. Therefore, by introducing fine particles such as TiOz into the fuel and air lines, the particle density distribution at each cross section of the flame can be determined from Tilt laser scattering. Information on fuel diffusion and flow can be obtained from this particle density distribution. To select the wavelength of the laser scattered light, the same type of optical filter as explained for fluorescence measurement can be used, and the arrangement of other imaging equipment can be the same as in the previous method. [Effects of the Invention] Since the present invention is configured as described below, it produces the effects described below. That is, by combining laser beams that match the absorption spectrum wavelength of the object to be measured and irradiating it in the form of a sheet, information on the concentration of the object to be measured within the flame tomography can be obtained as a fluorescence intensity distribution image. Although the number of objects to be measured is limited by the optical system and the output of the laser source, simultaneous measurement of two or three objects can be done without any problem with the current technology level. Using a pulsed laser is advantageous in efficiently operating the present invention, and by performing on-off control of the video in synchronization with the pulsed laser, it is possible to create a high S/N ratio video and instantaneous imaging.

さらに本発明の変形例の一つは被測定物質(項目)が二
つの場合を例にとると、第3図に示すような物質からの
蛍光とレーザー(ミュー)散乱光分布を同時画像化する
ことも可能であり、前者の蛍光からは反応生成物の濃度
情報が後者のレーザー(ミュー)散乱からは拡散,流動
に関する情報が得られる,
Furthermore, in one modification of the present invention, taking as an example the case where there are two substances (items) to be measured, the fluorescence from the substance and the laser (mu) scattered light distribution are simultaneously imaged as shown in Figure 3. It is also possible to obtain information on the concentration of reaction products from the former fluorescence, and information on diffusion and flow from the latter laser (mu) scattering.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (1)

【特許請求の範囲】 1、燃焼火炎内の燃焼状態を二次元平面断層計測する光
学方式において、 数種類の燃焼生成物の濃度分布を同時画像計測する方法
として、生成物の吸収スペクトルの波長に合致するよう
にレーザ光の波長をチューニングし、その光を混合する
光学手段を備え、さらに、混合光をシリンドリカルレン
ズにより微少幅のシート状ビームに変更し、火炎の一断
層面に前記シート状ビームを貫通させ、前記シート状ビ
ーム面より発生する蛍光又はレーザー散乱光をビーム面
と直角方向より同時観測する光学手段を備え、これを画
像解析し、相対濃度分布状況等を抽出することを特徴と
する火炎断層計測法。
[Claims] 1. In an optical method for two-dimensional planar tomographic measurement of the combustion state within a combustion flame, as a method for simultaneously measuring image concentration distributions of several types of combustion products, a method that matches the wavelength of the absorption spectrum of the products The wavelength of the laser beam is tuned so that the wavelength of the laser beam is tuned, and an optical means is provided to mix the light.Furthermore, the mixed light is changed into a sheet-shaped beam with a minute width using a cylindrical lens, and the sheet-shaped beam is applied to one cross-section of the flame. It is characterized by comprising an optical means that penetrates the sheet-like beam surface and simultaneously observes fluorescence or laser scattered light generated from the sheet-like beam surface from a direction perpendicular to the beam surface, and performs image analysis to extract the relative concentration distribution status, etc. Flame tomography method.
JP15955389A 1989-06-23 1989-06-23 Flame tomographic measuring method Pending JPH0325352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15955389A JPH0325352A (en) 1989-06-23 1989-06-23 Flame tomographic measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15955389A JPH0325352A (en) 1989-06-23 1989-06-23 Flame tomographic measuring method

Publications (1)

Publication Number Publication Date
JPH0325352A true JPH0325352A (en) 1991-02-04

Family

ID=15696257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15955389A Pending JPH0325352A (en) 1989-06-23 1989-06-23 Flame tomographic measuring method

Country Status (1)

Country Link
JP (1) JPH0325352A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149190A (en) * 1991-09-20 1993-06-15 Amano Kogyo Gijutsu Kenkyusho Combustion measuring device for internal combustion engine
EP0693385A1 (en) 1994-07-18 1996-01-24 Canon Kabushiki Kaisha Recording medium, image-forming method and printed article using the medium
US5518821A (en) * 1993-07-06 1996-05-21 Canon Kabushiki Kaisha Recording medium and ink-jet recording method employing the same
US5570120A (en) * 1993-07-16 1996-10-29 Canon Kabushiki Kaisha Ink-jet recording method and color image forming method
US5591294A (en) * 1993-07-16 1997-01-07 Canon Kabushiki Kaisha Recording sheet manufacturing and storing method, recording sheet obtained by the method, and ink jet recording method using the recording sheet
EP0770493A1 (en) 1995-10-24 1997-05-02 Oji Paper Co., Ltd. Support and ink jet recording material containing the same
US5661511A (en) * 1993-10-27 1997-08-26 Canon Kabushiki Kaisha Ink-jet printing method and method of producing print
US5747146A (en) * 1994-02-24 1998-05-05 Canon Kabushiki Kaisha Printing medium and ink jet print
US6200676B1 (en) 1992-07-31 2001-03-13 Canon Kabushiki Kaisha Ink jet recording medium
WO2007077966A1 (en) * 2005-12-28 2007-07-12 Toyota Jidosha Kabushiki Kaisha Exhaust gas analyzing device and exhaust gas analyzing method
JP2010164480A (en) * 2009-01-16 2010-07-29 Yokogawa Electric Corp Laser gas analyzer
US7936460B2 (en) 2006-05-31 2011-05-03 Toyota Jidosha Kabushiki Kaisha Sensor unit in exhaust gas analyzer
US8085404B2 (en) 2006-08-23 2011-12-27 Toyota Jidosha Kabushiki Kaisha Gas analyzer and gas analyzing method
GB2521921A (en) * 2013-11-21 2015-07-08 Agilent Technologies Inc Optical absorption spectrometry system including dichroic beam combiner and splitter

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149190A (en) * 1991-09-20 1993-06-15 Amano Kogyo Gijutsu Kenkyusho Combustion measuring device for internal combustion engine
US6200676B1 (en) 1992-07-31 2001-03-13 Canon Kabushiki Kaisha Ink jet recording medium
US5518821A (en) * 1993-07-06 1996-05-21 Canon Kabushiki Kaisha Recording medium and ink-jet recording method employing the same
US5591294A (en) * 1993-07-16 1997-01-07 Canon Kabushiki Kaisha Recording sheet manufacturing and storing method, recording sheet obtained by the method, and ink jet recording method using the recording sheet
US5570120A (en) * 1993-07-16 1996-10-29 Canon Kabushiki Kaisha Ink-jet recording method and color image forming method
US5661511A (en) * 1993-10-27 1997-08-26 Canon Kabushiki Kaisha Ink-jet printing method and method of producing print
US5747146A (en) * 1994-02-24 1998-05-05 Canon Kabushiki Kaisha Printing medium and ink jet print
US6468633B1 (en) 1994-02-24 2002-10-22 Canon Kabushiki Kaisha Printing medium, production process thereof, and ink jet printing method using the same
EP0693385A1 (en) 1994-07-18 1996-01-24 Canon Kabushiki Kaisha Recording medium, image-forming method and printed article using the medium
EP0770493A1 (en) 1995-10-24 1997-05-02 Oji Paper Co., Ltd. Support and ink jet recording material containing the same
WO2007077966A1 (en) * 2005-12-28 2007-07-12 Toyota Jidosha Kabushiki Kaisha Exhaust gas analyzing device and exhaust gas analyzing method
US7926332B2 (en) 2005-12-28 2011-04-19 Toyota Jidosha Kabushiki Kaisha Exhaust gas analyzer and exhaust gas analyzing method
US7936460B2 (en) 2006-05-31 2011-05-03 Toyota Jidosha Kabushiki Kaisha Sensor unit in exhaust gas analyzer
US8085404B2 (en) 2006-08-23 2011-12-27 Toyota Jidosha Kabushiki Kaisha Gas analyzer and gas analyzing method
JP2010164480A (en) * 2009-01-16 2010-07-29 Yokogawa Electric Corp Laser gas analyzer
GB2521921A (en) * 2013-11-21 2015-07-08 Agilent Technologies Inc Optical absorption spectrometry system including dichroic beam combiner and splitter
US9151672B2 (en) 2013-11-21 2015-10-06 Agilent Technologies, Inc. Optical absorption spectrometry system including dichroic beam combiner and splitter
GB2521921B (en) * 2013-11-21 2016-03-09 Agilent Technologies Inc Optical absorption spectrometry system including dichroic beam combiner and splitter

Similar Documents

Publication Publication Date Title
Traldi et al. Schlieren imaging: a powerful tool for atmospheric plasma diagnostic
JP2022095825A (en) Cell sorting using high throughput fluorescence flow cytometer
US5599717A (en) Advanced synchronous luminescence system
CN109477784B (en) Fluorescence imaging flow cytometry with enhanced image resolution
JP5329449B2 (en) How to perform microscopic imaging
JPH0325352A (en) Flame tomographic measuring method
US4407008A (en) Method and apparatus for light-induced scanning-microscope display of specimen parameters and of their distribution
US7745789B2 (en) Measuring technique
EP0446028A2 (en) Method and apparatus for improving the signal to noise ratio of an image formed of an object hidden or behind a semi-opaque random media
KR20180105118A (en) Multi-mode fluorescence imaging flow cytometry system
KR100793517B1 (en) Methods and apparatus for spectroscopic analysis of turbid pharmaceutical samples
JPS62500803A (en) Fluorescent imaging system
JP2007163507A (en) Monitor and method for monitoring characteristic of chemical constituent during blending in fluidized bed
Olesik et al. Observation of atom and ion clouds produced from single droplets of sample in inductively coupled plasmas by optical emission and laser-induced fluorescence imaging
US11874227B2 (en) Method and apparatus for terahertz or microwave imaging
AU2002243137A1 (en) New measuring technique
US20080151239A1 (en) Microscopy method and microscope
Linne Analysis of X-ray radiography in atomizing sprays
EP3762704A1 (en) Laser-induced incandescent particle sensor comprising a confocal arrangement of a laser spot and of a thermal radiation spot
JPH0367224B2 (en)
JP2520665B2 (en) Fluorescence microspectrometer
US4983041A (en) Spectroscopic apparatus for extremely faint light
RU2199829C2 (en) Method and device for detection and visualization of anti-stokes radiation excited on surface of investigated object
JPH05168460A (en) Analyzer for cell information
JP2014126491A (en) Information acquisition system, information acquisition device and information acquisition method