[go: up one dir, main page]

JPH03252061A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH03252061A
JPH03252061A JP2050273A JP5027390A JPH03252061A JP H03252061 A JPH03252061 A JP H03252061A JP 2050273 A JP2050273 A JP 2050273A JP 5027390 A JP5027390 A JP 5027390A JP H03252061 A JPH03252061 A JP H03252061A
Authority
JP
Japan
Prior art keywords
electrode
fluid
suction port
port
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2050273A
Other languages
Japanese (ja)
Inventor
Hideo Seko
瀬古 日出男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2050273A priority Critical patent/JPH03252061A/en
Publication of JPH03252061A publication Critical patent/JPH03252061A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To simplify the structure, to improve the reliability of sealing, to reduce the assembly work, to reduce the number of parts, and to reduce the cost, by erecting plural ribs to communicate the first suction port and the first exhaust port to the first communicating part, in the first electrode, and erecting plural ribs to communicate the second suction port and the second exhaust port to the second communicating part, in the second electrode. CONSTITUTION:In the same surface of one end of the first electrode through which a fluid fuel flows, the first suction port 16 and the first exhaust port 17 at the fluid fuel side are provided, and plural ribs 13a to 13c to communicate the first suction port 16 and the first exhaust port 17 up to the first communicating part 18 are erected in the first electrode. On the other hand, in the same surface of one end of the second electrode through which a fluid oxidizer flows, at the different side from the opening surface of the first suction port 16 and the first exhaust port 17 of the first electrode, the second suction port 26 and the second exhaust port 27 at the fluid oxidizer side are provided, and plural ribs 23a to 23c to communicate the second suction port 26 and the second exhaust port 27 up to the second communicating part 28 are erected in the second electrode. As a result, the structure is simplified, the reliability of sealing is improved, the assembly work is reduce, the number of parts is reduced, and the cost can be reduced.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、燃料電池に関し、特に水素等の流体燃料およ
び酸素等の流体酸化剤が流通する流通溝の配設構造の改
良に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a fuel cell, and particularly to a structure for disposing a flow groove through which a fluid fuel such as hydrogen and a fluid oxidizer such as oxygen flow. Regarding improvements.

(従来の技術) 従来、燃料のエネルギーを直接電気エネルギーに変換す
る装置として燃料電池が知られている。
(Prior Art) Fuel cells are conventionally known as devices that directly convert fuel energy into electrical energy.

この燃料電池は第5図および第5図のC−C線、D−D
線の平面断面図である第6図(イ)(ロ)に示すように
1、リン酸を電解質としたリブ付電極型の燃料電池であ
って単位セルは電解質としてリン酸を含浸したマトリッ
クス1を挟んで、互いに直交する方向に溝が規則的に複
数本平行に設けられた通常炭素剤から成る一対のリブ付
電極2を配置して成り、この単位セルを複数積層して燃
料電池スタックを構成している。ここで、これらの溝は
それぞれ流体燃料および流体酸化剤の流通路を形成し2
いる。また、上記各単位セルを積層する場合には、導電
性を有しがっガス透過性のないセパレータ3を各単位セ
ル間に挟んで積層する。
This fuel cell is shown in FIG.
As shown in FIGS. 6(a) and 6(b), which are planar cross-sectional views of lines, 1 is a ribbed electrode type fuel cell using phosphoric acid as an electrolyte, and the unit cell is a matrix 1 impregnated with phosphoric acid as an electrolyte. A pair of ribbed electrodes 2 made of a carbonaceous agent are arranged with grooves regularly provided in parallel in directions perpendicular to each other, with the unit cells sandwiched between the two. It consists of Here, these grooves form flow paths for fluid fuel and fluid oxidizer, respectively.
There is. When the unit cells are stacked, a separator 3 having electrical conductivity but not gas permeability is sandwiched between each unit cell.

この燃料電池は可燃性の高い水素ガスと空気の酸素ガス
を供給するため、装置の安全構造を考える上で、ガス漏
れを起こさないガスシール構造、ガスシール材質の検討
が重要であり、従来はリブ付電極2の溝の両側開口部の
み残して、各積層断面部を気密にシー・ルルで積層セル
を構成し、てぃた。
This fuel cell supplies highly flammable hydrogen gas and air oxygen gas, so when considering the safety structure of the device, it is important to consider the gas seal structure and gas seal material that will not cause gas leakage. Leaving only the openings on both sides of the groove of the ribbed electrode 2, each laminated cross section was airtightly sealed with a lulu to form a laminated cell.

ところで、リブ付電極2は平均径数10ミクロンの孔を
有する多孔質体であるために、上記のシールだけでは両
端部からガス拡散漏洩を防止することができなかった。
By the way, since the ribbed electrode 2 is a porous body having pores with an average diameter of several tens of microns, the above-mentioned seal alone was not able to prevent gas diffusion leakage from both ends.

このシール方式の改良として、第7図に示すように特開
昭61−147461号公報には、リブ付電極2の端部
は、溝方向に対して直交方向の端部に予め熱可塑性の懸
濁液を含浸し、その後溝方向に対して平行な端部に熱可
塑性樹脂のフィルム4を取り付け、加熱、圧入して一体
化しエツジシール部を構成するようにした燃料電池の技
術がある。
As an improvement to this sealing method, as shown in FIG. 7, Japanese Patent Application Laid-Open No. 147461/1983 discloses that the ends of the ribbed electrodes 2 are pre-filled with thermoplastic suspension at the ends perpendicular to the groove direction. There is a fuel cell technology in which a thermoplastic resin film 4 is impregnated with a slurry, and then a thermoplastic resin film 4 is attached to an end parallel to the groove direction, and the edge seal portion is formed by heating and press-fitting the film 4 into one piece.

また、別の技術として、第8図に示すように特開昭61
−173464号公報としてリブ付電極2の端部に、溝
方向に対して直交方向および、溝方向と同一方向から熱
可塑性フィルム6.7をそれぞれ取り付けてガス、/−
ルする構成とした燃料電池の技術がある。
In addition, as another technique, as shown in Fig. 8,
-173464 Publication, a thermoplastic film 6.7 is attached to the end of the ribbed electrode 2 in a direction perpendicular to the groove direction and in the same direction as the groove direction, and a gas, /-
There is a fuel cell technology that has a configuration that

(発明が解決しようとする課題) しかしながら、両者とも水素ガスと酸素ガスとの出入力
方向がお互いに直交しているために、ガスシー・ル構造
が非常に複雑になっている。
(Problems to be Solved by the Invention) However, since the input and output directions of hydrogen gas and oxygen gas are orthogonal to each other, the gas seal structure is extremely complicated.

例えば第7図の実施例では、単位セルにシールとしての
熱可塑性フィルム4を段違いに合計4枚必要とし、さら
にリブ付電極2の端部は予め熱可塑性樹脂の懸濁液を含
浸させなければいけない。
For example, in the embodiment shown in FIG. 7, a total of four thermoplastic films 4 as seals are required in the unit cell at different levels, and the ends of the ribbed electrodes 2 must be pre-impregnated with a suspension of thermoplastic resin. should not.

また、第8図の実施例では溝方向に対して直交方向およ
び、溝方向と同一方向の二方向から熱可塑性フィルム6
.7を取り付けなければいけないため、単位セルに合計
8枚のシールが必要であった。このため、構造が複雑に
なり、組付は作業の困難性、作業工数の多大、締め代設
定の困難性が問題になり、その結果ガス漏れ、構造部が
破損してしまうという問題があった。
In the embodiment shown in FIG. 8, the thermoplastic film 6 is
.. Since 7 had to be attached, a total of 8 stickers were required for the unit cell. As a result, the structure became complicated, and assembly became difficult, required a large number of man-hours, and was difficult to set the tightening margin.As a result, there were problems such as gas leakage and damage to the structure. .

本発明はこのような課題を解決するものであって構造が
簡単で、シールの信顧性を向上させ、組付は作業が低減
し、部品点数の減少、コストの低下が可能な燃料電池を
提供することにある。
The present invention solves these problems by providing a fuel cell that has a simple structure, improves seal reliability, reduces assembly work, reduces the number of parts, and reduces costs. It is about providing.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) この目的を達成するために、本発明が講じた手段として
は、電解質を含浸したマトリックスを挟んで、流体燃料
および流体酸化剤の流通溝が形成された一対のリブ付電
極を配置して成り、前記各流通溝に流体燃料および流体
酸化剤が流通している条件下で電気エネルギーを出力す
る単位セルをセパレータを介して複数積層した燃料電池
において、 流体燃料が流通する第1電極の一端部の同一面内には、
流体燃料側の第1吸入口と第1排出口を配設し、該第1
吸入口と該第1排出口とが第1連通部まで連通ずるよう
な複数のリブを上記第1電極に立設させる一方、前記第
1電極の第1吸入口と第1排出口の開口面とは別の方向
面に、流体酸化剤が流通する第2を極の一端部の同一面
内には、流体酸化剤側の第2吸入口と第2排出口を配設
し、該第2該人口と該第2排出口とが第2連通部まで連
通ずるような複数のリブを上記第2電極に立設させたこ
とにある。
(Means for Solving the Problems) In order to achieve this object, the present invention employs a pair of fluid fuel and fluid oxidizer flow grooves with an electrolyte-impregnated matrix sandwiched therebetween. In a fuel cell in which a plurality of unit cells are stacked with a separator in between, the unit cells are arranged with ribbed electrodes and output electrical energy under the condition that fluid fuel and fluid oxidizer are flowing through each of the flow grooves. In the same plane of one end of the first electrode that flows,
A first inlet and a first outlet on the fluid fuel side are arranged, and the first
A plurality of ribs are erected on the first electrode so that the suction port and the first discharge port communicate with each other to the first communication portion, and the opening surface of the first suction port and the first discharge port of the first electrode is provided with a plurality of ribs that communicate with the first communication portion. A second suction port and a second discharge port on the fluid oxidizer side are disposed in the same plane at one end of the second pole through which the fluid oxidizer flows, in a direction different from that of the second pole. A plurality of ribs are provided upright on the second electrode so that the population and the second outlet communicate with each other up to the second communication portion.

(作用) 本発明によれば、構造が簡単で、シールの信頼性を向上
させ、組付は作業が低減し、部品点数の減少、およびコ
ストの低下が可能となるのである。
(Function) According to the present invention, the structure is simple, the reliability of the seal is improved, the assembly work is reduced, and the number of parts and costs can be reduced.

(実施例) 本発明の一実施例を第1図〜第2図を参照して説明する
(Example) An example of the present invention will be described with reference to FIGS. 1 and 2.

11は電解質としてリン酸を含有したマトリックスであ
り、12.22はカーボン等の多孔質からなる第1電極
、第2電極である。流体燃料が流通する流体燃料側の第
1電極12はマトリックス11の上面に配置されており
、流体酸化剤が流通する流体酸化剤側の第2電極22は
マトリックス11の下面に配置されている。
Reference numeral 11 is a matrix containing phosphoric acid as an electrolyte, and reference numerals 12 and 22 are first and second electrodes made of porous material such as carbon. The first electrode 12 on the fluid fuel side through which the fluid fuel flows is arranged on the upper surface of the matrix 11, and the second electrode 22 on the fluid oxidant side through which the fluid oxidizer flows is arranged on the lower surface of the matrix 11.

上記流体燃料側の第1電極12には複数のリブ13a、
13b、13b、13c、13cが平行に配設されてい
る。
The first electrode 12 on the fluid fuel side has a plurality of ribs 13a,
13b, 13b, 13c, and 13c are arranged in parallel.

これらのリブの中央に配設されるリブ13aの長さが最
も長く、両端の13b、13b、13C113cは短く
なっている。これらのリブの一端部は第118i12の
第1開口部12aに開口されている。
The rib 13a disposed at the center of these ribs is the longest, and the ribs 13b, 13b, and 13C113c at both ends are short. One end of these ribs is opened to the first opening 12a of the 118i12.

また、第I電極I2の上記第1開口部以外は第1電極1
2の平板枠形状に沿ってコの字状に突部15a、15b
、15cが形成されている。
In addition, the first electrode 1 other than the first opening of the I-electrode I2 is
U-shaped protrusions 15a and 15b are formed along the flat plate frame shape of No. 2.
, 15c are formed.

一方22は、流体酸化剤側の第2電極であり、流体燃料
側第1電極12と同じ構造であって、それぞれ対応する
構造には第1電極の数字に10を足した20番台で示し
説明は省略する。
On the other hand, 22 is the second electrode on the fluid oxidizer side, which has the same structure as the first electrode 12 on the fluid fuel side, and the corresponding structure is indicated by a number in the 20s, which is the number of the first electrode plus 10. is omitted.

ここで流体酸化剤側の吸入口26と排出口27の向きは
前記の流体燃料側の第1を極12の吸入口16、排出口
17の向きと、180°逆向きである。
Here, the directions of the inlet port 26 and the outlet port 27 on the fluid oxidizer side are 180 degrees opposite to the directions of the inlet port 16 and the outlet port 17 of the first pole 12 on the fluid fuel side.

上記のように流体燃料側の第1電極12、マトリックス
11、流体酸化剤側の第2電極22のように配置された
単位セル構造の上下側に、導電性を有し、かつガス透過
性のないセパレータ30゜30が配置されて、単位セル
が複数積層され、燃料電池本体が形成される。
As described above, the upper and lower sides of the unit cell structure arranged as the first electrode 12 on the fluid fuel side, the matrix 11, and the second electrode 22 on the fluid oxidant side are electrically conductive and gas permeable. A fuel cell main body is formed by stacking a plurality of unit cells with separators 30 and 30 disposed.

このような燃料電池の流体燃料側面には、箱状の第1ケ
ース40を密閉配置する。この第1ケース40には水素
が吸入される第1吸入マニホールド管41とその水素が
排出される第1排出マニホールド管42が設けられてい
る。
A box-shaped first case 40 is hermetically arranged on the fluid fuel side of such a fuel cell. This first case 40 is provided with a first intake manifold pipe 41 through which hydrogen is taken in and a first exhaust manifold pipe 42 through which the hydrogen is discharged.

またこの第1ケース40の内側内面は第1吸入側凹部4
3が形成され、該第1吸入側凹部43には第1吸入マニ
ホールド管41が連通される。また、この第1吸入側凹
部43と並列して第1排出側凹部44が設けられ、該凹
部43は第1排出マニホールド管42が連通されている
Moreover, the inner surface of this first case 40 has a first suction side recess 4.
3 is formed, and a first suction manifold pipe 41 is communicated with the first suction side recess 43 . Further, a first discharge side recess 44 is provided in parallel with the first suction side recess 43, and the first discharge manifold pipe 42 is communicated with the recess 43.

なお上記凹部43.44とは互いに交わることはなく、
第1隔壁45を介して設けられ、その第1隔壁45の開
放端部は前記リブ13aの開放端部と密封当接されてい
る。
Note that the recesses 43 and 44 do not intersect with each other,
It is provided via a first partition wall 45, and the open end of the first partition wall 45 is in sealing contact with the open end of the rib 13a.

前記リブ13a、13b、13bにより形成される溝1
6a、16a、16aの開口面は流体燃料側吸入口16
となり、この吸入口16には前記第1吸入凹部43が対
向されている。
Groove 1 formed by the ribs 13a, 13b, 13b
The opening surfaces of 6a, 16a, and 16a are the fluid fuel side inlet 16
The first suction recess 43 is opposed to the suction port 16.

また、前記リブ13a、13c、13cにより形成され
る溝17a、17a、17aの開口面は流体燃料側排出
口17となり、この排出口17には、前記第1排出凹部
44が対向されている。
Furthermore, the opening surfaces of the grooves 17a, 17a, 17a formed by the ribs 13a, 13c, 13c serve as a fluid fuel side discharge port 17, and the first discharge recess 44 is opposed to the discharge port 17.

なお上記溝16 a、 l 6 a、  16 aと1
7a、17a、17a、17aとは連通ずるように連通
部18が設けられている。
Note that the grooves 16a, 16a, 16a and 1
A communication portion 18 is provided so as to communicate with 7a, 17a, 17a, and 17a.

一方、流体酸化剤側のリブ付電極22の構造も同様であ
り、酸素吸入側の溝26a、26a、26aは酸素が吸
入される第2吸入口26を形成しており、酸素排出側の
溝27a、27a、27aは第2排出口27を形成する
。その他は流体燃料側の構造と同じであり、それぞれ、
流体燃料側の記号に10を足したもので表す。
On the other hand, the structure of the ribbed electrode 22 on the fluid oxidizer side is also similar, and the grooves 26a, 26a, 26a on the oxygen suction side form a second suction port 26 through which oxygen is sucked, and the grooves on the oxygen discharge side 27a, 27a, 27a form a second outlet 27. The rest of the structure is the same as the fluid fuel side, and each
It is expressed by adding 10 to the symbol on the fluid fuel side.

また、第2ケース50の構造も第1ケース40と同様な
構造であり、それぞれ第1ケース40の記号に10を足
したもので表す。
Further, the structure of the second case 50 is also similar to that of the first case 40, and each is represented by the symbol of the first case 40 plus 10.

以上のように構成された燃料電池の作用について説明す
る。
The operation of the fuel cell configured as above will be explained.

第1吸入マニホールド41より、水素を吸入させると第
1吸入凹部40を通り、第1電極12の流体燃料側吸入
口16を通り、溝16a、16a、16aを通過し、連
通部18においてUターンして溝17a、17a、17
a、第1排出口17を通過して、第1排出凹部44、第
1排出マニホールド42から水素が排出される。
When hydrogen is inhaled from the first intake manifold 41, it passes through the first intake recess 40, passes through the fluid fuel side intake port 16 of the first electrode 12, passes through the grooves 16a, 16a, 16a, and makes a U-turn at the communication section 18. grooves 17a, 17a, 17
a, hydrogen passes through the first discharge port 17 and is discharged from the first discharge recess 44 and the first discharge manifold 42;

また第2吸入マニホールド51より、酸素を吸入させる
と第2吸入凹部53、第2排出口26を通り、溝26a
、26a、26a、連通部28、溝27a、27a、2
7a、酸化燃料側排出口27、第2排出凹部54、第2
排出マニホールド52から酸素が排出される。
Further, when oxygen is inhaled from the second suction manifold 51, it passes through the second suction recess 53 and the second outlet 26, and passes through the groove 26a.
, 26a, 26a, communication portion 28, groove 27a, 27a, 2
7a, oxidized fuel side discharge port 27, second discharge recess 54, second
Oxygen is exhausted from the exhaust manifold 52.

このような作用により、マトリックス11に電気化学反
応が生じ、電気が発生する。
Due to this action, an electrochemical reaction occurs in the matrix 11, and electricity is generated.

なお本発明によればシール構造は第3図に示すように高
さ方向に一体化ができ、シール60は両側に単位セルに
2枚貼るのみである。
According to the present invention, the seal structure can be integrated in the height direction as shown in FIG. 3, and only two stickers 60 are attached to each unit cell on both sides.

次に通常、電極の加工方法は切削加工で行われるが、本
発明の効率の良い加工方法を第4図面の簡単な説明する
Next, the electrode is usually processed by cutting, but the efficient processing method of the present invention will be briefly explained with reference to the fourth drawing.

まず、カーボンからなる平板Hに第2図(イ)にポすよ
うにフライスFの加工によりU字形の溝加工を行って連
通部Rを形成させる。
First, a U-shaped groove is formed in a flat plate H made of carbon using a milling cutter F, as shown in FIG. 2(A), to form a communicating portion R.

次に(ロ)に示すように円盤状の切削機Sで溝加工を行
って複数の溝Mを形成させるのである。
Next, as shown in (b), a plurality of grooves M are formed by cutting grooves using a disk-shaped cutting machine S.

本発明は上記の加工方法に限定せず一般に行われる切削
加工方法にておこなってもよいことは、いうまでもない
It goes without saying that the present invention is not limited to the above-mentioned processing method, and may be carried out using commonly used cutting methods.

また本実施例においては、一対の電極のリブの開口部は
おたがいに180°向きが異なっていたが、その開放面
の向きが90°の直交状態で配置されてあってもよい。
Further, in this embodiment, the openings of the ribs of the pair of electrodes were oriented 180 degrees apart from each other, but the openings may be arranged so that the directions of the open surfaces are perpendicular to each other by 90 degrees.

また、本実施例において、電極に上記のリブが形成され
ていたが、セパレータ30に上記のようなリブが形成さ
れであってもよい。
Further, in this embodiment, the electrodes are provided with the ribs described above, but the separator 30 may also be provided with the ribs described above.

〔発明の効果〕〔Effect of the invention〕

以上のような構造の本発明は、構造が簡単でガスシール
が従来のシールのようbこ単位セルにおいて最低4枚の
シールを段違いムこ貼る必要があったが、本発明におい
ては、一体のシールを2枚貼るだけでよい。
The present invention having the structure described above has a simple structure, and the gas seal is different from conventional seals, in which it is necessary to attach at least four seals at different levels in each unit cell. Just put two stickers on it.

交互にシールを貼る構造でないため、シールからガスが
漏れるという心配がなく、組み付は性も良好であり、電
極の破損という問題点もなくなった。
Since the structure does not involve applying stickers alternately, there is no need to worry about gas leaking from the seals, the assembly is easy, and the problem of electrode damage is eliminated.

また、マニホールドが形成されるケースが従来は各4面
にケースが4個必要であったが本発明は2個のみでよい
In addition, conventionally, four cases were required for each of the four sides in which the manifolds were formed, but in the present invention, only two cases are required.

その結果本発明は部品点数の減少、コストの低下が可能
となり、シールの漏れ等がなくなるという効果を有する
のである。
As a result, the present invention has the effect of reducing the number of parts, reducing costs, and eliminating seal leaks.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の燃料電池の一実施例を示す全体の分解
斜視図、第2図(イ)は第1図のA−A線に沿う断面図
であり第1吸入口から水素が吸入され、第1排出口から
水素が排出されている作用図(ロ)は第1図のB−B線
に沿う断面図であり、第2吸入口から酸素が吸入され、
第2排出口から電極の加工方法を表す一実施例、第5図
は従来の燃料電池の斜視図、第6図(イ)は水素を吸入
、排出するケースを追加させた第5図のC−C断面図で
水素を吸入、排出させている説明図、(ロ)は酸素を吸
入、排出するケースを追加させた第5図のD−D断面図
で酸素を吸入、排出させている説明図、第7図、第8図
は従来の燃料電池のシール構造を表す斜視図 11・・・マトリックス、 12・・・第1電極、 16・・・第1吸入口、 17・・・第1排出口、 18・・・第1連通部、 22・・・第2電極、 26・・・第2吸入口、 27・・・第2排出口、 28・・・第2連通部。
FIG. 1 is an exploded perspective view of the entire fuel cell showing an embodiment of the present invention, and FIG. The action diagram (b) in which hydrogen is discharged from the first exhaust port is a sectional view taken along line B-B in FIG. 1, and oxygen is inhaled from the second intake port,
An example showing a method of fabricating an electrode from the second discharge port, Fig. 5 is a perspective view of a conventional fuel cell, and Fig. 6 (a) is C of Fig. 5 in which a case for inhaling and discharging hydrogen is added. -C cross-sectional view for explaining how hydrogen is sucked in and discharged; (B) is a cross-sectional view taken along line D-D in Figure 5 with an additional case for sucking and exhausting oxygen, and explanation for sucking in and exhausting oxygen. 11...Matrix, 12...First electrode, 16...First inlet, 17...First Exhaust port, 18... First communication part, 22... Second electrode, 26... Second suction port, 27... Second discharge port, 28... Second communication part.

Claims (1)

【特許請求の範囲】  電解質を含浸したマトリックスを挟んで、流体燃料お
よび流体酸化剤の流通溝が形成された一対のリブ付電極
を配置して成り、前記各流通溝に流体燃料および流体酸
化剤が流通している条件下で電気エネルギーを出力する
単位セルをセパレータを介して複数積層した燃料電池に
おいて、 流体燃料が流通する第1電極の一端部の同一面内には、
流体燃料側の第1吸入口と第1排出口を配設し、該第1
吸入口と該第1排出口とが第1連通部まで連通するよう
な複数のリブを上記第1電極に立設させる一方、前記第
1電極の第1吸入口と第1排出口の開口面とは別の方向
面に、流体酸化剤が流通する第2電極の一端部の同一面
内には、流体酸化剤側の第2吸入口と第2排出口を配設
し、該第2該入口と該第2排出口とが第2連通部まで連
通するような複数のリブを上記第2電極に立設させたこ
とを特徴とする燃料電池。
[Scope of Claims] A pair of ribbed electrodes each having flow grooves for fluid fuel and fluid oxidant are disposed with an electrolyte-impregnated matrix sandwiched therebetween, and the fluid fuel and fluid oxidizer are flowed into each of the flow grooves. In a fuel cell in which a plurality of unit cells that output electrical energy are stacked with separators interposed therebetween under conditions where fluid fuel is flowing, there are
A first inlet and a first outlet on the fluid fuel side are arranged, and the first
A plurality of ribs are erected on the first electrode so that the suction port and the first discharge port communicate with each other to the first communication portion, and the opening surface of the first suction port and the first discharge port of the first electrode is provided. A second inlet and a second outlet on the side of the fluid oxidizer are disposed in the same plane of one end of the second electrode through which the fluid oxidizer flows, in a direction different from that of the second electrode. A fuel cell characterized in that a plurality of ribs are erected on the second electrode so that the inlet and the second outlet communicate with each other up to the second communication portion.
JP2050273A 1990-02-28 1990-02-28 Fuel cell Pending JPH03252061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2050273A JPH03252061A (en) 1990-02-28 1990-02-28 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2050273A JPH03252061A (en) 1990-02-28 1990-02-28 Fuel cell

Publications (1)

Publication Number Publication Date
JPH03252061A true JPH03252061A (en) 1991-11-11

Family

ID=12854338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2050273A Pending JPH03252061A (en) 1990-02-28 1990-02-28 Fuel cell

Country Status (1)

Country Link
JP (1) JPH03252061A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099567A1 (en) * 2007-02-16 2008-08-21 Seiko Instruments Inc. Fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099567A1 (en) * 2007-02-16 2008-08-21 Seiko Instruments Inc. Fuel cell
US8192887B2 (en) 2007-02-16 2012-06-05 Seiko Instruments Inc. Fuel cell

Similar Documents

Publication Publication Date Title
US6946212B2 (en) Electrochemical fuel cell stack with improved reactant manifolding and sealing
JP2545364B2 (en) Flat plate multi-junction electrochemical pump
JP4505204B2 (en) Fuel cell system
JP4630529B2 (en) Fuel cell system
JP2002260710A (en) Solid polymer cell assembly, fuel cell stack and supply method of reactive gas for fuel cell
JP2003197221A (en) Fuel cell
JPH06251780A (en) Solid polymer electrolyte fuel cell
JP2003086232A (en) Fuel cell stack
JP2001015127A (en) Electrolyte membrane / electrode assembly and solid polymer electrolyte fuel cell
JP3258378B2 (en) Fuel cell
CN101425589A (en) Integrated internally humidifying fuel cell
US10879553B2 (en) Fuel cell stack
JP2001216983A (en) Humidifying system for fuel cell
JPS63119166A (en) Fuel battery
JPH03252061A (en) Fuel cell
JPS6010565A (en) Seal structure for fuel cell
JP3292670B2 (en) Fuel cell
JPH06260193A (en) Fuel cell stack with solid highpolymer electrolyte
JP3244779B2 (en) Fuel cell
CN108091901B (en) Pole plate assembly for fuel cells and battery cells
CN1326279C (en) polymer electrolyte fuel cell
JP2001126743A (en) Polymer electrolytic fuel cell
JPH01183070A (en) Separator for fuel cells
KR101819797B1 (en) Fuel battery cell
CN222394832U (en) Hydrogen fuel cell unit and hydrogen fuel cell stack