JPH03252058A - Electrode catalyst layer for fuel cells - Google Patents
Electrode catalyst layer for fuel cellsInfo
- Publication number
- JPH03252058A JPH03252058A JP2048217A JP4821790A JPH03252058A JP H03252058 A JPH03252058 A JP H03252058A JP 2048217 A JP2048217 A JP 2048217A JP 4821790 A JP4821790 A JP 4821790A JP H03252058 A JPH03252058 A JP H03252058A
- Authority
- JP
- Japan
- Prior art keywords
- particles
- catalyst
- catalyst layer
- catalyst particles
- electrode catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Inert Electrodes (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[産業上の利用分野〕
この発明は燃料電池用ガス拡散電極の電極触媒層に係り
、特に特性と信鯨性に優れる燃料電池用ガス拡散電極に
関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrode catalyst layer of a gas diffusion electrode for a fuel cell, and more particularly to a gas diffusion electrode for a fuel cell that has excellent characteristics and reliability.
リン酸型燃料電池は燃料のもつ化学エネルギを直接電気
エネルギに変換する装置であり、その構成はマトリクス
(図示せず)をはさんで第1図に示すようなカーボン
電極基材7の上に電極触媒層6を配したガス拡散電極を
対向して配置し、外部のガス供給系より前記各電極へ燃
料ガスおよび酸化剤ガスを分離供給し、電極触媒層の触
媒粒子の上で酸化剤ガスと燃料ガスを個別に電気化学的
に反応させ、その結果として系外へ電気エネルギをとり
出す発電装置である。電極触媒層6はカーボン触媒担体
2上に貴金属粒子3を担持して触媒粒子4を形成し、フ
ッ素樹脂粒子5で結着して調製される。このような燃料
電池の電極触媒層6においては電解質であるリン酸は主
として触媒粒子4の内細孔14に保持される0反応ガス
は触媒粒子4とフッ素樹脂粒子5がつ(る粒子間細孔8
A、あるいは触媒粒子相互間の間細孔8B内を流れ、触
媒粒子4の貴金属粒子3に到達する。貴金属粒子3は電
解質であるリン酸でぬれており、3相界面が形成され、
酸化あるいは還元の電気化学反応がおこる。A phosphoric acid fuel cell is a device that directly converts the chemical energy of fuel into electrical energy, and its configuration consists of a carbon electrode base material 7 as shown in Figure 1 with a matrix (not shown) in between. Gas diffusion electrodes each having an electrode catalyst layer 6 are placed facing each other, and a fuel gas and an oxidant gas are separately supplied to each electrode from an external gas supply system, and the oxidant gas is distributed over the catalyst particles of the electrode catalyst layer. This is a power generation device that electrochemically reacts the fuel gas and fuel gas individually, and extracts electrical energy from the system as a result. The electrode catalyst layer 6 is prepared by supporting noble metal particles 3 on a carbon catalyst carrier 2 to form catalyst particles 4, and binding them with fluororesin particles 5. In the electrode catalyst layer 6 of such a fuel cell, phosphoric acid as an electrolyte is mainly retained in the inner pores 14 of the catalyst particles 4, and the reactive gas is retained in the interparticle pores between the catalyst particles 4 and the fluororesin particles 5. Hole 8
A, or flows through the pores 8B between the catalyst particles, and reaches the noble metal particles 3 of the catalyst particles 4. The noble metal particles 3 are wetted with phosphoric acid, which is an electrolyte, and a three-phase interface is formed.
An electrochemical reaction of oxidation or reduction occurs.
しかしながらこのような従来の電極触媒層6においては
触媒粒子4内のリン酸が時間の経過と共にフッ素樹脂粒
子5と触媒粒子4がつくる粒子間細孔8Aあるいは触媒
粒子4相互間の粒子間細孔8Bに移行してそれらを閉塞
し反応ガスの流通を妨げるため、燃料電池の特性が劣化
するという問題があった。従来のカーボンブラックの一
次粒子径は700人であった。However, in such a conventional electrode catalyst layer 6, the phosphoric acid in the catalyst particles 4 is absorbed into the interparticle pores 8A formed between the fluororesin particles 5 and the catalyst particles 4 or the interparticle pores between the catalyst particles 4 over time. There was a problem in that the characteristics of the fuel cell deteriorated because the reaction gas moved to 8B and blocked them, preventing the flow of the reaction gas. The primary particle size of conventional carbon black was 700 particles.
この発明は上述の点に鑑みてなされ、その目的触媒粒子
によるリン酸保持能力を高めることにより、特性の経時
的劣化が少なく信頼性に優れる燃料電池用電極触媒層を
提供することにある。The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide an electrode catalyst layer for a fuel cell whose properties are less likely to deteriorate over time and have excellent reliability by increasing the ability of catalyst particles to retain phosphoric acid.
上述の目的は、この発明によれば、触媒粒子4と、フッ
素樹脂粒子5とを有し、
フッ素樹脂粒子は触媒粒子を結着するもので、この際触
媒粒子と作る粒子間細孔8Aに反応ガスが流されるもの
であり、
触媒粒子は触媒担体に貴金属粒子を担持したもので、こ
こに触媒担体はカーボンブラックの一次粒子が凝集した
もので、−次粒子径は200〜500人の範囲にあって
触媒粒子の内線孔14には電解液が含浸されるものであ
るとすることにより達成される。According to the present invention, the above-mentioned purpose is to have catalyst particles 4 and fluororesin particles 5, and the fluororesin particles bind the catalyst particles, and at this time, the fluororesin particles bind the catalyst particles and the interparticle pores 8A formed with the catalyst particles. The reaction gas is flowed through, and the catalyst particles are precious metal particles supported on a catalyst carrier.The catalyst carrier is an agglomeration of primary particles of carbon black, and the secondary particle size is in the range of 200 to 500 particles. This is achieved by impregnating the internal holes 14 of the catalyst particles with an electrolytic solution.
一次粒子径が200〜500人の範囲にあると毛細管作
用によりリン酸が触媒粒子内によく保持される。500
人を越えるとリン酸の保持性が低下する。When the primary particle size is in the range of 200 to 500 particles, phosphoric acid is well retained within the catalyst particles by capillary action. 500
When the amount exceeds that of humans, the ability to retain phosphoric acid decreases.
200人より小さいと、電極触媒層の成膜が困難になる
。If the number of participants is less than 200, it will be difficult to form an electrode catalyst layer.
次にこの発明の実施例を図面に基いて説明する。 Next, embodiments of the present invention will be described based on the drawings.
−成粒子の算術平均粒子径が300人、嵩密度0.1g
/cc 、比表面積100m”のカーボンブランク粉末
100gをイオン交換水に分散させ、カーボン単位重量
当たり10%の白金が担持されるように濃度調整された
塩化白金酸溶液を所定量加え、温度50°Cで均一分散
させた後、0.1〜0.3モル濃度のギ酸またはヒドラ
ジン等の還元剤を清下し、塩化白金酸を還元すると同時
にカーボン粉末表面に白金の微結晶を析出させる。得ら
れた白金担持カーボン分散液を濾過し、イオン交換液に
て十分水洗したのち、ふん囲気調整が可能な真空乾燥器
にて乾燥し、触媒を得た0次に、上記触媒をイオン交換
水に均一に分散させた後、触媒重量に対して100%の
重量のフッ素樹脂を加え、均一に混合して触媒とフッ素
樹脂の分散液を作製する0次に、上記分散液を多孔性カ
ーボン蟇材上にブレード法、スプレー法等により塗布し
、乾燥、焼成して多孔性カーボン基材上に電極触媒層の
積層された燃料電池電極を得た。- Arithmetic mean particle size of particles is 300, bulk density is 0.1g
/cc, 100 g of carbon blank powder with a specific surface area of 100 m" was dispersed in ion-exchanged water, a predetermined amount of chloroplatinic acid solution whose concentration was adjusted so that 10% platinum was supported per unit weight of carbon was added, and the temperature was 50°. After homogeneous dispersion with C, a reducing agent such as formic acid or hydrazine with a 0.1 to 0.3 molar concentration is removed to reduce chloroplatinic acid and at the same time deposit microcrystals of platinum on the surface of the carbon powder. The resulting platinum-supported carbon dispersion was filtered, thoroughly washed with ion exchange solution, and then dried in a vacuum dryer with adjustable atmosphere to obtain a catalyst.Next, the above catalyst was soaked in ion exchange water. After uniformly dispersing, add 100% of the fluororesin based on the weight of the catalyst and mix uniformly to create a dispersion of the catalyst and fluororesin.Next, the above dispersion is poured into a porous carbon material. It was coated on top by a blade method, a spray method, etc., dried, and fired to obtain a fuel cell electrode in which an electrode catalyst layer was laminated on a porous carbon base material.
第3図は本発明の実施例に係る電極触媒層の細孔分布を
示す線図でピーク1工は触媒粒子4内の内線孔14.ピ
ーク12は触媒粒子4とフッ素樹脂粒子5間の粒子間細
孔8A、触媒粒子間の粒子間細孔8Bに対応する。第4
図は従来の電極触媒層の細孔分布を示す線図でピーク1
3は触媒粒子4内の内線孔14に対応する1粒子間細孔
8A、8Bのピークがピーク13にマスクされている。FIG. 3 is a diagram showing the pore distribution of the electrode catalyst layer according to the example of the present invention, and the peak 1 is the internal pore 14 in the catalyst particle 4. The peak 12 corresponds to the interparticle pores 8A between the catalyst particles 4 and the fluororesin particles 5, and the interparticle pores 8B between the catalyst particles. Fourth
The figure is a diagram showing the pore distribution of a conventional electrode catalyst layer with peak 1.
3, the peaks of interparticle pores 8A and 8B corresponding to the internal pores 14 in the catalyst particles 4 are masked by the peak 13.
第3図と第4図から一次粒子径を小さくすることにより
、触媒粒子内の内線孔14が小さくなっていることがわ
かる。It can be seen from FIGS. 3 and 4 that by reducing the primary particle diameter, the internal pores 14 within the catalyst particles become smaller.
第2図は本発明の実施例に係る電極触媒層を用いた燃料
電池特性の経時変化(特性線9)を従来の燃料電池の特
性(特性線10)と対比して示す線図である9本発明の
実施例に係る燃料電池電極触媒層はリン酸の保持能力が
高いので反応ガスの通る粒子間細孔8A、8Bを閉塞す
ることがなく、長期にわたり高い特性を維持することが
できる。FIG. 2 is a diagram showing changes over time in the characteristics of a fuel cell using an electrode catalyst layer according to an embodiment of the present invention (characteristic line 9) in comparison with the characteristics of a conventional fuel cell (characteristic line 10). Since the fuel cell electrode catalyst layer according to the embodiment of the present invention has a high ability to retain phosphoric acid, the interparticle pores 8A and 8B through which the reaction gas passes are not blocked, and high characteristics can be maintained for a long period of time.
−次粒子径は上述の300人を含み200人〜500人
の範囲内が有効である。500人を越えると触媒粒子の
内線孔が大きくなり、リン酸保持能力が下がる。 2
00人より小さいと、粒子が細か過ぎて電極触媒層の成
膜ができない。It is effective that the particle diameter is within the range of 200 to 500 people, including the above-mentioned 300 people. If the number exceeds 500, the internal pores of the catalyst particles will become larger and the phosphoric acid retention capacity will decrease. 2
If the particle size is smaller than 0.00, the particles are too fine to form an electrode catalyst layer.
〔発明の効果]
この発明によれば、触媒粒子と、フッ素樹脂粒子とを有
し、
フッ素樹脂粒子は触媒粒子を結着するもので、この際触
媒粒子と作る粒子間細孔に反応ガスが流されるものであ
り、
触媒粒子は触媒担体に貴金属粒子を担持したもので、こ
こに触媒担体はカーボンブラックの一次粒子が凝集した
もので、−次粒子径は200〜500人の範囲にあって
触媒粒子の内組孔には電解液が含浸されるものであるの
で触媒粒子の内線孔径が小さくなり、その結果、触媒粒
子のリン酸保持力が高まり、触媒粒子とフッ素樹脂粒子
間の細孔等の粒子間細孔にリン酸が移行することがなく
なって、信親性に優れる燃料電池電極触媒層が得られる
。[Effects of the Invention] According to the present invention, the catalyst has catalyst particles and fluororesin particles, and the fluororesin particles bind the catalyst particles, and at this time, the reaction gas enters the interparticle pores formed with the catalyst particles. The catalyst particles are made by supporting precious metal particles on a catalyst carrier, and the catalyst carrier is an agglomeration of primary particles of carbon black, and the primary particle size is in the range of 200 to 500 particles. Since the internal pores of the catalyst particles are impregnated with electrolyte, the internal pore diameter of the catalyst particles becomes smaller, and as a result, the phosphoric acid retention capacity of the catalyst particles increases, and the pores between the catalyst particles and the fluororesin particles become smaller. Since phosphoric acid does not migrate into the pores between particles, a fuel cell electrode catalyst layer with excellent reliability can be obtained.
第1図は燃料電池の電極触媒層を示す断面図、第2図は
この発明の実施例に係る電極触媒層の特性を従来の電極
触媒層の特性と対比して示す線図、第3図は本発明の実
施例に係る電極触媒層の細孔分布を示す線図、第4図は
従来の電極触媒層の細孔分布を示す線図である。
4:触媒粒子、5:フッ素樹脂粒子、8A、8B:代度
人弁理士 山 口 巌 −二く
第1図
10’
渾靴打周/h
第2図FIG. 1 is a cross-sectional view showing the electrode catalyst layer of a fuel cell, FIG. 2 is a diagram showing the characteristics of the electrode catalyst layer according to an embodiment of the present invention in comparison with the characteristics of a conventional electrode catalyst layer, and FIG. 4 is a diagram showing the pore distribution of the electrode catalyst layer according to the example of the present invention, and FIG. 4 is a diagram showing the pore distribution of the conventional electrode catalyst layer. 4: Catalyst particles, 5: Fluororesin particles, 8A, 8B: Patent attorney Iwao Yamaguchi - 2nd Figure 1 10' Wheel stroke per hour Figure 2
Claims (1)
粒子は触媒粒子を結着するもので、この際触媒粒子と作
る粒子間細孔に反応ガスが流されるものであり、 触媒粒子は触媒担体に貴金属粒子を担持したもので、こ
こに触媒担体はカーボンブラックの一次粒子が凝集した
もので、一次粒子径は200〜500Åの範囲にあって
触媒粒子の内細孔には電解液が含浸されるものであるこ
とを特徴とする燃料電池用電極触媒層。[Scope of Claims] 1) A device that has catalyst particles and fluororesin particles, where the fluororesin particles bind the catalyst particles, and at this time, a reaction gas is flowed into the interparticle pores formed with the catalyst particles. The catalyst particles are made by supporting noble metal particles on a catalyst carrier, and the catalyst carrier is an agglomeration of primary particles of carbon black, and the primary particle diameter is in the range of 200 to 500 Å, and the inner fineness of the catalyst particles is An electrode catalyst layer for a fuel cell, characterized in that the pores are impregnated with an electrolyte.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2048217A JPH03252058A (en) | 1990-02-28 | 1990-02-28 | Electrode catalyst layer for fuel cells |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2048217A JPH03252058A (en) | 1990-02-28 | 1990-02-28 | Electrode catalyst layer for fuel cells |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03252058A true JPH03252058A (en) | 1991-11-11 |
Family
ID=12797247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2048217A Pending JPH03252058A (en) | 1990-02-28 | 1990-02-28 | Electrode catalyst layer for fuel cells |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03252058A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006179463A (en) * | 2004-11-25 | 2006-07-06 | Nissan Motor Co Ltd | Solid polymer fuel cell |
JP2014517985A (en) * | 2011-04-25 | 2014-07-24 | ユナイテッド テクノロジーズ コーポレイション | Catalyst materials for fuel cells |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5975560A (en) * | 1982-10-21 | 1984-04-28 | Toshiba Corp | Catalyst manufacturing method for fuel cell |
JPS59169069A (en) * | 1983-03-16 | 1984-09-22 | Hitachi Ltd | Electrodes for fuel cells |
JPS6369148A (en) * | 1986-09-10 | 1988-03-29 | Denki Kagaku Kogyo Kk | Material for gas diffusion electrode |
-
1990
- 1990-02-28 JP JP2048217A patent/JPH03252058A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5975560A (en) * | 1982-10-21 | 1984-04-28 | Toshiba Corp | Catalyst manufacturing method for fuel cell |
JPS59169069A (en) * | 1983-03-16 | 1984-09-22 | Hitachi Ltd | Electrodes for fuel cells |
JPS6369148A (en) * | 1986-09-10 | 1988-03-29 | Denki Kagaku Kogyo Kk | Material for gas diffusion electrode |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006179463A (en) * | 2004-11-25 | 2006-07-06 | Nissan Motor Co Ltd | Solid polymer fuel cell |
US8329359B2 (en) | 2004-11-25 | 2012-12-11 | Nissan Motor Co., Ltd. | Polymer electrolyte fuel cell |
JP2014517985A (en) * | 2011-04-25 | 2014-07-24 | ユナイテッド テクノロジーズ コーポレイション | Catalyst materials for fuel cells |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1071302A (en) | Method of fabricating a fuel cell electrode | |
US6024848A (en) | Electrochemical cell with a porous support plate | |
JP3643552B2 (en) | Catalyst for air electrode of solid polymer electrolyte fuel cell and method for producing the catalyst | |
JPS6120114B2 (en) | ||
JP2007250274A (en) | Fuel cell electrode catalyst with improved precious metal utilization efficiency, method for producing the same, and polymer electrolyte fuel cell having the same | |
US3549423A (en) | Method for manufacturing foam type electrode | |
US5800938A (en) | Sandwich-type solid polymer electrolyte fuel cell | |
KR101019158B1 (en) | Catalytic Electrodes and Electrochemical Devices | |
JPH0817440A (en) | Electrode for polymer electrolyte-type electrochemical cell | |
JPH09167620A (en) | Electrode catalyst for fuel cell and its manufacture, and electrode and fuel cell using the catalyst | |
US20060287194A1 (en) | Electrode for solid polymer type fuel cell and manufacturing method therefor | |
JPH07254419A (en) | Electrode for polyelectrolyte type electrochemical cell and its manufacture | |
US3668014A (en) | Electrode and method of producing same | |
JP4511911B2 (en) | Electrode for polymer electrolyte fuel cell | |
JP4147321B2 (en) | Electrode for polymer electrolyte fuel cell | |
JPH06103984A (en) | Electrode structure for fuel cell | |
JPH07147162A (en) | Method for manufacturing joined body of electrolyte membrane and electrode | |
JPH03252058A (en) | Electrode catalyst layer for fuel cells | |
US3171757A (en) | Fuel cell electrodes and method of making the same | |
JP2858329B2 (en) | Fuel cell catalyst and electrode using the same | |
JP2005174755A (en) | Electrode catalyst, catalyst carrying electrode using the same catalyst, and mea | |
JP2005190726A (en) | Catalyst carrying electrode, mea for fuel cell, and fuel cell | |
JP2712699B2 (en) | Gas diffusion electrodes for fuel cells | |
JPH04274167A (en) | Fuel cell electrode catalyst layer | |
JPS62154464A (en) | Electrode catalyst layer for fuel cell |