JPH03251321A - Electrical discharge machine device - Google Patents
Electrical discharge machine deviceInfo
- Publication number
- JPH03251321A JPH03251321A JP4787890A JP4787890A JPH03251321A JP H03251321 A JPH03251321 A JP H03251321A JP 4787890 A JP4787890 A JP 4787890A JP 4787890 A JP4787890 A JP 4787890A JP H03251321 A JPH03251321 A JP H03251321A
- Authority
- JP
- Japan
- Prior art keywords
- workpiece
- electrode
- inclination
- measuring
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012937 correction Methods 0.000 claims abstract description 17
- 238000005259 measurement Methods 0.000 claims abstract description 13
- 238000004364 calculation method Methods 0.000 claims description 30
- 238000009760 electrical discharge machining Methods 0.000 claims description 15
- 238000006073 displacement reaction Methods 0.000 description 18
- 238000000034 method Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000003754 machining Methods 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 208000032544 Cicatrix Diseases 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 230000037387 scars Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H2500/00—Holding and positioning of tool electrodes
- B23H2500/20—Methods or devices for detecting wire or workpiece position
Landscapes
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
Description
【発明の詳細な説明】 [産業上の利用分野] この発明は放電加工装置に関するものであり。[Detailed description of the invention] [Industrial application field] This invention relates to electrical discharge machining equipment.
特に被加工物と電極とを相対的に移動させるための基準
軸に対し、被加工物または電極が取付けられた際の基準
軸からの傾きを補正、修正することができる放電加工装
置に関するものである。In particular, it relates to electrical discharge machining equipment that can correct and correct the inclination of the workpiece or electrode from the reference axis when the workpiece or electrode is attached to the reference axis for moving the workpiece and electrode relative to each other. be.
[従来の技術]
一般に、放電加工装置においては、被加工物と電極とを
対向配置させ1両者を相対的に移動させながら被加工物
と電極との間に電圧を印加し、放電させることにより加
工を行っている。[Prior Art] Generally, in an electrical discharge machining device, a workpiece and an electrode are placed facing each other, and a voltage is applied between the workpiece and the electrode while moving the two relatively to cause electrical discharge. Processing is in progress.
そして、被加工物と電極との相対移動は、 NC装置に
より制御されて行なわれている。このNC装置の制御加
ニブログラムに基づく制御であり。The relative movement between the workpiece and the electrode is controlled by an NC device. The control is based on the control program of this NC device.
被加工物と電極とを相対的に移動させる加ニブログラム
は基準軸であるX、Y、Z軸に基づき作成されている。The machine program for moving the workpiece and the electrode relative to each other is created based on the X, Y, and Z axes, which are reference axes.
ところで、このような放電加工装置においては、被加工
物と電極とを対向配置させた際に、被加工物または電極
が基準軸に対して傾いて配置されることがある。この場
合、加ニブログラムに基づき加工を行なうと、被加工物
の所定の位置からずれた加工が行われてしまうことがあ
った。By the way, in such an electric discharge machining apparatus, when the workpiece and the electrode are arranged to face each other, the workpiece or the electrode may be arranged at an angle with respect to the reference axis. In this case, when machining is performed based on the machine program, the workpiece may be machined at a position deviated from a predetermined position.
このような欠点を改良した従来技術として、特開昭62
−287933号公報または特開昭60−259375
号公報に示されるものがあった。As a conventional technique that improves these drawbacks, Japanese Patent Application Laid-open No. 62
-287933 publication or JP-A-60-259375
There was something shown in the issue.
これらの従来技術では、被加工物を取り付けた際に、傾
いて取り付けた場合に補正を行なう技術が開示されてい
るが、いずれも数ケ所の測定点に基づいて補正を行なう
ものであった。These conventional techniques disclose techniques for correcting when a workpiece is mounted at an angle, but in all of these, the correction is performed based on measurement points at several locations.
第5図及び第6図は、従来技術を説明するための図を示
すものである。第5図において、(1)は被加工物、
(121は被加工物の基準面、(2)は測定子、(3)
は放電加工装置のベツド部、(4)はX軸ヘッド、(5
)はY軸ヘッド、(6)はZ軸ヘッド、(7)は電極取
付は定盤を示す。X、Y、Z。FIG. 5 and FIG. 6 are diagrams for explaining the prior art. In Fig. 5, (1) is the workpiece,
(121 is the reference surface of the workpiece, (2) is the measuring head, (3)
(4) is the X-axis head, (5) is the bed part of the electrical discharge machining device, (4) is the
) shows the Y-axis head, (6) shows the Z-axis head, and (7) shows the surface plate with electrodes attached. X, Y, Z.
軸は、それぞれ互いに直交する座標を構成し、この座標
系が基準軸となる。また、X軸、Y軸及びZ軸ヘット(
4)(5)(6)は、NC制御装置(図示せず)により
X軸、Y軸、Z軸に沿って駆動される。従って、基準軸
に基づき作成された加ニブログラムにより、NC制御装
置は各ヘッド(41(51(6)を所定のX、Y、Z軸
の座標へ移動し、放電加工を行なうことになる。The axes constitute mutually perpendicular coordinates, and this coordinate system serves as a reference axis. In addition, the X-axis, Y-axis and Z-axis heads (
4), (5), and (6) are driven along the X-axis, Y-axis, and Z-axis by an NC control device (not shown). Accordingly, the NC control device moves each head (41 (51 (6)) to predetermined coordinates of the X, Y, and Z axes and performs electrical discharge machining using the machining program created based on the reference axes.
第6図 において、 (411は検出装置、 (42
)は傾き角度を演算する傾き演算装置、 (431は
X、Y直交座標系を回転させる座標回転演算を行なう補
正演算装置、矢印(21)〜(24)は、測定子(2)
で被加工物(1)の基準面(12)がX軸からどの程度
傾いているかを測定するだめの測定子(2)の動作を示
す。In FIG. 6, (411 is a detection device, (42
) is a tilt calculation device that calculates the tilt angle, (431 is a correction calculation device that performs a coordinate rotation calculation that rotates the X, Y orthogonal coordinate system, and arrows (21) to (24) are the measuring stylus (2).
2 shows the operation of the probe (2) for measuring how much the reference plane (12) of the workpiece (1) is tilted from the X-axis.
この従来技術に示されたものでは加ニブログラムが基準
軸である。X、Y、Z軸に基づき作成されているため、
被加工物を取り付ける際に、X軸またはY軸に沿って位
置出しを行って被加工物を取り付け、被加工物の所定の
位置を加工するようにする必要があった。しかし、この
位置出しは。In what is shown in this prior art, the Kani program is the reference axis. Because it is created based on the X, Y, and Z axes,
When attaching a workpiece, it is necessary to perform positioning along the X-axis or Y-axis, attach the workpiece, and process a predetermined position of the workpiece. However, this positioning...
極めて煩雑な作業を伴なうため、第5図に示す如(、液
加]二物(11をX軸に対して傾いて取り付けても補正
を行なうことができるようにしていた。Since this involves extremely complicated work, it has been designed so that the correction can be made even if the two parts (11) are mounted at an angle with respect to the X-axis, as shown in FIG.
次に、この補正について、第5図及び第6図に基づき説
明する。Next, this correction will be explained based on FIGS. 5 and 6.
まず、被加工物(1)の基準面(12)と、放電加工装
置の基準軸X軸との傾き角度を測定する。First, the inclination angle between the reference surface (12) of the workpiece (1) and the reference axis X-axis of the electrical discharge machining apparatus is measured.
この場合、第5図に示す様に、電極取付定盤(7)に測
定子(2)を取り付け、測定子(2)と被加工物(11
との相対位置を電気的接触により検出するようにする。In this case, as shown in Fig. 5, the probe (2) is attached to the electrode mounting surface plate (7), and the probe (2) and the workpiece (11
The relative position of the sensor is detected by electrical contact.
このとき、第6図の矢印(21)〜(24)に示すよう
な動作を行なわせ、被加工物(1)の基準面(12)と
放電加工装置の基準軸X軸との傾き度合を測定する。具
体的には矢印(21)の動作は、測定子(2)を被加工
物(1)の基準面(12)に電気的に接触させ端面位置
決めをするためのY軸方向への移動動作である。(25
)の点での電気的接触により、測定子(2)は基準面(
12)と端面位置決めを行なう。この時の点(25)の
X、Y座標値を(o。At this time, the operations shown in arrows (21) to (24) in Fig. 6 are performed to determine the degree of inclination between the reference surface (12) of the workpiece (1) and the reference axis X-axis of the electrical discharge machining device. Measure. Specifically, the movement indicated by the arrow (21) is a movement movement in the Y-axis direction in order to bring the probe (2) into electrical contact with the reference surface (12) of the workpiece (1) and position the end face. be. (25
), the contact point (2) is brought to the reference surface (
12) and perform end face positioning. At this time, the X and Y coordinate values of point (25) are (o.
yz)とする。次に矢印(22)は、解離させる動作。yz). Next, arrow (22) is the dissociation operation.
矢印(23)はX軸方向へx0移動させる動作を示す。An arrow (23) indicates an operation of x0 movement in the X-axis direction.
続いて、矢印(24)は、矢印(21)と同じく、測定
子(2)を被加工物(ljの基準面(12)に端面位置
決めするだめのY軸方向への移動動作である。この動作
により、 (261の点で電気的接触により、測定子
(2)は基準面(12)と端面位置決めを行なう。この
時の点(26)のX、Y座標値を(xo、y、+)とす
る。これらの一連の測定結果は検出装置(41)により
検出保持される。この結果に基づき、被加工物(1)の
基準面(12)と放電加工装置のX軸との傾き度合を求
める。即ち、X軸座標X。に対してY軸座標y。Next, the arrow (24), like the arrow (21), is a moving operation in the Y-axis direction to position the end face of the probe (2) on the reference surface (12) of the workpiece (lj). By the operation, the probe (2) performs end face positioning with the reference surface (12) by electrical contact at the point (261). At this time, the X and Y coordinate values of the point (26) are expressed as ).These series of measurement results are detected and held by the detection device (41). Based on these results, the degree of inclination between the reference plane (12) of the workpiece (1) and the X-axis of the electrical discharge machining device is determined. Find the Y-axis coordinate y for the X-axis coordinate X.
y3−y2であり、この時の(頃き角度θ。はO
θo =arct、an ■O
で与えられる。この演算は、傾き演算装置(42)が0
式に基づいて演算を行なう。この演算結果をもとに補正
演算装置(43)はXY直交座標系の座標回転の演算を
行なう。第7図は座標回転の原理を示すものである。放
電加工装置は、XY軸の直交した基準を有するが、上述
したように被加工物(1)がX軸に対してθ。の角度を
持って取り付けられた場合、XY直交座標系に対してθ
。の角度を持っX13’直交座標を新たな座標系として
定義すると、任意の点Pのx、Y直交座標系における座
標値(xn、yn)とX+ y直交座標系における座標
値(Xn、yn )の関係は■、■式で与えられる。y3 - y2, and the rotation angle θ at this time is given by O θo = arct, an
Perform calculations based on formulas. Based on this calculation result, the correction calculation device (43) calculates the coordinate rotation of the XY orthogonal coordinate system. FIG. 7 shows the principle of coordinate rotation. The electric discharge machining apparatus has a reference in which the X and Y axes are perpendicular to each other, but as described above, the workpiece (1) is at an angle of θ with respect to the X axis. When installed at an angle of θ with respect to the XY orthogonal coordinate system,
. If we define the X13' rectangular coordinate as a new coordinate system with an angle of The relationship is given by the equations ■ and ■.
Xn ” XnCO3θ6−ynSlll Oo ”
’ ■Yn=XnS1nθ。+ynCO8θ。 ・
・・ ■即ち、補正演算装置(43)はTX、V直交
座標系の任意の点P (Xnyn)をX、Y直交座標系
(X、、 Y、1に変換するものである。そして、NC
制御部は。Xn ”XnCO3θ6-ynSllll Oo”
'■Yn=XnS1nθ. +ynCO8θ.・
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The control section.
この演算結果をもとに、加ニブログラムに基づいて、放
電加工装置のX軸ヘッド(14)をX軸の基準軸のガイ
ドウェイに沿ってX、、、 Y軸ヘッド(5)をY軸の
基準軸のガイドウェイに沿ってYnだけ移動させ、電極
を点Pへ移動させ、所望の位置で所定の放電加工を行な
うようにしている。Based on this calculation result, the X-axis head (14) of the electrical discharge machine is moved along the guideway of the X-axis reference axis, and the Y-axis head (5) is moved along the Y-axis. The electrode is moved by Yn along the guideway of the reference axis, the electrode is moved to point P, and a predetermined electrical discharge machining is performed at the desired position.
[発明が解決しようとする課題]
第8図は、従来技術の問題点を説明するための図である
。図において2曲線(11)は被加工物filの基準面
(12)の表面性状を拡大して示したものでのである。[Problems to be Solved by the Invention] FIG. 8 is a diagram for explaining the problems of the prior art. In the figure, the second curve (11) is an enlarged view of the surface texture of the reference surface (12) of the workpiece fil.
基準面(12)は通常研磨面であるが9図に示す様に、
細かな面の荒れと5周間の大きなうねりを持っており、
また場合によっては、深い傷(14)を持っている。The reference surface (12) is usually a polished surface, but as shown in Figure 9,
It has a small rough surface and large undulations for 5 laps.
In some cases, they also have deep scars (14).
このため、基準面(12)の基準軸X軸に対する傾きは
直線(13)で、またその傾き角度はθ。で定義される
べきであるが9例えば測定点が(311f3zlの様に
うねりの谷と山となった場合には、傾き角度が01と測
定され、真値0゜よりも小さくなり。Therefore, the inclination of the reference plane (12) with respect to the reference axis X-axis is a straight line (13), and the inclination angle is θ. For example, if the measurement points are at the valleys and peaks of the undulation, as in (311f3zl), the inclination angle will be measured as 01, which is smaller than the true value of 0°.
また測定点が(31(34)の様にうねりの山と谷とな
った場合には傾き角度がθ−と測定され、真値Ooより
も大きくなり、正確な補正が行なえないという問題点が
あった。In addition, when the measurement points are the peaks and valleys of the undulations as shown in (31 (34)), the inclination angle is measured as θ-, which is larger than the true value Oo, and there is a problem that accurate correction cannot be performed. there were.
なお、特公昭6(1259325号公報によれば、[被
加工物の端面に対して3以上の端点の位置座標値を検出
する]ことにより上述の問題点の解消をはかる提案がな
されているが、この方法では充分ではない。即ち、3以
上の端点を検出する場合、検出点としてどの点を採用す
るかをあらかじめ例えばr2mm毎に5点」という様に
決めてお(必要がある。しかしながら、被加工物の端面
の性状は。According to Japanese Patent Publication No. 1259325, a proposal has been made to solve the above-mentioned problems by [detecting the position coordinate values of three or more end points with respect to the end face of the workpiece]. , this method is not sufficient. In other words, when detecting three or more end points, it is necessary to decide in advance which points to adopt as detection points, for example, 5 points every r2 mm. However, What are the properties of the end surface of the workpiece?
第8図に示す様に、不規則であり、もちろん測定前に端
面性状を予測することは出来ない為、検出点として採用
したr 2 mm毎の5点」が傾き角度を高精度に検出
するのに充分であるとは限らない。As shown in Figure 8, the angle is irregular, and of course it is impossible to predict the end face properties before measurement, so the five points every r 2 mm are used as detection points to detect the inclination angle with high precision. There is no guarantee that it will be sufficient.
また、検出する端点を5点以上に増しても基本的には同
じ問題がある。Furthermore, even if the number of end points to be detected is increased to five or more, the same problem basically remains.
また、多点を検出する場合9次の問題点もある。即ち、
端点検出は、第6図に示す様に、測定子(2)が被加工
物(1)の基準面(12)を電気的に接触検出する端面
位置決め動作により行なうが、実際的には特開昭60−
259325号公報の第6図とその動作説明の中に記述
されている様な一連の動作により行なわれる。従って、
多点を検出する為に。Furthermore, when detecting multiple points, there is also a problem of 9th order. That is,
As shown in Fig. 6, end point detection is performed by an end face positioning operation in which the measuring head (2) electrically detects contact with the reference surface (12) of the workpiece (1), but in practice it is 1986-
This is carried out by a series of operations as described in FIG. 6 of Japanese Patent No. 259325 and its operation description. Therefore,
To detect multiple points.
この一連の動作を多数回行なうと、傾き検出のために多
大な時間を要するという大きな問題点がある。If this series of operations is performed many times, there is a big problem in that it takes a lot of time to detect the inclination.
この発明は、上記のような課題を解決するためになされ
たものであり、被加工物からなる被測定物の基準面がう
ねりまたは深い傷を有する場合であっても、基準面と基
準軸との傾き角度を高精度且つ高速に測定し、正確な位
置において放電加工を行なうことができる放電加工装置
を提供することを目的とする。This invention was made to solve the above-mentioned problems, and even if the reference surface of the workpiece to be measured has undulations or deep scratches, the reference surface and the reference axis can be easily aligned. It is an object of the present invention to provide an electric discharge machining apparatus that can measure the inclination angle of a metal plate with high precision and high speed, and can perform electric discharge machining at an accurate position.
[課題を解決するための手段]
この発明による放電加工装置は、被加工物または電極と
の距離を計測する計測手段と、被加工物と電極とを相対
的に移動させるための基準軸に沿って計測手段を移動さ
せる移動手段と、移動手段による計測手段の移動中に、
計測手段により被加工物または電極と両側手段との距離
を時間的に連続して計測した結果を保持する保持手段と
、保持手段が保持する計測結果に基づき基準軸からの被
加工物または電極の傾きを演算する傾き演算手段と、傾
き演算手段により演算された傾きに基づいて上記基準軸
による座標系を座標回転させる補正演算を行なう補正演
算手段と。[Means for Solving the Problems] The electrical discharge machining apparatus according to the present invention includes a measuring means for measuring the distance to the workpiece or the electrode, and a reference axis for relatively moving the workpiece and the electrode. a moving means for moving the measuring means, and while the measuring means is being moved by the moving means;
A holding means for holding the results of time-continuously measuring the distance between the workpiece or electrode and the means on both sides using the measuring means; An inclination calculation means for calculating an inclination; and a correction calculation means for performing a correction calculation for coordinate rotation of the coordinate system based on the reference axis based on the inclination calculated by the inclination calculation means.
を備えたものである。It is equipped with the following.
また、この発明による他の放電加工装置は1回転部が設
けられたヘッド部と1回転部に取りつけられた被加工物
または電極と、被加工物または電極との距離を計測する
計測手段と、被加工物と電極とを相対的に移動させるた
めの基準軸に沿って計測手段を移動させる移動手段と、
移動手段による計測手段の移動中に、計測手段により被
加工物または電極と4測手段との距離を時間的に連続し
て計測した結果を保持する保持手段と、保持手段が保持
する計測結果に基づき基準軸からの被加工物または電極
の傾きを演算する傾き演算手段と。Further, another electrical discharge machining apparatus according to the present invention includes a head portion provided with a one-rotation portion, a workpiece or an electrode attached to the one-rotation portion, and a measuring means for measuring the distance between the workpiece or the electrode; a moving means for moving a measuring means along a reference axis for relatively moving the workpiece and the electrode;
A holding means for holding the results of time-continuously measuring the distance between the workpiece or the electrode and the four measuring means by the measuring means while the measuring means is being moved by the moving means; and an inclination calculation means for calculating the inclination of the workpiece or the electrode from the reference axis based on the reference axis.
傾き演算手段により漬りされた傾きに基づいて回転部を
回Φi、さぜJl(茎軸に対する被加工物または電極の
傾きを修正する制御手段と。Based on the inclination determined by the inclination calculation means, the rotating part is rotated Φi, and the rotation part Jl (control means for correcting the inclination of the workpiece or the electrode with respect to the stem axis).
を備えたものである。It is equipped with the following.
[作用コ
この発明では、移動手段による計測手段の基準軸に沿っ
た移動中に、計測手段と被加工物または電極との距離を
時間的に計測しており9時間的に連続した計測値を用い
て傾き角度を演算している。[Operation] In this invention, the distance between the measuring means and the workpiece or electrode is measured over time while the moving means is moving the measuring means along the reference axis, and continuous measurement values are obtained for 9 hours. is used to calculate the tilt angle.
また、他の発明では、傾き角度の演算結果に基(12)
づき、被加工物または電極が取りつけられた回転部を回
転させるようにしている。Further, in another invention, a rotating part to which a workpiece or an electrode is attached is rotated based on the calculation result of the inclination angle (12).
[発明の実施例] 以下9本発明の一実施例を図について説明する。[Embodiments of the invention] An embodiment of the present invention will be described below with reference to the drawings.
第1図において、第5図に示した従来装置と同一は同一
部分を示す。この実施例では、第5図の従来装置と異な
り、電極取付定盤(7)には、測定子(2)の代りに、
変位を計測する変位計測手段(8)が取り付けられてい
る。第2図は、基準軸(本例ではX軸)に沿って、矢印
(27)に示す様に変位計測手段(8)を移動させ、変
位計測手段(8)の測定用ロッド(9)が間隙が大きい
場合には伸び間隙が狭い場合には縮んでいる状況を示し
ている。In FIG. 1, the same parts as those of the conventional device shown in FIG. 5 are shown. In this embodiment, unlike the conventional device shown in FIG.
A displacement measuring means (8) for measuring displacement is attached. In Figure 2, the displacement measuring means (8) is moved along the reference axis (X-axis in this example) as shown by the arrow (27), and the measuring rod (9) of the displacement measuring means (8) is When the gap is large, it shows expansion, and when the gap is narrow, it shows shrinkage.
この伸び、縮みの変位量を、保持手段を構成する変換器
(44)は例えばアナログ電圧の形に変位し保持すると
ともに出力する。(45)はこのアナログ出力電圧から
、基準軸X軸と被加工物(1)の基準面(12)との傾
き角度を演算する傾き演算装置。A converter (44) constituting the holding means converts and holds the displacement amounts of this expansion and contraction in the form of, for example, an analog voltage, and outputs the same. (45) is a tilt calculation device that calculates the tilt angle between the reference axis X-axis and the reference surface (12) of the workpiece (1) from this analog output voltage.
(43)は、第5図の従来装置と同じ<、XY直交座標
系を回転させる座標回転機能を持つ補正演算装置である
。(43) is a correction calculation device having a coordinate rotation function for rotating the XY orthogonal coordinate system, which is the same as the conventional device shown in FIG.
次に、この実施例装置の動作について説明する。即ち、
変位計測手段(8)が計測した変位量は、変換器(44
)によりアナログ電圧値に変換され、第3図の曲線(1
5)に示す様な出力波形となる。Next, the operation of this embodiment device will be explained. That is,
The amount of displacement measured by the displacement measuring means (8) is measured by the converter (44).
) is converted to an analog voltage value by the curve (1
The output waveform will be as shown in 5).
この出力波形(15)は、被加工物の基準面(12)が
細かな面の荒れと周期の大きなうねりを持っており、ま
た場合によっては、深い傷(14)を持っていることを
示している。This output waveform (15) indicates that the reference surface (12) of the workpiece has fine surface roughness, large periodic undulations, and in some cases, deep scratches (14). ing.
次に、傾き演算装置(45)は出力波形(15)を例え
ば最小2乗法を用いて直線(16)に近似し、基準軸X
軸と基準面(12)の傾き角度θ。を算出する。補正演
算装置(43)は、第6図に示す演算装置(43)と同
一の演算を行ない、第7図に示す様に、xy直交座標形
の任意の点P (xn、yn)をXY直交座標形(xn
、yn )に変換するものである。Next, the slope calculation device (45) approximates the output waveform (15) to a straight line (16) using, for example, the method of least squares, and
The inclination angle θ between the axis and the reference plane (12). Calculate. The correction calculation device (43) performs the same calculation as the calculation device (43) shown in FIG. 6, and as shown in FIG. Coordinate form (xn
, yn).
そして、NC制御装置は、この演算結果をもとに、加ニ
ブログラムに基づいて、放電加工装置のX軸ヘッド(4
)をZ軸の基準軸のガイドウェイに沿ってX。、Y軸ヘ
ッド(5)をY軸の基準軸のガイドウェイに沿ってYn
だけ移動させ、電極を点Pへ移動させるようにしている
。Then, based on this calculation result, the NC control device uses the X-axis head (4
) along the guideway of the Z-axis reference axis. , move the Y-axis head (5) along the guideway of the Y-axis reference axis Yn
, and the electrode is moved to point P.
この発明では、基準軸(本実施例ではZ軸)に沿って計
測手段を移動させ、移動中の被加工物との間隙を時間的
に連続した形で変位量として出力し、その出力波形を最
小2乗法等の回帰分析手法を用いて直線に近似している
。そして、この実施例では、変位計測手段(8)の出力
を変換器(44)によりアナログ電圧に変換するものを
示したが、変換器(44)は、コード化したデジタル値
(例えば8ビツト長)として出力してもよい。また、変
位量計測手段(8)は、レーザー測長器、超音波測長器
、渦電流式のギャップセンザー等、変位量、又は距離を
測定できるものであればよい。In this invention, the measuring means is moved along the reference axis (Z-axis in this example), and the gap between the moving workpiece and the workpiece is output as a displacement amount in a temporally continuous manner, and the output waveform is A straight line is approximated using a regression analysis method such as the least squares method. In this embodiment, the output of the displacement measuring means (8) is converted into an analog voltage by the converter (44), but the converter (44) converts the output of the displacement measuring means (8) into an analog voltage. ). The displacement measuring means (8) may be any device capable of measuring displacement or distance, such as a laser length measuring device, an ultrasonic length measuring device, or an eddy current gap sensor.
第4図は、この発明の他の実施例を示し、ヘッド部に設
けられ回転部に取りイτ1けた電極または被加工物と、
基準軸(Z軸またはY軸)の傾き角度を検出し1回転部
の回転軸C軸を回転させ、その傾きを修正するようにし
た技術を説明するものである。FIG. 4 shows another embodiment of the present invention, in which an electrode or a workpiece having a length of τ1, which is provided on the head portion and is attached to the rotating portion;
A technique will be described in which the inclination angle of a reference axis (Z-axis or Y-axis) is detected, the rotation axis C-axis of the one-rotation section is rotated, and the inclination is corrected.
第4図において、第1図の実施例と同一符号は同一部分
を示す。図中、 (511はZ軸のヘッド部に設けられ
た回転部であり、この回転部(51)に取り付けた電極
または被加工物を、Z軸ヘッド部(6)のまわりに回転
させるC軸部分である。(52)は電極または被加工物
を示す。また、被加工物を取りつけるワーク取付定盤」
−に、変位を計測する変位計測手段(8)が取りイ」け
られる。In FIG. 4, the same reference numerals as in the embodiment of FIG. 1 indicate the same parts. In the figure, (511 is a rotating part provided in the Z-axis head part, and the C-axis rotates the electrode or workpiece attached to this rotating part (51) around the Z-axis head part (6). (52) indicates the electrode or the workpiece. Also, the workpiece mounting surface plate on which the workpiece is attached.
- Displacement measuring means (8) for measuring displacement is installed.
次に、この実施例の動作を説明する。即ち、第2図と同
様、基準軸(本例ではZ軸)に沿って変位計測手段(8
)を移動させる。この移動は、実際には、X軸ヘッド(
4)の移動により電極側が移動し、相対的に変位計測手
段(8)を移動させる。変位計測手段(8)の測定用ロ
ッド部(9)は1間隙が大きい場合には伸び間隙が狭い
場合には縮む。この計測手段(8)により計測された変
位量は、保持手段を構成する変換器(44)によりアナ
ログ電圧値(16)
に変換され、第3図の曲線(15)に示す様な波形を保
持するとともに出力する。次に、傾き演算装置(45)
は、出力波形(15)を例えば最小2乗法を用いて直線
(16)に近似し、電極または被加工物と基準軸Xとの
傾き角度θ。を算出する。この演算結果θ。をもとに、
制御手段は回転部(51)であるC軸を一〇。たけ回転
させる。これにより、電極または被加工物と基準軸X軸
とが平行になるように補正される。この実施例では、一
連の角度測定操作が1回で行なわれ、高精度の角度測定
が可能となり、従来に較べて高速に「角度測定」 「C
軸回転による傾き角度の補正」を行なうことができる効
果がある。Next, the operation of this embodiment will be explained. That is, as in FIG. 2, the displacement measuring means (8
) to move. This movement actually involves the X-axis head (
The movement of step 4) causes the electrode side to move, thereby relatively moving the displacement measuring means (8). The measuring rod part (9) of the displacement measuring means (8) expands when the gap is large and contracts when the gap is narrow. The amount of displacement measured by this measuring means (8) is converted into an analog voltage value (16) by a converter (44) constituting the holding means, and a waveform as shown in the curve (15) in Fig. 3 is maintained. and output it. Next, the slope calculation device (45)
The output waveform (15) is approximated to a straight line (16) using, for example, the method of least squares, and the inclination angle θ between the electrode or the workpiece and the reference axis X is determined. Calculate. This calculation result θ. Based on
The control means rotates the C-axis, which is the rotating part (51), at 10. Rotate it a lot. Thereby, the electrode or the workpiece is corrected so that it becomes parallel to the reference axis X-axis. In this embodiment, a series of angle measurement operations are performed in one go, making it possible to measure angles with high precision.
This has the effect of being able to correct the tilt angle by rotating the shaft.
[発明の効果]
本発明装置では、基準軸(本実施例ではZ軸)に沿って
計測手段を移動させ、移動中の被加工物または電極と計
測手段との間隙を時間的に連続した形で計測し、この計
測結果に基づいて傾き角度を演算し、補正を行なえるの
で、煩雑な作業を行なうことなく高速で且つ高精度に傾
き角度を測定することができ、正確な補正をでき、精度
の高い放電加工を行なえる効果がある。[Effects of the Invention] In the device of the present invention, the measuring means is moved along the reference axis (Z-axis in this example), and the gap between the moving workpiece or electrode and the measuring means is made to be continuous in time. Since the tilt angle can be calculated and corrected based on the measurement results, the tilt angle can be measured quickly and with high precision without complicated work, and accurate correction can be made. This has the effect of allowing highly accurate electrical discharge machining.
第1図は、この発明による放電加工装置の一実施例を示
す斜視図、第2図はこの発明により基準面と基準軸との
傾きを計測する方法を説明するための図、第3図は計測
手段による計測結果及び傾きの演算法かを示すグラフ図
、第4図はこの発明による放電加工装置の他の実施例を
示す斜視図。
第5図は従来装置を示す斜視図、第6図は従来装置にお
ける第3図対応図、第7図は座標系の回転を説明するた
めの図、第8図は従来装置による欠点を説明するための
図である。
図中、(1)は被加工物、(8)は計測手段、 (12
1は基準面、 (44)は保持手段、 f45)は傾き
滴り手段、 (431は補正演算手段、(7)は電極数
イ1定盤。
(51)は回転部である。
なお9図中同一または相当部分には同一符号を付しであ
る。FIG. 1 is a perspective view showing an embodiment of an electrical discharge machining apparatus according to the present invention, FIG. 2 is a diagram for explaining a method of measuring the inclination between a reference plane and a reference axis according to the present invention, and FIG. FIG. 4 is a graph diagram showing the measurement results by the measuring means and the calculation method of the inclination, and FIG. 4 is a perspective view showing another embodiment of the electric discharge machining apparatus according to the present invention. FIG. 5 is a perspective view of the conventional device, FIG. 6 is a diagram corresponding to FIG. 3 in the conventional device, FIG. 7 is a diagram for explaining the rotation of the coordinate system, and FIG. 8 is a diagram for explaining the drawbacks of the conventional device. This is a diagram for In the figure, (1) is the workpiece, (8) is the measuring means, (12
1 is the reference plane, (44) is the holding means, f45) is the tilt dripping means, (431 is the correction calculation means, (7) is the number of electrodes 1 surface plate, and (51) is the rotating part. Note that in Figure 9 Identical or equivalent parts are given the same reference numerals.
Claims (2)
と、 上記被加工物と電極とを相対的に移動させるための基準
軸に沿って上記計測手段を移動させる移動手段と、 上記移動手段による上記計測手段の移動中に、上記計測
手段により上記被加工物または電極と上記計測手段との
距離を時間的に連続して計測した結果を結果を保持する
保持手段と、 上記保持手段が保持する計測結果に基づき上記基準軸か
らの上記被加工物または電極の傾きを演算する傾き演算
手段と、 上記傾き演算手段により演算された傾きに基づいて上記
基準軸による座標系を座標回転させる補正演算を行う補
正演算手段と、 を備えたことを特徴とする放電加工装置。(1) A measuring means for measuring the distance to the workpiece or the electrode; A moving means for moving the measuring means along a reference axis for relatively moving the workpiece and the electrode; a holding means for holding results of time-continuously measuring the distance between the workpiece or the electrode and the measuring means by the measuring means while the measuring means is being moved by the means; an inclination calculation means for calculating the inclination of the workpiece or the electrode from the reference axis based on the measurement results held; and correction for coordinate rotation of the coordinate system based on the reference axis based on the inclination calculated by the inclination calculation means. An electrical discharge machining device characterized by comprising: a correction calculation means for performing calculations;
、 上記被加工物と電極とを相対的に移動させるための基準
軸に沿って上記計測手段を移動させる移動手段と、 上記移動手段による上記計測手段の移動中に、上記計測
手段により上記被加工物または電極と上記計測手段との
距離を時間的に連続して計測した結果を保持する保持手
段と、 上記保持手段が保持する計測結果に基づき上記基準軸か
らの上記被加工物または電極の傾きを演算する傾き演算
手段と、 上記傾き演算手段により演算された傾きに基づいて上記
回転部を回転させ上記基準軸に対する上記被加工物また
は電極の傾きを修正する制御手段と、 を備えたことを特徴とする放電加工装置。(2) a head section provided with a rotating section; a workpiece or electrode attached to the rotating section; a measuring means for measuring the distance between the workpiece or the electrode; and a distance between the workpiece and the electrode. a moving means for moving the measuring means along a reference axis for relatively moving the measuring means; holding means for holding results of time-continuously measured distances; and tilt calculation means for calculating the inclination of the workpiece or electrode from the reference axis based on the measurement results held by the holding means; An electrical discharge machining apparatus comprising: control means for rotating the rotating section based on the inclination calculated by the inclination calculating means and correcting the inclination of the workpiece or the electrode with respect to the reference axis.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4787890A JPH03251321A (en) | 1990-02-28 | 1990-02-28 | Electrical discharge machine device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4787890A JPH03251321A (en) | 1990-02-28 | 1990-02-28 | Electrical discharge machine device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03251321A true JPH03251321A (en) | 1991-11-08 |
Family
ID=12787645
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4787890A Pending JPH03251321A (en) | 1990-02-28 | 1990-02-28 | Electrical discharge machine device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03251321A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5444204A (en) * | 1991-05-15 | 1995-08-22 | Agie A.G. Fur Industrielle Elektronik | Method of and apparatus for electro-erosive machining |
-
1990
- 1990-02-28 JP JP4787890A patent/JPH03251321A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5444204A (en) * | 1991-05-15 | 1995-08-22 | Agie A.G. Fur Industrielle Elektronik | Method of and apparatus for electro-erosive machining |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10209107B2 (en) | Geometric error identification method of multi-axis machine tool and multi-axis machine tool | |
CN104972361A (en) | Measurement system | |
JP2006281439A (en) | Method and device for measuring and adjusting electrode for taper machining on electrical discharge working machine | |
JPH0360956A (en) | Non-contact profile control device | |
JP3433710B2 (en) | V-groove shape measuring method and apparatus | |
JPH06285762A (en) | Method of teaching optional curve surface to robot | |
JP3378834B2 (en) | Finishing method and equipment | |
JPH05329771A (en) | Rotary grinding wheel wear correcting device | |
JP3880030B2 (en) | V-groove shape measuring method and apparatus | |
JPH0482658A (en) | Non-contact profile control unit | |
JPH03251321A (en) | Electrical discharge machine device | |
CN112775720A (en) | Method and system for measuring position of object of machine tool, and computer-readable recording medium | |
JP2651151B2 (en) | Tool diameter measurement method | |
JPH09220685A (en) | Method for measuring material to be machined in laser beam machine | |
JP3015636B2 (en) | On-machine shape measurement method and device | |
JP7303593B2 (en) | POSITIONAL RELATIONSHIP MEASUREMENT METHOD AND PROCESSING DEVICE | |
JPS58206316A (en) | Discharge machining device | |
JPS60127987A (en) | Method and device for controlling profiling | |
KR101823052B1 (en) | Method of measuring workpiece for correction of cnc machine job | |
JPH1195821A (en) | Contact detection method and device therefor | |
JP5740201B2 (en) | Geometric error identification device | |
JP2599924B2 (en) | Measurement method of electrode guide position in wire electric discharge machine | |
JP2552743B2 (en) | Robot controller | |
JP2008524576A (en) | Sequential multi-probe method for straightness measurement of straight rulers | |
JPH0146275B2 (en) |