[go: up one dir, main page]

JPH0325096A - Cooling device utilizing airframe outer surface cooler for aviation electronic equipment - Google Patents

Cooling device utilizing airframe outer surface cooler for aviation electronic equipment

Info

Publication number
JPH0325096A
JPH0325096A JP16116089A JP16116089A JPH0325096A JP H0325096 A JPH0325096 A JP H0325096A JP 16116089 A JP16116089 A JP 16116089A JP 16116089 A JP16116089 A JP 16116089A JP H0325096 A JPH0325096 A JP H0325096A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
cooling
reservoir
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16116089A
Other languages
Japanese (ja)
Other versions
JP2771849B2 (en
Inventor
Kiyoo Amako
尼子 清夫
Hajime Takahashi
高橋 甫
Takahiro Hanaki
花木 貴啓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
S T S KK
Original Assignee
S T S KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S T S KK filed Critical S T S KK
Priority to JP1161160A priority Critical patent/JP2771849B2/en
Publication of JPH0325096A publication Critical patent/JPH0325096A/en
Application granted granted Critical
Publication of JP2771849B2 publication Critical patent/JP2771849B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PURPOSE:To improve cooling capacity by installing a heat exchanger in the airframe inner position of an aircraft, in such a way as to be in contact with the outer surface wall member of the airframe, and circulating refrigerant stored/loaded in the airframe through the heat exchanger. CONSTITUTION:Refrigerant in a reservoir 1 is circulated by a pump 2 through a heat exchanger 3 installed at the airframe outer surface inside the airframe of an aircraft. During a flight, air, a heat exchanging medium, acts as force refrigerant, thus improving cooling capacity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は航空機を代表例とする飛翔体の機体の外表面(
胴体、翼、機首、ボッド、支柱等構造体の外表面)部材
の内側に外表面に接触して設置した熱交換器(クーラー
)を利用する航空電子機器の冷却装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the outer surface (
This invention relates to a cooling system for avionics equipment that uses a heat exchanger (cooler) installed inside a member (outer surface) of a structure such as a fuselage, wing, nose, bod, or strut in contact with the outer surface.

本発明は、特に既存の航空機において新たに熱負荷が生
じた場合に、その新たな熱負荷に対応するのに有効であ
る。
The present invention is particularly effective in dealing with a new heat load when it occurs in an existing aircraft.

〔従来の技術〕[Conventional technology]

従来、航空機の冷却装置として次のものが知られている
Conventionally, the following types of cooling systems for aircraft are known.

従来の廁水式冷却装置では気体内タンクに予め低温の冷
媒を昨蔵し、貯蔵された冷媒をポンプで電子機器の発熱
部へ送り、冷媒循環させているものが一般的である。
Conventional freshwater cooling systems generally store low-temperature refrigerant in a gaseous tank in advance, and pump the stored refrigerant to the heat generating part of the electronic device to circulate the refrigerant.

従来の冷凍機付冷却装置では冷凍サイクル、すなわち冷
媒を圧縮機で加圧することにより高圧蒸気とし、次に、
高圧液体、低圧液体、低圧蒸気と変化させて循環させる
ことにより電子機器の発熱を蒸発器で奪うサイクルが一
般的である。
Conventional cooling equipment with a refrigerator uses a refrigeration cycle, in which the refrigerant is pressurized by a compressor to produce high-pressure steam, and then
A common cycle is to circulate high-pressure liquid, low-pressure liquid, and low-pressure vapor to remove heat from electronic devices using an evaporator.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

溜水式冷却装置では、冷媒一循環系は、他の系から低温
を得ることができない。このため、電子機器の発熱によ
り気体内リザーバ(タンク)内の冷媒温度は、冷却装置
の使用とともに単調に上昇し、やがて電子機器の使用限
界温度に到達する。
In a stored water cooling system, one refrigerant circulation system cannot obtain low temperature from other systems. Therefore, the temperature of the refrigerant in the gaseous reservoir (tank) increases monotonically as the cooling device is used due to the heat generated by the electronic device, and eventually reaches the operating limit temperature of the electronic device.

すなわち、この系では、リザーバの冷媒容量により電子
機器の冷却能力が決まり、リザーバの冷媒容量分しか冷
却時間が保証されない。
That is, in this system, the cooling capacity of the electronic device is determined by the refrigerant capacity of the reservoir, and the cooling time is guaranteed only by the refrigerant capacity of the reservoir.

また、冷凍機付冷却装置では、溜水式冷却装置の欠点を
克服し、冷凍サイクルを電子機器の発熱量を考慮して設
計すれば冷却継続時間は無限となる。しかしながら冷凍
機を搭載することによりa)冷凍機使用による消費電力 b)冷凍機使用による冷却装置の重量、スペース が問題となる。特に、上記aSbの問題は新たに発生し
た熱負荷に対応する場合には大きな問題となる。
In addition, in a cooling device with a refrigerator, if the drawbacks of the reservoir type cooling device are overcome and the refrigeration cycle is designed in consideration of the amount of heat generated by the electronic equipment, the cooling duration becomes infinite. However, installing a refrigerator poses problems such as a) power consumption due to the use of the refrigerator and b) weight and space of the cooling device due to the use of the refrigerator. In particular, the aSb problem described above becomes a big problem when dealing with a newly generated heat load.

また、電子機器の冷却を含む気体内環境制御システムに
おいて低温源を空気とする場合には、従来は航空機の機
体に空気取入口を設けてラムエアーを取り込み熱交換さ
せることが一般的である。
Furthermore, when air is used as a low temperature source in a gaseous environment control system that includes cooling of electronic equipment, it has conventionally been common to provide an air intake port in the fuselage of an aircraft to take in ram air for heat exchange.

しかし、熱負荷が新たに発生した場合に、同様にラムエ
アーにより冷却しようとすると、この新たなラムエアー
用に新たに空気取入口を機体に設ける必要がある。この
ような空気取入口を設けることにより、航空機の空気力
学的飛行性能が損われることがある。
However, if a new heat load is generated and an attempt is made to similarly use ram air for cooling, it is necessary to provide a new air intake port in the fuselage for this new ram air. Providing such air intakes may impair the aerodynamic flight performance of the aircraft.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は航空電子機器の冷却装置において、航空電子機
器の冷却装置において、航空機の気体内側位置に機体の
外表面壁部材に接触させて熱交換器を設置し気体内に貯
蔵・搭載された冷媒を該熱交換器を通じて循環させて冷
却能力を向上させたことを特徴とする航空電子機器の機
体外表面クーラーを利用した冷却装置により上記問題を
解決する。
The present invention relates to a cooling device for avionics equipment, in which a heat exchanger is installed in a position inside the gas of an aircraft in contact with an outer surface wall member of the aircraft body, and a refrigerant stored and carried in the gas is transferred to the cooling device for avionics. The above-mentioned problem is solved by a cooling device using an airframe outer surface cooler for avionics equipment, which is characterized by improved cooling capacity by circulating heat through the heat exchanger.

〔作 用〕[For production]

本発明は、気体内の機体外表面に設置した熱交換器(ク
ーラー)を通じて冷媒を循環させ、飛行中は熱交換媒体
である空気を強制冷却に利用し冷却手段とするものであ
る。
The present invention circulates a refrigerant through a heat exchanger (cooler) installed on the outer surface of the aircraft in a gaseous state, and uses air, which is a heat exchange medium, for forced cooling during flight.

これにより、本発明を溜水式冷却装置に実施した場合に
は、飛行中は熱交換媒体である空気が強制冷却媒体とな
って作用し、冷却能力の向上がはかれる。
As a result, when the present invention is applied to a reservoir type cooling device, air, which is a heat exchange medium, acts as a forced cooling medium during flight, and the cooling capacity is improved.

また、冷凍機付冷却装置では、冷凍機を使用しない状態
が実現し、大幅な消費電力軽減および冷却システム全体
の重量減となる。
In addition, in a cooling device with a refrigerator, a state in which the refrigerator is not used is realized, resulting in a significant reduction in power consumption and weight of the entire cooling system.

しかも、本発明を既存の航空機に適用した場合にも、新
たに空気取入口を設ける必要がなく、空気力学的飛行性
能が何ら損われることがない。
Moreover, even when the present invention is applied to an existing aircraft, there is no need to newly provide an air intake port, and aerodynamic flight performance is not impaired in any way.

〔実施例〕〔Example〕

(a)溜水式冷却装置の実施例 (1)冷却装置の基本回路、制御図 第1図および第2図に本発明に係る溜水式冷却装置の基
本回路図(各図の(a)図)と制御図(各図の(b)図
)の概略を示す。
(a) Embodiments of the reservoir water type cooling device (1) Basic circuit and control diagram of the cooling device Figures 1 and 2 are basic circuit diagrams of the reservoir water type cooling device according to the present invention ((a) in each figure). Figure) and control diagrams (Figure (b) of each figure) are shown schematically.

溜水式冷却装置の場合、タンク(リザーバ)のタイプに
よって2タイプに分類される。第1図はオーブンタイプ
リザーバの実施例であり、第2図はアキュムレータタイ
プリザーバの実施例である。
In the case of stored water cooling devices, there are two types depending on the type of tank (reservoir). FIG. 1 shows an embodiment of an oven type reservoir, and FIG. 2 shows an embodiment of an accumulator type reservoir.

第1図および第2図において、リザーバ(R)1には低
温の冷媒が貯蔵されている。電源(EPS)により駆動
されるボンブ2により、冷媒がリザーバ1から吸出され
、電子機器の熱負荷(EHL)を冷却する。
In FIGS. 1 and 2, a low-temperature refrigerant is stored in a reservoir (R) 1. A bomb 2 driven by a power source (EPS) sucks refrigerant from a reservoir 1 to cool the heat load (EHL) of the electronic device.

リザーバ1に接続された圧力調整弁(R V)はリザー
バ1内の圧力を調整する。流量調整弁(FV)はボンブ
2から電子機器の熱負荷(EHL)へ流れる冷媒の流量
を調整する。
A pressure regulating valve (R V) connected to the reservoir 1 regulates the pressure within the reservoir 1. The flow regulating valve (FV) regulates the flow rate of the refrigerant flowing from the bomb 2 to the heat load (EHL) of the electronic equipment.

なお、第1図(a)および第2図(a)に示すように、
流量センサー(LS)、圧力センサー(PS)、温度セ
ンサー(TS)および流量センサー(FS)が設けられ
、各部の冷媒の特性を検出するようになっている。
In addition, as shown in FIG. 1(a) and FIG. 2(a),
A flow rate sensor (LS), a pressure sensor (PS), a temperature sensor (TS), and a flow rate sensor (FS) are provided to detect the characteristics of the refrigerant in each part.

電子機器の熱負荷(E H L)とリザーバ(R)1の
間(第1図)または熱負荷(L)とリザーバ(R)1の
出口の間に、三方向切換電磁弁(S V)4が設けられ
ている。三方向切換電磁弁4の切換えにより、電子機器
の熱負荷(E H L)を出た冷媒がそのまま三方向切
換電磁弁4へ到達し、または、本発明に係る機体の外表
面壁部材に接触配置した熱交換器3を経て三方向切換電
磁弁4へ到達するようになっている。
A three-way switching solenoid valve (S V) is installed between the heat load (E H L) of the electronic equipment and the reservoir (R) 1 (Fig. 1) or between the heat load (L) and the outlet of the reservoir (R) 1. 4 is provided. By switching the three-way solenoid valve 4, the refrigerant that has left the heat load (E H L) of the electronic equipment reaches the three-way solenoid valve 4 as it is, or is placed in contact with the outer wall member of the fuselage according to the present invention. The heat exchanger 3 then reaches the three-way switching solenoid valve 4.

(2)作動 リザーバ1の冷媒をボンブ2で吸い上げ、電子機器の冷
却部(EHL)へ送る。電子機器の冷却部(EHL)を
通過した冷媒は、通常モードでは機体の外表面壁部材に
接触設置した熱交換器3とは別ルートを通過してリザー
バ1に戻る。
(2) The refrigerant in the working reservoir 1 is sucked up by the bomb 2 and sent to the cooling section (EHL) of the electronic equipment. In the normal mode, the refrigerant that has passed through the cooling section (EHL) of the electronic device returns to the reservoir 1 through a route different from that of the heat exchanger 3 installed in contact with the outer surface wall member of the aircraft body.

しかし、次の関係があるときは、電子制御装置(EC)
からの信号を三方向切換電磁弁(SV)が受けて熱交換
器3を冷媒が通過する回路に切換える。
However, when the following relationships occur, the electronic control unit (EC)
A three-way switching solenoid valve (SV) receives a signal from the heat exchanger 3 and switches the heat exchanger 3 to a circuit through which the refrigerant passes.

すなわち、冷媒が熱交換器3を通過するよう制御するた
めの条件は下記の式1〜式3を同時に満足することであ
る。
That is, the conditions for controlling the refrigerant to pass through the heat exchanger 3 are to satisfy the following equations 1 to 3 at the same time.

TB,In(またはT 2,out)> T.    
 (式1)ここで、TI!.Inは電子機器の熱負n:
j部入口温度(すなわち冷却装置出口温度)であり、温
度センサーTSIで検知する。
TB,In (or T2,out)>T.
(Formula 1) where TI! .. In is the heat negative of electronic equipment n:
This is the inlet temperature of part J (ie, the cooling device outlet temperature), and is detected by the temperature sensor TSI.

また、T.,OLItは電子機器の熱負荷部出口温度(
すなわち冷却装置人口温度)であり、温度センサーTS
Iを、熱負荷部出口箇所に移動させて取付け検知する。
Also, T. , OLIt is the outlet temperature of the heat load part of the electronic equipment (
In other words, the temperature sensor TS
I is moved to the exit location of the heat load section and installed for detection.

従って、この場合には、T p, I nDI定川セン
サーは不要である。
Therefore, in this case, the Tp,InDI Sadakawa sensor is not required.

更に、Twは機体外表面温度(温度センサーTS2で検
知) TE、in>TLow           (式2)
ここで、”rt.owは電子機器の使用最低限温度で、
コントローラ内に設定する。
Furthermore, Tw is the aircraft outer surface temperature (detected by temperature sensor TS2) TE, in>TLow (Formula 2)
Here, "rt.ow" is the minimum operating temperature of electronic equipment,
Set in the controller.

T=,In<T.               (式
3)ここで、T1は電子機器の使用最高限温度で、コン
トローラ内に設定する。
T=, In<T. (Equation 3) Here, T1 is the maximum operating temperature of the electronic device, and is set in the controller.

(b)冷凍機付冷却装置の実施例 (1)冷却装置の応用回路、制御図 第3図および第4図に第1図および第2図に示した基本
回路から更に応用発展した回路を示す。
(b) Embodiment of cooling device with refrigerator (1) Application circuit and control diagram of cooling device Figures 3 and 4 show circuits that have been further applied and developed from the basic circuit shown in Figures 1 and 2. .

すなわち、第3図(a)はオーブンタイプリザーバを有
する冷却システム冷媒循環回路図、第3図(b)はその
コントローラによる制御回路図を示す。また、第4図(
a)はアキュームレータリザーバを有する冷却システム
冷媒循環回路図、第4図(b)はそのコントローラによ
る制御回路図を示す。
That is, FIG. 3(a) shows a refrigerant circulation circuit diagram of a cooling system having an oven type reservoir, and FIG. 3(b) shows a control circuit diagram of the controller. Also, Figure 4 (
4(a) shows a refrigerant circulation circuit diagram of a cooling system having an accumulator reservoir, and FIG. 4(b) shows a control circuit diagram of the controller.

第3図および第4図に示すペーパーサイクル、は通常の
冷凍機能力を有するサイクルであり、気体状の冷媒を圧
縮する圧縮機11、冷媒蒸気を冷熱して凝縮液化する凝
縮器12、液化した冷媒を膨脹させる膨脹弁13、冷媒
を蒸発させて周囲の熱を奪う蒸発器14、および受液器
から構成されている。
The paper cycle shown in FIGS. 3 and 4 is a cycle having normal refrigeration functions, including a compressor 11 that compresses gaseous refrigerant, a condenser 12 that cools and heats refrigerant vapor to condense and liquefy it, and a It is composed of an expansion valve 13 that expands the refrigerant, an evaporator 14 that evaporates the refrigerant to remove surrounding heat, and a liquid receiver.

上述の公知のベーバーサイクル回路に加えて、更に、第
3図および第4図に示すように、外表向壁部材に接触配
置された熱交換器3およびこの熱交換器3へのバイパス
回路(三方向切換電磁弁(SV)4を含む)が設けられ
ている。
In addition to the above-mentioned known Baber cycle circuit, as shown in Figs. A three-way solenoid valve (SV) 4) is provided.

(2)作動 熱交換′a3を除いた基本構或の作動は従来装置と同じ
である。しかし、 T2,In>Tw            (式4)(
ここで、TH,inはセンサーTSlで険知される温度
であり、TwはセンサーTS2で検知される温度) のときには、三方向切換電磁弁(SVl4が切換わり、
外表面部材に接触配置した熱交換器3の通過回路へ冷媒
の流路が切換る。
(2) Operation The basic structure and operation except for the heat exchanger 'a3' are the same as the conventional device. However, T2,In>Tw (Formula 4) (
Here, TH,in is the temperature detected by the sensor TSl, and Tw is the temperature detected by the sensor TS2), the three-way switching solenoid valve (SVl4 is switched,
The flow path of the refrigerant is switched to the passage circuit of the heat exchanger 3 disposed in contact with the outer surface member.

ただし、外表面部材に接触配置した熱交換器3の容量が
電子機器EHLの熱負荷を相殺できない条件では、電子
機器の使用最高限温度をTUPとして、 Tg.In−Tup            (式5)
となると、蒸発器14を通過する回路へ三方向切換電磁
弁(SV)4の換えを行ない、ペーパーサイクル使用モ
ードとする。
However, under conditions where the capacity of the heat exchanger 3 placed in contact with the outer surface member cannot offset the heat load of the electronic device EHL, the maximum operating temperature of the electronic device is TUP, and Tg. In-Tup (Formula 5)
Then, the three-way switching solenoid valve (SV) 4 is switched to the circuit passing through the evaporator 14, and the paper cycle mode is set.

次に、機体外表面部材接触熱交換器3の設置場所につい
て述べる。
Next, the installation location of the body outer surface member contact heat exchanger 3 will be described.

機体外表面熱交換器の設置場所は、航空機の内側の機体
外板上の任意の位置で良い。つまり胴体、翼、機i、ボ
ッド、支柱等構造体の外表面部材の、気体内側が対象と
なる。
The fuselage outer surface heat exchanger may be installed at any position on the fuselage skin inside the aircraft. In other words, the target is the gas inside of the outer surface members of structures such as the fuselage, wings, aircraft, bod, and struts.

ただし、常識的に温度境界層が厚くなるよどみ点から後
方に遠距離離れた位置は熱交換効率が悪いことが予想さ
れるので避けることが好ましい。
However, as common sense suggests, it is preferable to avoid positions that are a long distance backward from the stagnation point where the temperature boundary layer becomes thick, as it is expected that the heat exchange efficiency will be poor.

第5図は外表面部材へ組込んだ熱交換器3の一例を簡単
に示す。
FIG. 5 briefly shows an example of the heat exchanger 3 incorporated into the outer surface member.

外表面部材31の内側に箱形状をしたヘッダ−32が嵌
着されており、ヘッダ−32には人口管路33および出
口管路34が設けられている。ヘッダ−32の内部には
第6図に示すように蓋板34、仕切り板35によって外
表面部月31と平行に且つ隙間を開けて端板36が支持
されており、上記隙間には第7図に示すランスドオフセ
ットフィン37が設けられている。このようなランスド
オフセットフィン37は熱交換器内で流れがブロックさ
れることがなく、外表面の14II率にも追随し易いの
で熱交換串がよいという利点がある。
A box-shaped header 32 is fitted inside the outer surface member 31, and the header 32 is provided with an artificial conduit 33 and an outlet conduit 34. Inside the header 32, as shown in FIG. 6, an end plate 36 is supported by a cover plate 34 and a partition plate 35, parallel to the outer surface portion 31 and with a gap therebetween. A lanced offset fin 37 shown in the figure is provided. Such a lanced offset fin 37 has the advantage that the flow is not blocked in the heat exchanger and it easily follows the 14II rate of the outer surface, so that it is suitable as a heat exchange skewer.

本実施例の熱交換器3では、入り口管路33から出口管
路34二至るまでに流れが1回反転する2バスとなって
おり、また、一層のフィンを示している。ポンプ性能、
圧力降下、熱交換率等を考慮して、3バス以上とし、ま
た、フィンを多層とした熱交換器を採用することもでき
る。
In the heat exchanger 3 of this embodiment, there are two buses in which the flow is reversed once from the inlet pipe line 33 to the outlet pipe line 342, and one layer of fins is shown. pump performance,
Taking pressure drop, heat exchange rate, etc. into consideration, it is also possible to use a heat exchanger with three or more buses and a multilayered fin structure.

上述した熱交換器3の取付け方法の一例を第8図および
第9図に示す。航空機の胴体のような外表面部材41に
熱交換器3の外表面部材31に合わせて穴41aをあけ
(第8図)、この穴41aに熱交換器3を装着して外表
面部材31、41をシーム溶接により接合する。なお熱
交換器3の外表而部月31の厚みは航空機の外表而部材
41の厚さと同程度とする。
An example of a method for attaching the heat exchanger 3 described above is shown in FIGS. 8 and 9. A hole 41a is made in an outer surface member 41 such as the fuselage of an aircraft to match the outer surface member 31 of the heat exchanger 3 (FIG. 8), and the heat exchanger 3 is installed in this hole 41a. 41 are joined by seam welding. The thickness of the outer surface member 31 of the heat exchanger 3 is approximately the same as the thickness of the outer surface member 41 of the aircraft.

なお、上述のシーム溶接に代えて、機体メーカーが一般
的にやるように、はめ込み枠周囲にダブラーをあけて、
外からリベット加工してもよい。
In addition, instead of the seam welding described above, a doubler is drilled around the fitting frame, as is commonly done by aircraft manufacturers.
Riveting may be done from the outside.

〔発明の効果〕〔Effect of the invention〕

本発明により以下の効果があげられる。 The present invention provides the following effects.

(1)本発明を溜水式冷却装置および踪凍機付冷却装置
に適用した場合には、飛行条件(高度、マッ八数)によ
っては無限の冷却継続{時間が可能であり、飛行条件と
冷却要求条件に応じてリザーバ、ポンプ、外表面熱交換
器のサイズを最適とできる。
(1) When the present invention is applied to a storage water type cooling system and a cooling system with a cooling machine, depending on the flight conditions (altitude, Mach number), cooling can be continued for an infinite amount of time. Reservoirs, pumps, and external heat exchangers can be sized to suit cooling requirements.

より具体的には、第10図および第11図にそれぞれ外
表面温度が20℃一定および30℃一定としたときの冷
却継続時間に対するリザーバ内の冷媒温度の目算例を示
す。引算の条件は、リザーバ容量61j 使用冷媒 ナイブラインZ−1  80%熱負荷  3
.7KW 冷媒流量 71/gin Tup”50℃、T,,ows*5℃、クーラー外表面
積 5.07rt2 また第12図には高温日の航空機のマッ八数に対する外
表面温度を試算した例を示す。
More specifically, FIGS. 10 and 11 show examples of calculations of the refrigerant temperature in the reservoir with respect to the cooling duration when the outer surface temperature is constant at 20° C. and 30° C., respectively. The conditions for subtraction are: Reservoir capacity: 61j Refrigerant used: Nybline Z-1 80% heat load: 3
.. 7KW Refrigerant flow rate 71/gin Tup"50°C, T,,ows*5°C, Cooler outer surface area 5.07rt2 In addition, Fig. 12 shows an example of trial calculation of the outer surface temperature for an aircraft's Mach 8 number on a high temperature day.

通常電子機器の冷却温度はO〜50℃程度であるから、
第10図および第11図から60分以上冷却可能であり
、また第11図からマッハ数=1.5程度まで利川可能
であることがわかる。
Since the cooling temperature of electronic devices is usually about 0 to 50 degrees Celsius,
It can be seen from FIGS. 10 and 11 that cooling is possible for 60 minutes or more, and from FIG. 11 that it is possible to cool down to a Mach number of about 1.5.

(2)更に、本発明に係る溜水式冷却装置および冷凍機
付冷却装置では、冷却に利川している低温源は機体外強
制冷却空気であり、飛行中においてはエネルギー源は無
限である。
(2) Furthermore, in the stored water cooling system and the refrigerator-equipped cooling system according to the present invention, the low-temperature source used for cooling is forced cooling air outside the aircraft, and the energy source is unlimited during flight.

特に、本発明の冷凍機付冷却装置においては、飛行中冷
凍機を使用しない状態が実現できる。このため、消費電
力が大幅に軽減できる。従って、全体冷却システムの瓜
量の低減が図れる。
In particular, in the cooling device with a refrigerator of the present invention, it is possible to realize a state in which the refrigerator is not used during the flight. Therefore, power consumption can be significantly reduced. Therefore, the amount of melon in the entire cooling system can be reduced.

(3)従来の潴水式冷却装置では、飛行直前に地上支援
設備から低温冷媒をリザーバハ、送る方法が取られてい
るが、本発明によれば飛行中にリザーバ内の冷媒を低温
にすることができる。従って、従来の地上支援設備を不
要とすることもできる。
(3) In conventional water cooling systems, a method is adopted in which low-temperature refrigerant is sent from ground support equipment to a reservoir immediately before flight, but according to the present invention, the refrigerant in the reservoir can be brought to a low temperature during flight. Can be done. Therefore, conventional ground support equipment can be made unnecessary.

また、本発明の溜水式冷却装置および冷凍機イ;1冷却
装置では、、飛行開始前に予めリザーバに低温冷媒を送
りffi’蔵する手間を省くことしできる。
In addition, in the reservoir water type cooling device and the refrigerator (1) cooling device of the present invention, it is possible to save the trouble of sending low-temperature refrigerant to the reservoir in advance and storing it ffi' before the start of the flight.

(4)更に、本発明の溜水式冷却装置および冷凍機付冷
却装置では、空気取入口を設けていない。
(4) Furthermore, the reservoir water type cooling device and the refrigerator-equipped cooling device of the present invention are not provided with an air intake port.

従って、空気取入口を設け、ラムエアーを取り込み、低
温源を確保する一般的な気体内環境制御システムと川違
し、本発明では空気力学的飛行性能を何ら損われない。
Therefore, unlike a general gaseous environment control system that provides an air intake, takes in ram air, and secures a low temperature source, the present invention does not impair aerodynamic flight performance in any way.

【図面の簡単な説明】 第1図(a)および(b)は本発明に係るオーブンタイ
プリザーバ付の溜水式冷却装置の実施例の址本回路図お
よび制御図、第2図(a)および(b)はアキュムレー
夕タイプリザーバ{=iの本発明に係る溜水式冷却装置
の実施例の基本回路図および制御図、第3図(a)はオ
ーブンタイプリザーバを有する冷却システム冷媒循環回
路図、第3図(b)はそのコントローラによる制御回路
図、第4図(a)はアキュームレータリザーバをHする
冷却システム冷媒循環回路図の要部、第4図(b)はそ
のコントローラによる制御回路図、第5図は本発明に係
る熱交換器の斜呪図、第6図は第5図のヘッダを取除い
た斜現図、第7図から第9図は本発明の熱交換器の取付
け状態を示す斜呪図、第10図および第11図はそれぞ
れ外表面温度が20℃一定および30℃一定としたとき
の冷却継続時間に対するリザーバ内の冷媒温度の別算桔
果を示す線図、第12図は高温『1の航空機のマッハ数
に対する外表面温度を試算した桔果を示す線図である。 1・・・リザーバ、   2・・・ボンブ、3・・・熱
交換器、  4・・・三方向12J換電磁弁。 第 6 図 第 7 図 第 10図 第 11 図 沖却鮒f時間 (介) 第 9 図 第 12 図 マ.,ハ敦
[Brief Description of the Drawings] Figures 1 (a) and (b) are a circuit diagram and control diagram of an embodiment of a reservoir type cooling device with an oven type reservoir according to the present invention, and Figure 2 (a) 3(b) is a basic circuit diagram and control diagram of an embodiment of the accumulated water type cooling device according to the present invention with an accumulator type reservoir {=i, and FIG. 3(a) is a refrigerant circulation circuit of a cooling system having an oven type reservoir. 3(b) is a control circuit diagram of the controller, FIG. 4(a) is a main part of the refrigerant circulation circuit diagram of the cooling system for heating the accumulator reservoir, and FIG. 4(b) is the control circuit diagram of the controller. 5 is an oblique view of the heat exchanger according to the present invention, FIG. 6 is an oblique view of the heat exchanger of the present invention with the header removed, and FIGS. 7 to 9 are oblique views of the heat exchanger of the present invention. Figures 10 and 11 are oblique diagrams showing the installation state, and diagrams showing the results of different calculations of the refrigerant temperature in the reservoir with respect to the cooling duration when the outer surface temperature is constant at 20°C and 30°C, respectively. , FIG. 12 is a diagram showing the results of a trial calculation of the outer surface temperature with respect to the Mach number of an aircraft with a high temperature of 1. 1... Reservoir, 2... Bomb, 3... Heat exchanger, 4... Three-way 12J exchange solenoid valve. Fig. 6 Fig. 7 Fig. 10 Fig. 11 Fig. Offshore carp f time (intermediate) Fig. 9 Fig. 12 Fig. , Ha Atsushi

Claims (1)

【特許請求の範囲】[Claims] 1.航空電子機器の冷却装置において、航空機の機体内
側位置に機体の外表面壁部材に接触させて熱交換器を設
置し気体内に貯蔵・搭載された冷媒を該熱交換器を通じ
て循環させて冷却能力を向上させたことを特徴とする航
空電子機器の機体外表面クーラーを利用した冷却装置。
1. In a cooling system for avionics equipment, a heat exchanger is installed inside the aircraft fuselage in contact with the outer surface wall member of the aircraft, and a refrigerant stored and carried in a gas is circulated through the heat exchanger to increase the cooling capacity. A cooling system that utilizes an airframe external surface cooler for avionics equipment, which is characterized by improved performance.
JP1161160A 1989-06-23 1989-06-23 Cooling system using external surface cooler for avionics Expired - Fee Related JP2771849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1161160A JP2771849B2 (en) 1989-06-23 1989-06-23 Cooling system using external surface cooler for avionics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1161160A JP2771849B2 (en) 1989-06-23 1989-06-23 Cooling system using external surface cooler for avionics

Publications (2)

Publication Number Publication Date
JPH0325096A true JPH0325096A (en) 1991-02-01
JP2771849B2 JP2771849B2 (en) 1998-07-02

Family

ID=15729738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1161160A Expired - Fee Related JP2771849B2 (en) 1989-06-23 1989-06-23 Cooling system using external surface cooler for avionics

Country Status (1)

Country Link
JP (1) JP2771849B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5423498A (en) * 1993-04-27 1995-06-13 E-Systems, Inc. Modular liquid skin heat exchanger
FR2894563A1 (en) 2005-12-14 2007-06-15 Liebherr Aerospace Toulouse Sa CIRCUIT AND METHOD FOR REALIZING THERMAL EXCHANGES THROUGH A COOLANT FLUID IN AN AIRCRAFT ENVIRONMENTAL CONTROL SYSTEM.
WO2008140972A1 (en) * 2007-05-11 2008-11-20 The Boeing Company Cooling system for aerospace vehicle components
JP2011522408A (en) * 2008-05-30 2011-07-28 エアバス オペラツィオンス ゲゼルシャフト ミット ベシュレンクテル ハフツング Cooling of electronic equipment in an aircraft, optionally with single-layer or double-layer cooling
JP2011529418A (en) * 2008-07-31 2011-12-08 エアバス オペラツィオンス ゲゼルシャフト ミット ベシュレンクテル ハフツング Heat transfer equipment for aircraft hull
FR2995589A1 (en) * 2012-09-19 2014-03-21 Liebherr Aerospace Toulouse Sas BODY PANEL FOR A TRANSPORT VEHICLE COMPRISING A THERMAL EXCHANGE DEVICE AND A TRANSPORT VEHICLE COMPRISING SUCH A BODY PANEL
JP2014234992A (en) * 2013-05-30 2014-12-15 ブル、ソシエテ、パル、アクスィオン、サンプリフィエBull Sas Cooling system, cooling computer system, and computer facility
WO2015183360A3 (en) * 2014-03-04 2016-01-14 Parker-Hannifin Corporation Laminar flow control with integrated heat exchanger for an aircraft
EP3130543A4 (en) * 2014-08-13 2017-12-20 IHI Corporation Cooling apparatus for cooling electronic device in aircraft

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56117755A (en) * 1980-02-22 1981-09-16 Iwatani & Co Manufacturing method of granular confectionery containing forced bubble and container for solidification and crushing it
JPS6382669A (en) * 1986-09-26 1988-04-13 傅法 文夫 Sterilizing method and apparatus utilizing ozone gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56117755A (en) * 1980-02-22 1981-09-16 Iwatani & Co Manufacturing method of granular confectionery containing forced bubble and container for solidification and crushing it
JPS6382669A (en) * 1986-09-26 1988-04-13 傅法 文夫 Sterilizing method and apparatus utilizing ozone gas

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5667168A (en) * 1993-04-27 1997-09-16 E-Systems, Inc. Modular liquid skin heat exchanger
US5423498A (en) * 1993-04-27 1995-06-13 E-Systems, Inc. Modular liquid skin heat exchanger
FR2894563A1 (en) 2005-12-14 2007-06-15 Liebherr Aerospace Toulouse Sa CIRCUIT AND METHOD FOR REALIZING THERMAL EXCHANGES THROUGH A COOLANT FLUID IN AN AIRCRAFT ENVIRONMENTAL CONTROL SYSTEM.
WO2008140972A1 (en) * 2007-05-11 2008-11-20 The Boeing Company Cooling system for aerospace vehicle components
US11148827B2 (en) 2007-05-11 2021-10-19 The Boeing Company Cooling system for aerospace vehicle components
JP2011522408A (en) * 2008-05-30 2011-07-28 エアバス オペラツィオンス ゲゼルシャフト ミット ベシュレンクテル ハフツング Cooling of electronic equipment in an aircraft, optionally with single-layer or double-layer cooling
JP2011529418A (en) * 2008-07-31 2011-12-08 エアバス オペラツィオンス ゲゼルシャフト ミット ベシュレンクテル ハフツング Heat transfer equipment for aircraft hull
US9309000B2 (en) 2008-07-31 2016-04-12 Airbus Operations Gmbh Heat exchanger for the outer skin of an aircraft
US9434465B2 (en) 2012-09-19 2016-09-06 Liebherr-Aerospace Toulouse Sas Body panel for a transport vehicle including a heat-exchange device and transport vehicle including such a body panel
FR2995589A1 (en) * 2012-09-19 2014-03-21 Liebherr Aerospace Toulouse Sas BODY PANEL FOR A TRANSPORT VEHICLE COMPRISING A THERMAL EXCHANGE DEVICE AND A TRANSPORT VEHICLE COMPRISING SUCH A BODY PANEL
WO2014044981A1 (en) * 2012-09-19 2014-03-27 Liebherr-Aerospace Toulouse Sas Body panel for a transport vehicle including a heat-exchange device and transport vehicle including such a body panel
JP2014234992A (en) * 2013-05-30 2014-12-15 ブル、ソシエテ、パル、アクスィオン、サンプリフィエBull Sas Cooling system, cooling computer system, and computer facility
US10618636B2 (en) 2014-03-04 2020-04-14 Parker-Hannifin Corporation Heat exchanger for laminar-flow aircraft
WO2015183360A3 (en) * 2014-03-04 2016-01-14 Parker-Hannifin Corporation Laminar flow control with integrated heat exchanger for an aircraft
EP3130543A4 (en) * 2014-08-13 2017-12-20 IHI Corporation Cooling apparatus for cooling electronic device in aircraft
US9999164B2 (en) 2014-08-13 2018-06-12 Ihi Corporation Cooling apparatus for cooling electronic device in aircraft

Also Published As

Publication number Publication date
JP2771849B2 (en) 1998-07-02

Similar Documents

Publication Publication Date Title
EP2831520B1 (en) System and method for cooling power electronics using heat sinks
US7007501B2 (en) System, apparatus, and method for passive and active refrigeration of at least one enclosure
US10098260B2 (en) Thermal management systems for electronics
KR102610903B1 (en) Cooling and heating system for vehicle
US20040065099A1 (en) Enhanced cooling system
JP2009525457A (en) Coolant flow control device
US9745069B2 (en) Air-liquid heat exchanger assembly having a bypass valve
JPH0325096A (en) Cooling device utilizing airframe outer surface cooler for aviation electronic equipment
CN113864052A (en) Engine waste heat recovery system, control method, engine assembly and aircraft
CN106571497A (en) Battery heat management system for electric vehicle
CN103373469B (en) Method and the aircraft of aircraft thermal control system, operation thermal control system
JPS58200945A (en) Heat source device for water heat-source heat pump type air-conditioning unit
KR101962878B1 (en) Chilling system using waste heat recovery by chiller discharge gas
KR102644746B1 (en) Cooling and heating system for vehicle
CN111692772A (en) Heat exchange system, air conditioning equipment and control method of air conditioning equipment
US9261297B2 (en) Cooling device
CN215597816U (en) Air conditioning system
KR102644744B1 (en) Cooling and heating system for vehicle
KR102666810B1 (en) Cooling and heating system for vehicle
KR102679780B1 (en) Cooling and heating system for vehicle
EP2631565B1 (en) Cooling system for operation with a two-phase refrigerant
CN113165748B (en) Transport means and method for cooling compartments of such transport means
KR102644747B1 (en) Cooling and heating system for vehicle
KR102644745B1 (en) Cooling and heating system for vehicle
JP2001183026A (en) Cooling device for moving body

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080417

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090417

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees