JPH03248045A - Sample pan for spectroscopic analysis and spectroscopic analysis method - Google Patents
Sample pan for spectroscopic analysis and spectroscopic analysis methodInfo
- Publication number
- JPH03248045A JPH03248045A JP4451290A JP4451290A JPH03248045A JP H03248045 A JPH03248045 A JP H03248045A JP 4451290 A JP4451290 A JP 4451290A JP 4451290 A JP4451290 A JP 4451290A JP H03248045 A JPH03248045 A JP H03248045A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- light
- reflected
- dish
- spectroscopic analysis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004611 spectroscopical analysis Methods 0.000 title claims description 14
- 238000000034 method Methods 0.000 title claims description 9
- 239000000463 material Substances 0.000 claims abstract description 7
- 238000005259 measurement Methods 0.000 abstract description 17
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 abstract description 3
- 239000010931 gold Substances 0.000 abstract description 3
- 229910052737 gold Inorganic materials 0.000 abstract description 3
- 239000002184 metal Substances 0.000 abstract description 2
- 229910052751 metal Inorganic materials 0.000 abstract description 2
- 101150006573 PAN1 gene Proteins 0.000 abstract 3
- 235000010469 Glycine max Nutrition 0.000 description 6
- 244000068988 Glycine max Species 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 239000000843 powder Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000000862 absorption spectrum Methods 0.000 description 2
- 239000003925 fat Substances 0.000 description 2
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000035784 germination Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- XCAUINMIESBTBL-UHFFFAOYSA-N lead(ii) sulfide Chemical compound [Pb]=S XCAUINMIESBTBL-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000014593 oils and fats Nutrition 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
[産業上の利用分野]
本発明は、試料に光を照射したときに試料から放射され
る光を検出して行なわれる分光分析に用いられる試料皿
と、分光分析方法に関する。
[従来の技術]
従来、この種の分光分析に用いられる試料皿として、平
板に深さが一定の凹部な設けたものがある。第3図は、
この従来の試料皿と積分球を使用した分光分析計の要部
断面図である。積分球11は、内壁が光を反射する材料
からなり、上部と下部にそれぞれ開口部を有する。光の
検出器12は、積分球11の内壁に固着されている。積
分球11の上部の開口部の直上には鏡13が設けられ、
下部の開口部に接して試料皿30が取り付けられている
。試料皿30は、平板に深さ一定の凹部が設けられた構
成となっており、この凹部に粉体あるいは液体の試料3
1が満たされている。光源からの光は干渉フィルタある
いはモノクロメータによって単色化されて平行光20と
なり、鏡13によって反射されて試料31に照射される
。
光20が照射されたことによって試料31から放射され
る光21は、積分球11の内壁に当たって反射し、最終
的に検出器12に入射する。ここでいう試料から放射さ
れる光とは、試料表面で拡散反射された照射光、試料を
透過して試料と試料皿の界面で反射された照射光、照射
光によって試料が励起されて発する蛍光など、試料に光
を照射した結果試料から出てくる全ての光のことである
。
試料に照射される光と試料から放射される光の強さの比
は、照射される光の波長によって変化し、この波長によ
る光の強さの比の変化は、試料を構成する化学物質[Industrial Application Field] The present invention relates to a sample dish used in spectroscopic analysis performed by detecting light emitted from a sample when the sample is irradiated with light, and a spectroscopic analysis method. [Prior Art] Conventionally, as a sample dish used for this type of spectroscopic analysis, there is a type in which a flat plate is provided with a concave portion having a constant depth. Figure 3 shows
It is a sectional view of essential parts of a spectrometer using this conventional sample dish and integrating sphere. The integrating sphere 11 has an inner wall made of a material that reflects light, and has openings at the top and bottom, respectively. The light detector 12 is fixed to the inner wall of the integrating sphere 11. A mirror 13 is provided directly above the opening at the top of the integrating sphere 11,
A sample dish 30 is attached in contact with the lower opening. The sample dish 30 has a flat plate with a concave portion having a constant depth, and a powder or liquid sample 3 is placed in the concave portion.
1 is fulfilled. The light from the light source is monochromated by an interference filter or a monochromator to become parallel light 20, which is reflected by a mirror 13 and irradiated onto a sample 31. The light 21 emitted from the sample 31 upon being irradiated with the light 20 hits the inner wall of the integrating sphere 11, is reflected, and finally enters the detector 12. The light emitted from the sample here refers to irradiation light that is diffusely reflected on the sample surface, irradiation light that passes through the sample and is reflected at the interface between the sample and sample plate, and fluorescence that is emitted when the sample is excited by the irradiation light. This refers to all the light that comes out of a sample as a result of irradiating the sample with light. The ratio of the intensity of the light irradiated to the sample and the light emitted from the sample changes depending on the wavelength of the irradiated light, and the change in the ratio of light intensity depending on the wavelength is due to the chemical substances that make up the sample.
【4
よって固有であるので、試料から放射される光を検出す
ることにより、試料の分析を行なうことができる。
上述した分光分析計として、例えば波長が800nmか
ら2500nm程度の近赤外光のうちのいくつかの特定
の波長の光を用い、穀類、乳製品、油脂、医薬品、繊維
などの試料に含まれる水分、油分、蛋白分、糖分、アル
コール分などを定量する装置が市販されている。
[発明が解決しようとする課題]
上述した従来の試料皿は、以下に述べるように、植物の
種子などの粒状の試料を粉砕せずにそのままの形状で測
定するのには適していないという欠点がある。
例えば、発芽させるのに適した種子を選別するために分
光分析を行なう場合、種子を1個ずつ、粉砕せずに、分
析しなければならない、また、粒状の試料を粉砕して粉
体にして分析すると、粉砕中に水分や揮発分が失われ、
正確な定量が行えなくなるおそれがある。そこで粒状の
試料をそのままの形状で分析することが試みられている
が、従来の試料皿に粒状の試料を1個ずつ載せて測定を
行なうと、一般に照射される光のビーム径の方が試料の
直径より大きいため、照射光のうちかなりの部分は試料
に当たらずに試料皿に当たって反射し検出器に入射する
こととなり、測定のS/N比が悪化する。測定のS/N
比が悪化すれば、測定値の正確度が悪化することも明ら
かである。試料皿に直接当たる光を減らそうとして照射
光のビームを絞れば、その分、光量も減るのでS/N比
は悪化し、また試料の大きさに合わせて照射光のビーム
を絞るのは分析作業を複雑にする。
本発明の目的は、粒状の試料をそのままの形状で1個ず
つ測定してもS/N比と正確度が悪化しない、粒状試料
の分析に適した試料皿と、この試料皿を用いた分析方法
を提供することにある。
[課題を解決するための手段]
上記目的達成可能な本発明は、
試料に光を照射したときに前記試料から放射される光を
検出して行なわれる分光分析に用いられる試料皿であっ
て、
内壁が、光を反射する材料で構成された回転放物面から
なる試料皿と、
この試料皿を用い、
試料の内部に前記回転放物面の焦点が位置するように前
記試料を前記試料皿に載せ、
平行光を前記回転放物面の回転軸に沿って前記試料皿に
入射させることを特徴とする分光分析方法である。
[作用]
本発明の試料皿の内壁は、光を反射する材料で構成され
た回転放物面からなるので、回転放物面の回転軸に平行
にこの試料皿に入射する光は、全て回転放物面の焦点に
集光する。そこで、粒状の試料をその内部に焦点が位置
するようにこの試料皿に載せ、回転軸に平行に光を入射
させると、入射光は全て試料に当たることになる。試料
が照射されたことにより試料から放射される光は、直接
あるいは回転放物面で反射されながら、回転放物面の開
口部より試料皿の外へ出て行くことになる。したがって
、試料皿に入射する光を単色化し、試料皿から出て行く
光の強さを測定することにより、分光分析を行なうこと
が可能となる。この場合、入射する光のビーム径を絞ら
なくても全ての入射光が試料に当たるので、S/N比の
高い測定を行なうことができ、測定の正確度が向上する
。また、試料の内部に焦点が位置するようになっている
ため、試料はほぼ全方向から光が照射されることとなる
ので、試料の向きによる測定値のばらつきが少なくなり
、試料を試料皿に載せるときに試料の向きに注意を払う
必要がなくなって作業能率の向上が図れる。
この試料皿は、粉体あるいは液体の試料に対しても使用
可能であり、焦点が試料の内部に位置するようにしてお
けば、入射する光が全て試料に当たることとなり、従来
の試料皿を用いたときよりも少ない試料量で、S/N比
と正確度の高い測定が可能となる。
[実施例]
次に、本発明の実施例について図面を参照して説明する
。
第1図は本発明の一実施例の試料皿の断面図、第2図は
第1図に例示される試料皿1を用いた分光分析計の一例
の要部断面図、第3図は試料皿1と従来の試料皿30を
用いてそれぞれ測定されたスペクトルを示す図である。
本実施例の試料皿1は、金属製の台座3のほぼ中央部に
、壁面が回転放物面2となるように凹部な設けたもので
ある。この回転放物面2は、鏡面仕上げの上に金メツキ
を施しであるので、光をよく反射する。ここで、回転放
物面2の頂点から焦点までの距離を粒状の試料の直径以
下となるようにし、試料皿】の開口部4が上を向くよう
にすれば、試料を試料皿1に1個ずつ載せたとき、重力
の作用によって試料は回転放物面2の頂点付近に位置す
るようになり、かつ焦点が試料の内部に位置するように
なるので好都合である。
次に、試料皿lを用いた分光分析方法について説明する
。
この分光分析方法は、例えば第2図に示されるような分
光分析計によって行なわれる。この分光分析計は、上述
した第3図に示す分光分析計と同様のものであり、従来
の試料皿30の代わりに上述した本実施例の試料皿1が
取り付けられている。粒状の試料5は、回転放物面2の
頂点近くに置かれ、回転放物面2の焦点Fは、試料5の
内部にある。
次に、上述した分光分析計の動作を説明する。
光源(図示せず)からモノクロメータあるいは干渉フィ
ルタによる分光系(図示せず)を通って単色化され、平
行になった光20は、鏡13によって反射され、試料皿
1に対し、回転放物面2の回転軸に平行に、入射する。
試料皿1に入射した光は、直接試料5に当たるか、回転
放物面2で反射して焦点Fに向かうことにより試料5に
当たる、試料5が照射されたことにより試料5から放射
される光21は、直接あるいは回転放物面2で反射され
て積分球11に入射し、積分球11の内壁で反射されて
最終的に検出器12に入射する。
必要とあれば、複数の波長を用いて測定を繰り返すこと
により、粒状の試料5の分析が行なわれる。
次に、具体的数値により、本実施例について説明する。
実施例1
開口部4の直径が24mm、深さが18mmである試料
皿1と、内壁に金メツキの施されている積分球11と、
硫化鉛(pbs)を利用した検出器12を使用した上述
の分光分析計を用い、大豆の1粒を試料皿1に載せて、
1l100nから2500nmの波長領域にわたってス
ペクトルを測定した。試料皿1の回転放物面2の焦点F
は、頂点より2mm上方にあることになる。試料から放
射される光の強さと試料皿lに入射する光の強さの比を
求めて、大豆の吸収スペクトルとして表わしたものが第
3図の実線である。
比較例1
実施例1の分光分析計において、試料皿lの代わりに、
平板に直径24mm、深さ1mmの凹部を設けた従来の
試料皿30を装着し、実施例1と同様の条件で同じ試料
のスペクトルを測定した結果が、第3図において点線で
示されている。
実施例1のスペクトルと比較例1のスペクトルとを比較
すると、実施例1の方が吸収の極大と極小がはっきりし
、吸収スペクトルの形状をよく表わしており、測定のS
/N比が向上していることがわかる。
実施例2
実施例1の試料皿1に大豆を1粒載せ、実施例1の分光
分析計により、2310nm、2230nm、2180
nm、1940nmの4波長の近赤外光を用いて、大豆
中の脂肪の定量を行なった。
測定を10回繰り返した結果、測定値の平均は20.3
g/diであり、湿式分析の結果と一致した。また、1
0回の測定の標準偏差は0121g/d l、変動係数
は1.03であった。
比較例2
比較例1の試料皿30に大豆を1粒載せ、実施例2と同
様の条件で同一の試料について脂肪の定量を行なった。
測定を10回繰り返した結果、測定値の平均は13.8
g/diであり、湿式分析の結果に比べ、約3分の2の
値であった。また、10回の測定の標準偏差は3.30
g/di、変動係数は23.91であった。
実施例2と比較例2を比較すれば明らかなように、本発
明にかかる試料皿1を用いることにより、従来の試料皿
30を用いた場合に比べ、大豆中の脂肪の定量を行なう
場合、正確度は大幅に向上し、客観値と一致した。また
、測定の繰り返し精度においても、23倍以上の向上が
確認された。
[発明の効果]
以上説明したように本発明は、内壁が、光を反射する材
料で構成された回転放物面からなる試料皿を用いること
により、1個ずつの粒状の試料についてそのままの形状
で高いS/N比と正確度を有する測定が可能となる効果
があり、粉体あるいは液体試料についても少ない試料量
で測定が行なえる効果がある。[4
Therefore, since it is unique, the sample can be analyzed by detecting the light emitted from the sample. The above-mentioned spectrometer uses light of several specific wavelengths of near-infrared light with a wavelength of about 800 nm to 2500 nm, for example, to analyze water contained in samples such as grains, dairy products, oils and fats, pharmaceuticals, and fibers. There are commercially available devices for quantifying oil content, protein content, sugar content, alcohol content, etc. [Problems to be Solved by the Invention] As described below, the conventional sample dish described above has the disadvantage that it is not suitable for measuring granular samples such as plant seeds in their original form without being crushed. There is. For example, when performing spectroscopic analysis to select seeds suitable for germination, seeds must be analyzed one by one without being crushed, and granular samples must be crushed into powder. Analysis shows that water and volatile matter are lost during grinding;
Accurate quantification may not be possible. Therefore, attempts have been made to analyze granular samples in their original shape, but when measurements are carried out by placing granular samples one by one on a conventional sample dish, the beam diameter of the irradiated light is generally smaller than that of the sample. Since the diameter of the sample plate is larger than the diameter of the sample plate, a considerable portion of the irradiated light does not hit the sample, but instead hits the sample plate and is reflected and enters the detector, deteriorating the S/N ratio of the measurement. Measurement S/N
It is also clear that the worse the ratio, the worse the accuracy of the measurements. If you narrow down the irradiation light beam to reduce the amount of light that hits the sample plate directly, the amount of light will decrease accordingly, resulting in a worse S/N ratio.Also, narrowing down the irradiation light beam to match the size of the sample is important for analysis. complicate the work. The purpose of the present invention is to provide a sample dish suitable for the analysis of granular samples, which does not deteriorate the S/N ratio and accuracy even when the granular samples are measured one by one in their original shape, and an analysis using this sample dish. The purpose is to provide a method. [Means for Solving the Problems] The present invention capable of achieving the above object is a sample dish used for spectroscopic analysis performed by detecting light emitted from a sample when the sample is irradiated with light, comprising: A sample dish whose inner wall is made of a paraboloid of revolution made of a material that reflects light, and using this sample dish, the sample is placed in the sample dish so that the focal point of the paraboloid of revolution is located inside the sample. The spectroscopic analysis method is characterized in that parallel light is made incident on the sample dish along the rotation axis of the paraboloid of revolution. [Function] Since the inner wall of the sample dish of the present invention is made of a paraboloid of revolution made of a material that reflects light, all light incident on this sample dish parallel to the rotation axis of the paraboloid of revolution is reflected by the rotation. Focus the light on the focal point of the paraboloid. Therefore, if a granular sample is placed on this sample plate so that the focal point is located inside the sample, and light is incident parallel to the rotation axis, all of the incident light will hit the sample. When the sample is irradiated, the light emitted from the sample goes out of the sample dish through the opening of the paraboloid of revolution, either directly or while being reflected by the paraboloid of revolution. Therefore, spectroscopic analysis can be performed by monochromating the light incident on the sample dish and measuring the intensity of the light exiting from the sample dish. In this case, all of the incident light hits the sample without narrowing down the beam diameter of the incident light, making it possible to perform measurements with a high S/N ratio and improving measurement accuracy. In addition, since the focal point is located inside the sample, the sample is irradiated with light from almost all directions, which reduces variations in measurement values due to the orientation of the sample. There is no need to pay attention to the orientation of the sample when loading it, improving work efficiency. This sample dish can also be used for powder or liquid samples, and if the focus is placed inside the sample, all of the incident light will hit the sample, making it possible to use a conventional sample dish. It is possible to perform measurements with a high S/N ratio and high accuracy using a smaller amount of sample than when using a conventional method. [Example] Next, an example of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view of a sample dish according to an embodiment of the present invention, FIG. 2 is a sectional view of essential parts of an example of a spectrometer using the sample dish 1 illustrated in FIG. FIG. 3 is a diagram showing spectra measured using the dish 1 and the conventional sample dish 30, respectively. The sample dish 1 of this embodiment has a concave portion substantially in the center of a metal pedestal 3 so that the wall surface forms a paraboloid of revolution 2. This paraboloid of revolution 2 has a mirror finish and is plated with gold, so it reflects light well. Here, if the distance from the apex of the paraboloid of rotation 2 to the focal point is set to be less than or equal to the diameter of the granular sample, and the opening 4 of the sample plate is directed upward, the sample can be placed in the sample plate 1. When placed one by one, the sample will be located near the apex of the paraboloid of revolution 2 due to the action of gravity, and the focal point will be located inside the sample, which is advantageous. Next, a spectroscopic analysis method using the sample dish 1 will be explained. This spectroscopic analysis method is carried out using a spectrometer as shown in FIG. 2, for example. This spectrometer is similar to the spectrometer shown in FIG. 3 described above, and the sample dish 1 of this embodiment described above is attached in place of the conventional sample dish 30. The granular sample 5 is placed near the apex of the paraboloid of revolution 2, and the focal point F of the paraboloid of revolution 2 is inside the sample 5. Next, the operation of the above-mentioned spectrometer will be explained. Light 20 from a light source (not shown) passes through a spectroscopic system (not shown) using a monochromator or an interference filter, becomes monochromatic and parallel, and is reflected by a mirror 13 to form a paraboloid of rotation with respect to the sample dish 1. The light is incident parallel to the axis of rotation of surface 2. The light incident on the sample dish 1 either hits the sample 5 directly or hits the sample 5 by being reflected by the paraboloid of revolution 2 and heads toward the focal point F.The light 21 emitted from the sample 5 when the sample 5 is irradiated enters the integrating sphere 11 either directly or by being reflected by the paraboloid of revolution 2, is reflected by the inner wall of the integrating sphere 11, and finally enters the detector 12. If necessary, the granular sample 5 is analyzed by repeating measurements using a plurality of wavelengths. Next, this example will be explained using specific numerical values. Example 1 A sample dish 1 whose opening 4 has a diameter of 24 mm and a depth of 18 mm, an integrating sphere 11 whose inner wall is plated with gold,
Using the above-mentioned spectrometer using the detector 12 using lead sulfide (PBS), place one grain of soybean on the sample plate 1,
Spectra were measured over the wavelength range from 1l100n to 2500nm. Focus F of the paraboloid of revolution 2 of the sample dish 1
is located 2 mm above the apex. The solid line in FIG. 3 is the ratio of the intensity of light emitted from the sample to the intensity of light incident on the sample plate 1, and is expressed as an absorption spectrum of soybean. Comparative Example 1 In the spectrometer of Example 1, instead of the sample dish l,
The spectra of the same sample were measured under the same conditions as in Example 1 using a conventional sample dish 30 with a flat plate having a recess of 24 mm in diameter and 1 mm in depth. The results are shown by dotted lines in FIG. . Comparing the spectrum of Example 1 with the spectrum of Comparative Example 1, Example 1 has clearer absorption maxima and minima, better represents the shape of the absorption spectrum, and the measured S
It can be seen that the /N ratio has improved. Example 2 One soybean was placed on the sample plate 1 of Example 1, and the spectrometer of Example 1 measured 2310 nm, 2230 nm, and 2180 nm.
Fat in soybeans was quantified using near-infrared light of four wavelengths: nm and 1940 nm. As a result of repeating the measurement 10 times, the average measured value was 20.3
g/di, which was consistent with the results of wet analysis. Also, 1
The standard deviation of 0 measurements was 0121 g/dl, and the coefficient of variation was 1.03. Comparative Example 2 One soybean was placed on the sample plate 30 of Comparative Example 1, and the fat content of the same sample was determined under the same conditions as in Example 2. As a result of repeating the measurement 10 times, the average measured value was 13.8
g/di, which was about two-thirds the value of the wet analysis result. Also, the standard deviation of 10 measurements is 3.30
g/di, the coefficient of variation was 23.91. As is clear from a comparison between Example 2 and Comparative Example 2, by using the sample dish 1 according to the present invention, fat in soybeans can be quantified more easily than when using the conventional sample dish 30. Accuracy was significantly improved and agreed with objective values. Furthermore, an improvement of 23 times or more was confirmed in the repeatability of measurement. [Effects of the Invention] As explained above, the present invention uses a sample dish whose inner wall is a paraboloid of revolution made of a material that reflects light, so that each granular sample can be shaped as it is. This method has the effect of making it possible to perform measurements with a high S/N ratio and accuracy, and it also has the effect of making it possible to perform measurements with a small amount of sample even for powder or liquid samples.
第1図は本発明の一実施例の試料皿の断面図、第2図は
第1図に例示される試料皿1を用いた分光分析計の一例
の要部断面図、第3図は試料皿1と従来の試料皿30を
用いてそれぞれ測定されたスペクトルを示す図、第4図
は従来の試料皿30を使用した分光分析計の要部断面図
である。
1・・試料皿、 2・・回転放物面、3 ・
5 ・
12 ・
20 ・
21 ・
30 ・
F ・
・台座、 4・・開口部、
・粒状の試料、 11・・積分球、
・検出器、 13・・鏡、
・光源からの平行光、
・試料から放射された光、
・試料皿、 31・・試料、
・焦点。FIG. 1 is a sectional view of a sample dish according to an embodiment of the present invention, FIG. 2 is a sectional view of essential parts of an example of a spectrometer using the sample dish 1 illustrated in FIG. FIG. 4 is a cross-sectional view of a main part of a spectrometer using the conventional sample dish 30. 1. Sample dish, 2. Paraboloid of revolution, 3. 5. 12. 20. 21. 30. F. Pedestal, 4. Opening, Granular sample, 11. Integrating sphere, Detection 13. Mirror, ・Parallel light from the light source, ・Light emitted from the sample, ・Sample dish, 31. Sample, ・Focus.
Claims (1)
光を検出して行なわれる分光分析に用いられる試料皿で
あって、 内壁が、光を反射する材料で構成された回転放物面から
なる試料皿。 2、試料に光を照射したときに前記試料から放射される
光を検出して行なわれる分光分析方法において、 内壁が、光を反射する材料で構成された回転放物面から
なる試料皿を用い、 前記試料の内部に前記回転放物面の焦点が位置するよう
に前記試料を前記試料皿に載せ、平行光を前記回転放物
面の回転軸に沿って前記試料皿に入射させることを特徴
とする分光分析方法。[Claims] 1. A sample dish used for spectroscopic analysis performed by detecting light emitted from a sample when the sample is irradiated with light, the inner wall of which is made of a material that reflects light. A sample dish consisting of a paraboloid of revolution. 2. In a spectroscopic analysis method that detects the light emitted from a sample when the sample is irradiated with light, a sample dish whose inner wall is a paraboloid of revolution made of a material that reflects light is used. , the sample is placed on the sample plate so that the focal point of the paraboloid of revolution is located inside the sample, and parallel light is made incident on the sample plate along the axis of rotation of the paraboloid of rotation. Spectroscopic analysis method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4451290A JPH03248045A (en) | 1990-02-27 | 1990-02-27 | Sample pan for spectroscopic analysis and spectroscopic analysis method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4451290A JPH03248045A (en) | 1990-02-27 | 1990-02-27 | Sample pan for spectroscopic analysis and spectroscopic analysis method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03248045A true JPH03248045A (en) | 1991-11-06 |
Family
ID=12693602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4451290A Pending JPH03248045A (en) | 1990-02-27 | 1990-02-27 | Sample pan for spectroscopic analysis and spectroscopic analysis method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03248045A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007033334A (en) * | 2005-07-28 | 2007-02-08 | Hamamatsu Photonics Kk | Sample holder |
JP2007086031A (en) * | 2005-09-26 | 2007-04-05 | Hamamatsu Photonics Kk | Photodetector and jig for sample holder |
JP2011027755A (en) * | 2010-11-10 | 2011-02-10 | Hamamatsu Photonics Kk | Photodetector |
US8324561B2 (en) | 2007-03-01 | 2012-12-04 | Hamamatsu Photonics K.K. | Photodetector and jig for sample holder |
JP2015535084A (en) * | 2012-11-20 | 2015-12-07 | テクノロギアン トゥトキムスケスクス ヴェーテーテー オイ | Optical sample measuring device and method of using the sample measuring device |
WO2022005812A1 (en) * | 2020-06-29 | 2022-01-06 | Spekciton Biosciences Llc | Duvf-msi biophotonic analyzer device and methods for detecting pathogens on plants and measuring stress response |
-
1990
- 1990-02-27 JP JP4451290A patent/JPH03248045A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007033334A (en) * | 2005-07-28 | 2007-02-08 | Hamamatsu Photonics Kk | Sample holder |
JP4652921B2 (en) * | 2005-07-28 | 2011-03-16 | 浜松ホトニクス株式会社 | Sample holder |
JP2007086031A (en) * | 2005-09-26 | 2007-04-05 | Hamamatsu Photonics Kk | Photodetector and jig for sample holder |
JP4708139B2 (en) * | 2005-09-26 | 2011-06-22 | 浜松ホトニクス株式会社 | Photodetector |
US8324561B2 (en) | 2007-03-01 | 2012-12-04 | Hamamatsu Photonics K.K. | Photodetector and jig for sample holder |
JP2011027755A (en) * | 2010-11-10 | 2011-02-10 | Hamamatsu Photonics Kk | Photodetector |
JP2015535084A (en) * | 2012-11-20 | 2015-12-07 | テクノロギアン トゥトキムスケスクス ヴェーテーテー オイ | Optical sample measuring device and method of using the sample measuring device |
WO2022005812A1 (en) * | 2020-06-29 | 2022-01-06 | Spekciton Biosciences Llc | Duvf-msi biophotonic analyzer device and methods for detecting pathogens on plants and measuring stress response |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1089436C (en) | Spectral measuring apparatus and automatic analyzer | |
AU769362B2 (en) | Method and apparatus for detecting mastitis by using visible light and/or near infrared light | |
AU769396B2 (en) | Method and apparatus for detecting mastitis by using visible light and/or near infrared light | |
TWI411775B (en) | Enhancement of x-ray reflectometry by measurement of diffuse reflections | |
JPS6331730B2 (en) | ||
Norris et al. | 4. Direct spectrophotometric determination of moisture content of grain and seeds | |
Fabbri et al. | Mid-infrared Fiber-Optics Reflectance Spectroscopy: a noninvasive technique for remote analysis of painted layers. Part I: technical setup | |
Honigs | Near infrared analysis | |
JPH03248045A (en) | Sample pan for spectroscopic analysis and spectroscopic analysis method | |
RU2395073C2 (en) | Method and equipment for quantitative analysis of solutions and dispersions using near-infrared spectroscopy | |
EP3830553B1 (en) | Diffuse reflectance apparatus | |
CN109073546A (en) | For detecting the existing method and apparatus of mycotoxin in cereal | |
US6147350A (en) | Spectroscopic residue detection system and method | |
US5214277A (en) | Near-infrared reflectance spectrometer system and related sample cell and sample support | |
JP2018077206A (en) | Light delivery and collection device and method for measuring raman scattering of sample | |
CN111220587B (en) | A portable pesticide residue detection instrument based on excited fluorescence | |
JPS58143254A (en) | Substance identifying device | |
Xiang et al. | Evaluation of transmission and reflection modalities for measuring content uniformity of pharmaceutical tablets with near-infrared spectroscopy | |
Wang et al. | Analysis of active ingredients in finished pharmaceuticals by NIR spectroscopy | |
Kumagai et al. | Application of a portable near infrared spectrometer for the manufacturing of noodle products | |
US7339169B1 (en) | Sample rotating turntable kit for infrared spectrometers | |
Heise | Spectroscopic Methods of Analysis: Diffuse Reflectance Spectroscopy | |
JPH0290041A (en) | Method and apparatus for spectrochemical analysis | |
RU2836588C1 (en) | Method of measuring spectroscopic properties of bulk products and device for implementation thereof | |
RU2031406C1 (en) | Infrared analyzer for determination of guality of grain and of products of its processing |