[go: up one dir, main page]

JPH03244463A - Device for manufacturing carbonated spring with minute bubbles - Google Patents

Device for manufacturing carbonated spring with minute bubbles

Info

Publication number
JPH03244463A
JPH03244463A JP4327390A JP4327390A JPH03244463A JP H03244463 A JPH03244463 A JP H03244463A JP 4327390 A JP4327390 A JP 4327390A JP 4327390 A JP4327390 A JP 4327390A JP H03244463 A JPH03244463 A JP H03244463A
Authority
JP
Japan
Prior art keywords
gas
air
carbon dioxide
supply
solenoid valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4327390A
Other languages
Japanese (ja)
Inventor
Naoki Kumon
久門 直樹
Harumori Kawagoe
川越 治衞
Shin Matsugi
伸 真継
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP4327390A priority Critical patent/JPH03244463A/en
Publication of JPH03244463A publication Critical patent/JPH03244463A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices For Medical Bathing And Washing (AREA)

Abstract

PURPOSE:To stably supply CO2 in any arbitrary concentration easily by opening a solenoid valve for supply of CO2 and another solenoid valve for supply of air alternately, and thereby setting the open times of the two by a control part to any desired values. CONSTITUTION:A gas/liquid mixing part 13 to supply CO2 and air is furnished at the fore stage of a pressurizing pump 1 on a pipeline 12. A supply pipe functioning as a gas supply part 2 is connected with this gas/liquid mixing part 13, and with this supply pipe are connected a piping 5a for supplying CO2 and another piping 5b for supplying air. These pipings 5a, 5b are fitted with respective solenoid valves 6a, 6b. A decompression valve 14 and a CO2 container 15 are connected with the piping 5a in its position farther than the solenoid valve 6a. Accordingly, the CO2 or air is inhaled by opening or closing the solenoid valve 6a or 6b and fed to the pipeline 12 from the gas supply part 2 via the gas liquid mixing part 13.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、気体を液体に加圧溶解させ、この液体を減圧
することにより微細気泡を発生させると共に気体として
二酸化炭素を液体である水に加圧溶解させることによっ
て炭酸泉を製造することができる微細気泡炭酸泉製造装
置に関するものである。
Detailed Description of the Invention [Industrial Application Field 1] The present invention involves dissolving a gas in a liquid under pressure, reducing the pressure of the liquid to generate microbubbles, and dissolving carbon dioxide as a gas into liquid water. The present invention relates to a micro-bubble carbonated spring producing device that can produce carbonated spring by dissolving it under pressure.

[在米の技術1 在米から炭酸泉を製造する場合、化学的に二酸化炭素を
発生させるような炭酸水素ナトリウムなどの錠剤を浴槽
の中に入れて行うものと、二酸化炭素を浴槽の中ヘパブ
リングして溶解させるものなどが知られている。
[American technology 1] When producing carbonated springs from the United States, two methods are used: one is to put tablets of sodium bicarbonate, which chemically generates carbon dioxide, into a bathtub, and the other is to bubble carbon dioxide into a bathtub. There are also known methods of dissolving it.

ところで、高濃度の炭酸泉を作ろうとする場合、前者の
化学物質による方法だと多量の錠剤を入れる必要があり
、コスト的にも問題があった。また、この方法では溶け
されなかった二酸化炭素が水面からどんどん気泡となっ
て逃げてしまい、ある程度までしか濃度を上げることが
できなかった。二酸化炭素の水面から逃げる量が多量に
なると狭い浴室では二酸化炭素の濃度が高まり、窒息な
どの危険があった。
By the way, when trying to make highly concentrated carbonated springs, the former method, which uses chemicals, requires the use of a large number of tablets, which poses a problem in terms of cost. In addition, with this method, the undissolved carbon dioxide gradually escapes from the water surface in the form of bubbles, making it possible to increase the concentration only to a certain extent. If the amount of carbon dioxide escaping from the water surface was large, the concentration of carbon dioxide would rise in a small bathroom, posing a risk of suffocation.

後者の方法でも、時間をかけてバブリングすると濃度は
ある程度までは上がるが、それ以上に濃度を上げること
はできなかった。またある濃度を越えると供給した二酸
化炭素のうち溶解する量より逃げる量の方が多くなり、
経済的にも問題があった。また、前者の場合と同様に高
濃度になって水面から二酸化炭素の逃げる量が多くなる
と狭い浴室などでは窒息などの危険があった。
Even with the latter method, the concentration increased to a certain extent by bubbling over time, but it was not possible to increase the concentration further. Moreover, when the concentration exceeds a certain level, the amount of carbon dioxide that is supplied will escape more than the amount that will dissolve.
There were also economic problems. Also, as in the former case, if the concentration becomes high and the amount of carbon dioxide escaping from the water surface increases, there is a risk of suffocation in small bathrooms.

[発明が解決しようとする課題1 加圧溶解法により微細気泡炭酸泉もしくは微細気泡を作
る場合、気体の供給時間と休止時間のバランスは諸条件
が一定であれば設定は容易で動作も安定するが、浴槽の
水位や、アキュムレータ内の水の量などが変化すると設
定値から条件がずれバランスが崩れやすいという問題が
あった。
[Problem to be solved by the invention 1 When creating fine bubble carbonated springs or fine bubbles by the pressurized melting method, the balance between gas supply time and rest time is easy to set and the operation is stable if various conditions are constant. There is a problem in that when the water level in the bathtub or the amount of water in the accumulator changes, the conditions tend to deviate from the set values and the balance tends to collapse.

本発明は上記した問題点に鑑みて発明したものであって
、その目的とするところは、気体である二酸化炭素と空
気を一定割合で混合し、連続的に安定して供給でき、な
おかつ二酸化炭素の利用効率を向上させることができる
微細気泡炭酸泉製造装置を提供するにある。
The present invention was invented in view of the above-mentioned problems, and its purpose is to mix gaseous carbon dioxide and air at a constant ratio, to be able to continuously and stably supply carbon dioxide, and to An object of the present invention is to provide an apparatus for producing fine bubble carbonated spring water that can improve the utilization efficiency of carbonated spring water.

[課題を解決するための手段] 上記目的を達成するために、本発明における微細気泡炭
酸泉は、気体と液体とを混合し加圧することにより液体
に気体を溶解させ、この液体を再び減圧することによっ
て微細気泡を析出する微細気泡発生装置で、加圧ポンプ
1の前段に二酸化炭素と空気を供給する気体供給部2を
設け、加圧ポンプ1の吐出側に水位検知用の液面センサ
31付設した未溶解気体を排出する機能を持ったアキュ
ムレータ4を設けて成ることを特徴とする微細気泡炭酸
泉製造装置において、二酸化炭素及び空気を供給する配
管5a、5bにそれぞれ電磁弁6を取り付け、該電磁弁
6a、6bを切り替えることにより開田時間を一定に制
御し、交互に注入することにより二酸化炭素と空気の定
m混合を行い且つ7キユムレータ4内の水位を液面セン
サ3によっである範囲内に保つように気体注入時間また
は注入間隔あるいはその双方をフントロールするための
制御部を設け、アキュムレータ4に設けた分#!された
未溶解の気体の排気部7を気体供給部2に接続した構成
とした。
[Means for Solving the Problems] In order to achieve the above object, the fine bubble carbonated spring of the present invention dissolves gas in the liquid by mixing gas and liquid and pressurizing the mixture, and then depressurizing the liquid again. This is a micro-bubble generator that precipitates micro-bubbles by using a gas supply unit 2 that supplies carbon dioxide and air before the pressure pump 1, and a liquid level sensor 31 for water level detection on the discharge side of the pressure pump 1. In the micro-bubble carbonated spring producing device, which is characterized by being equipped with an accumulator 4 having a function of discharging undissolved gas, a solenoid valve 6 is attached to each of the pipes 5a and 5b for supplying carbon dioxide and air, and the solenoid valve By switching the valves 6a and 6b, the field opening time is controlled to a constant value, and by alternately injecting carbon dioxide and air, a constant mixture of carbon dioxide and air is performed, and the water level in the cumulator 4 is kept within a certain range by the liquid level sensor 3. A control unit is provided to control the gas injection time and/or injection interval so as to maintain the gas injection time and the injection interval at #! The exhaust section 7 for dissolving the undissolved gas was connected to the gas supply section 2.

[作用1 すなわち、気体供給部2がら供給される気体が液体(浴
水)に混合され加圧ポンプ1により加圧溶解され、アキ
ュムレータ4で未溶解気体を排出し、この気体を溶解さ
せた液体を減圧して微細気泡として析出させるのである
が、液体に供給される気体として二酸化炭素だけでなく
、空気も混合され空気とともに二酸化炭素が液体中に加
圧溶解されることになる。そして、空気と二酸化炭素と
の混合はそれぞれに取り付けられた電磁弁6a、6bの
開時間設定によって行い(タイマーなどにより開時間の
設定を行う)が、気体の供給タイミングはアキュムレー
タ4に取り付けられた液面センサ3の信号によって電磁
弁6a、6bが開くように設定しておくものであり、こ
のようにすることで7キユムレータ4の水位が低い時(
気体が充分7キユムレータ4の中に入っている時)は電
磁弁6a16bが閉じ゛ており、排気の再利用(再溶解
)を行いながら系内の気体を消費するものであり、気体
が消費されてアキュムレータの水位が上がると液面セン
サからの信号が送られ、それぞれの電磁弁6a、6bが
一定時闇開き給気されるものである。
[Effect 1] In other words, the gas supplied from the gas supply section 2 is mixed with the liquid (bath water), dissolved under pressure by the pressurizing pump 1, undissolved gas is discharged by the accumulator 4, and the liquid in which this gas is dissolved is dissolved. By reducing the pressure, the gas is precipitated as fine bubbles, but not only carbon dioxide but also air is mixed as a gas supplied to the liquid, and the carbon dioxide and the air are dissolved into the liquid under pressure. The mixing of air and carbon dioxide is performed by setting the opening time of the solenoid valves 6a and 6b attached to each (the opening time is set using a timer, etc.), and the timing of gas supply is determined by the opening time of the solenoid valves 6a and 6b attached to each. The solenoid valves 6a and 6b are set to open in response to the signal from the liquid level sensor 3, and by doing this, when the water level in the 7-cumulator 4 is low (
When sufficient gas has entered the accumulator 4), the solenoid valve 6a16b is closed, and the gas in the system is consumed while reusing (remelting) the exhaust gas. When the water level in the accumulator rises, a signal is sent from the liquid level sensor, and each electromagnetic valve 6a, 6b is opened at a certain time to supply air.

[実施例] 以下、本発明を添付図面に示す実施例に基づいて詳述す
る。
[Examples] Hereinafter, the present invention will be described in detail based on examples shown in the accompanying drawings.

第1図には本発明の一実施例の配管図が示しである。こ
の実施例においては浴槽8内に微細気泡炭酸泉を吐出す
る場合の実施例が示しである。浴槽8の内壁には浴槽8
内の液体(すなわち浴水)9を吸入する吸い込み口10
が設けてあり、吸い込み口10より吸入された浴水9は
吐出/ズル11より噴出されるようにしである。12は
吸い込み口10と吐出/ズル11との間にわたって配管
された管路であり、加圧ポンプ1が配置しである。
FIG. 1 shows a piping diagram of an embodiment of the present invention. This embodiment shows an example in which fine bubble carbonated spring water is discharged into a bathtub 8. There is a bathtub 8 on the inner wall of the bathtub 8.
A suction port 10 for sucking in the liquid (i.e. bath water) 9 inside
is provided, and the bath water 9 sucked in from the suction port 10 is spouted out from the discharge/slip 11. Reference numeral 12 denotes a pipe line extending between the suction port 10 and the discharge/spool 11, and the pressurizing pump 1 is disposed therein.

管路12の加圧ポンプ1の@段(すなわち吸い込みfi
l)には二酸化炭素と空気を供給する気液混合部13が
設けである。この気液混合部13には気体供給部2とな
る供給管が接続してあり、この気体供給部2となる供給
管には二酸化炭素が供給される二酸化炭素供給用の配管
5aと空気が供給される空気供給用の配管5bとが接続
しである。二酸化炭素供給用の配管5aと空気供給用の
配管5bとにはそれぞれ電磁弁6a、6bが取り付けで
ある。
The @ stage of the pressure pump 1 in the pipe line 12 (i.e., the suction fi
1) is provided with a gas-liquid mixing section 13 that supplies carbon dioxide and air. A supply pipe serving as a gas supply unit 2 is connected to this gas-liquid mixing unit 13, and a carbon dioxide supply pipe 5a to which carbon dioxide is supplied and air are supplied to this supply pipe serving as a gas supply unit 2. It is connected to the air supply piping 5b. Solenoid valves 6a and 6b are attached to the carbon dioxide supply pipe 5a and the air supply pipe 5b, respectively.

二酸化炭素供給用の配管5aの電磁弁6aの先には減圧
弁14と二酸化炭素ボンベ15とが接続しである。この
ため、電磁弁6aまたは電磁弁6bを開閉することで二
酸化炭素または空気を吸気して気体供給部2から気液混
合部13を経て管路12に供給できるようにしである。
A pressure reducing valve 14 and a carbon dioxide cylinder 15 are connected to the end of the electromagnetic valve 6a of the carbon dioxide supply pipe 5a. Therefore, by opening and closing the solenoid valve 6a or 6b, carbon dioxide or air can be taken in and supplied from the gas supply section 2 to the pipe line 12 via the gas-liquid mixing section 13.

管路12の加圧ポンプ1よりも吐出側に7キユムレータ
4が設けである。アキエムレータ4の上部にはアキュム
レータ4で分離された未溶解の気体の俳X部7が設けて
あり、この排気部7と気体供給部2である給気管とが排
気管16により接続しである。この排気管16には俳×
紋り弁17が設けである。アキュムレータ4にはアキュ
ムレータ4内の水位を検知するための液面センサ3が設
けてあり、この液面センサ3によるアキュムレータ4内
の水位の検知信号が制御部18に送られ、制御部18が
らの制御信号により電磁弁6a、6bが開くように設定
しである。すなわち、加圧ポンプ1のスイッチが入ると
浴槽8内の浴水9が吸い込み口10から管路12内に吸
入される。この時アキュムレータ4内の水位がある値よ
りも高いと液面センサ3の信号により二酸化炭素供給用
の配管5aに設けられた電磁弁6aが設定時間だけ開放
した後閉じる。続いて空気供給用の配管5bに設けられ
た電磁弁6bが設定時間だけ開放した後閉じる。この時
両方の電磁弁6a、6bが同時に開放しないようにして
おく。
Seven accumulators 4 are provided on the discharge side of the conduit 12 relative to the pressure pump 1. An exhaust section 7 for the undissolved gas separated by the accumulator 4 is provided in the upper part of the accumulator 4, and this exhaust section 7 and an air supply pipe which is the gas supply section 2 are connected by an exhaust pipe 16. This exhaust pipe 16 has a haiku
A crest valve 17 is provided. The accumulator 4 is provided with a liquid level sensor 3 for detecting the water level in the accumulator 4. A detection signal of the water level in the accumulator 4 by this liquid level sensor 3 is sent to the control unit 18, and the control unit 18 The solenoid valves 6a and 6b are set to open in response to a control signal. That is, when the pressure pump 1 is turned on, the bath water 9 in the bathtub 8 is sucked into the pipe line 12 through the suction port 10. At this time, if the water level in the accumulator 4 is higher than a certain value, a signal from the liquid level sensor 3 causes the solenoid valve 6a provided in the carbon dioxide supply pipe 5a to open for a set time and then close. Subsequently, the solenoid valve 6b provided in the air supply pipe 5b is opened for a set time and then closed. At this time, both solenoid valves 6a and 6b should not be opened at the same time.

これは、両方の電磁弁6a、6bを同時に開放すると吸
い込み時の負圧の変動が大きく、二酸化炭素及び空気の
吸い込み量を一定にすることが困難となルタメ、2つの
電磁弁6a、61+を交互に111i171して供給す
るものである。このように交互に開く(両方同時には開
かない)ことにより気体の供給量は二酸化炭素も空気も
常にほぼ一定の量吸入でさるため(負圧を一定に保てる
ため)、後は吸入時間の設定を制御部18で変えるだけ
で任意の濃度の二酸化炭素が任意の量だけ供給できるこ
とになる。
This is because if both solenoid valves 6a and 6b are opened at the same time, the negative pressure during suction will fluctuate greatly, making it difficult to maintain a constant intake amount of carbon dioxide and air. 111i171 are supplied alternately. By opening alternately in this way (not opening both at the same time), the amount of gas supplied is always inhaled at a nearly constant amount for both carbon dioxide and air (because the negative pressure can be kept constant), so all that is left to do is set the inhalation time. By simply changing the amount using the control unit 18, carbon dioxide of any concentration can be supplied in any amount.

ここで、微細気泡のみを供給する場合には空気のみの供
給となる。
Here, when only fine bubbles are supplied, only air is supplied.

ところで、v!J2図には本発明における微細炭酸泉の
場合のタイムチャートが示してあり、#!13図には微
細気泡だけの場合のタイムチャートが示しである。
By the way, v! Figure J2 shows a time chart for the case of fine carbonated spring in the present invention, and #! FIG. 13 shows a time chart in the case of only fine bubbles.

第7図、第8図には液面センサ3を用いない比較例が示
しである。この第7図、$8図に示すものは液面センサ
3を用いることなく、タイマーにより二酸化炭素供給用
の電磁弁6a、空気供給用の電磁弁6bの開閉時間を一
定にするようにしており、第7図に微細気泡泉の場合の
タイムチャートが示してあり、第8図に微細気泡だけの
場合のタイムチャートが示しである。
7 and 8 show comparative examples in which the liquid level sensor 3 is not used. The device shown in FIGS. 7 and 8 does not use the liquid level sensor 3, but uses a timer to keep the opening and closing times of the solenoid valve 6a for carbon dioxide supply and the solenoid valve 6b for air supply constant. , FIG. 7 shows a time chart in the case of a fine bubble fountain, and FIG. 8 shows a time chart in the case of only fine bubbles.

そして、#S2図、第3図、第7図、第8図において、
Aはスイッチのオン、オフを示し、Bは二酸化炭素供給
用の電磁弁6aのオン、オフを示し、Cは空気供給用の
電磁弁6bのオン、オフを示しており、Dは液面センサ
3のオン、オフを示しており、T1は二酸化炭素の吸い
込み時間を示し、T2は空気の吸い込み時間を示し、T
3はタイマー設定による休止時間を示しており、T、は
液面センサによる休止時間を示している。
And in #S2 figure, figure 3, figure 7, figure 8,
A indicates on/off of the switch, B indicates on/off of the solenoid valve 6a for carbon dioxide supply, C indicates on/off of the solenoid valve 6b for air supply, and D indicates the liquid level sensor. 3 on and off, T1 indicates the carbon dioxide intake time, T2 indicates the air intake time, and T
3 indicates the pause time set by the timer, and T indicates the pause time determined by the liquid level sensor.

しかして、液面センサ3により給気タイミングを決める
方式(本発明の方式)は、比較例である第7図、第8図
のようにタイマーによって休止時間を一定に設定する方
式に比べて動作が確叉で安定している。比較例のタイマ
一方式では、長時間運転し液の濃度が徐々に減ってくる
ため休止時間が一定であればアキュムレータ4に気体が
徐々に蓄積されて最終的には気体が7キユムレータ4か
ら排出されるという危険があり、また浴槽8の水位の変
動や流量の変動によって給気のバランスが崩れやすいと
いう欠点があるが、しかし、本発明のように液面センサ
3による方式では、このような変動が起こってもアキュ
ムレータ4内の水位は常にある範囲に保たれある水位に
なって初めて弁の開閉が行なわれるため動作が安定する
ことになる。
Therefore, the method of determining the air supply timing using the liquid level sensor 3 (the method of the present invention) works better than the method of setting the pause time constant using a timer as shown in FIGS. 7 and 8, which are comparative examples. is certain and stable. In the one-timer type of the comparative example, the concentration of the liquid gradually decreases during long-term operation, so if the downtime is constant, gas will gradually accumulate in the accumulator 4, and eventually the gas will be discharged from the accumulator 4. However, the system using the liquid level sensor 3 as in the present invention has the disadvantage that the balance of the air supply is likely to collapse due to fluctuations in the water level in the bathtub 8 and fluctuations in the flow rate. Even if fluctuations occur, the water level in the accumulator 4 is always maintained within a certain range, and the valve is only opened and closed when the water level reaches a certain level, resulting in stable operation.

そして、浴水9の流速にて気体供給部2が管路12より
も負圧となり、エゼクタ−効果により気液混合部13か
ら二酸化炭素または空気が管路12内に吸入され浴水9
と混合され加圧ポンプ1にて加圧され浴水9中に溶解す
る。この時、加圧ポンプ1による二酸化炭素及び空気の
溶解効率を上げるために、実際に溶解する気体量に対し
て過剰に気体を供給する゛必要があり、加圧ポンプ1に
て加圧されても、多量の未溶解気体が存在する。このた
め、アキュムレータ4で余剰気体を分離し、アキュムレ
ータ4に設けた排気部7に連結された排気絞り弁17か
ら排気される。アキュムレータ4の排気は排気絞り弁1
7を経て排気管16を通り、気体供給部2である供給管
に戻され、気液混合部13において再度溶解される。こ
のため、気体の供給は加圧溶解で消IIされた分を補充
するだけでよく、補充は間欠注入でよくなる。また、排
気絞り弁17は排気量を調節してアキュムレータ4内の
圧力が者しく減圧された状態とならないようにしである
。つまり、二酸化炭素と空気が溶解された浴水9は加圧
された状態のままで管路12を通って吐出7ズル11へ
と送られるのであるが、この途中において、7キユムレ
ータ4内を通る際、アキュムレータ4は浴水9の脈動を
吸収したり、衝撃圧を吸収したりする一般的な作用をす
る他に、加圧ポンプ1内での加圧で溶解しきれなかった
空気及び二酸化炭素の溶解を促進するとともtこ、それ
でも溶解しなかった余剰気体を7キユムレータ4内の上
部に浮上させて浴水9から余剰気体を分離する作用をす
るものである。そして、このアキュムレータ4を通った
浴水9は気体であり二酸化炭素と空気が高濃度に溶解し
た状態となり、この高濃度に気体が溶解した浴水を吐出
ノズル11より浴槽8内に吐出させるものである。そし
て、吐出ノズル11より気体の溶解した浴水は加圧状態
がら圧力が開放された状態となり、浴水9中に溶解して
いた空気は、微細気泡となって浴WI8内の浴水9内に
析出する。この微細×泡に二酸化炭素が混合されること
となり、従来加圧溶解した二酸化itが減圧する際、大
漁となって水面に向かって急速に上昇していくのを防止
し、上昇速度の遅い微細気泡とともに浴水9内に漂い、
微細気泡の多大な気液接触面積を利用して高効率に再溶
解させることができるものである。
Then, due to the flow rate of the bath water 9, the pressure in the gas supply part 2 becomes more negative than that in the pipe line 12, and carbon dioxide or air is sucked into the pipe line 12 from the gas-liquid mixing part 13 due to the ejector effect.
The mixture is mixed with the water, pressurized by the pressure pump 1, and dissolved in the bath water 9. At this time, in order to increase the dissolution efficiency of carbon dioxide and air by the pressure pump 1, it is necessary to supply an excess amount of gas to the amount of gas actually dissolved, and the gas is pressurized by the pressure pump 1. Also, large amounts of undissolved gas are present. Therefore, the excess gas is separated in the accumulator 4 and exhausted from the exhaust throttle valve 17 connected to the exhaust section 7 provided in the accumulator 4. The exhaust of accumulator 4 is the exhaust throttle valve 1.
7, passes through the exhaust pipe 16, is returned to the supply pipe that is the gas supply section 2, and is dissolved again in the gas-liquid mixing section 13. For this reason, the supply of gas only requires replenishing the amount consumed by pressurized dissolution, and replenishment can be accomplished by intermittent injection. Further, the exhaust throttle valve 17 adjusts the exhaust amount to prevent the pressure inside the accumulator 4 from being excessively reduced. In other words, the bath water 9 in which carbon dioxide and air are dissolved is sent to the discharge nozzle 11 through the pipe 12 in a pressurized state, but on the way, it passes through the inside of the nozzle 4. At this time, the accumulator 4 has the general function of absorbing the pulsation of the bath water 9 and absorbing the impact pressure, and also absorbs air and carbon dioxide that have not been completely dissolved by the pressurization in the pressure pump 1. This functions to promote the dissolution of the water and to separate the excess gas from the bath water 9 by causing the excess gas that has not yet dissolved to float to the upper part of the accumulator 4. The bath water 9 that has passed through the accumulator 4 is in the form of a gas in which carbon dioxide and air are dissolved at a high concentration, and the bath water in which the gas is dissolved at a high concentration is discharged into the bathtub 8 from the discharge nozzle 11. It is. Then, the bath water in which the gas has been dissolved from the discharge nozzle 11 changes from a pressurized state to a pressure-released state, and the air dissolved in the bath water 9 becomes fine bubbles and enters the bath water 9 in the bath WI8. It precipitates out. Carbon dioxide is mixed with these fine bubbles, and when the IT dioxide dissolved under pressure is decompressed, it prevents it from rising rapidly towards the water surface as a large catch, and prevents the fine bubbles from rising rapidly toward the water surface. Floating in the bath water 9 with air bubbles,
This allows for highly efficient redissolution by utilizing the large gas-liquid contact area of microbubbles.

空気と二酸化炭素の割合としては、空気が多いほど微細
気泡は多量に発生し、二酸化炭素が多いほど微細気泡の
析出が減るため微細気泡による白濁の度合が薄くなる。
As for the ratio of air and carbon dioxide, the more air there is, the more microbubbles will be generated, and the more carbon dioxide there is, the less precipitation of microbubbles will occur, so the degree of white turbidity caused by microbubbles will become less.

また二酸化炭素を多量に供給すると大漁が析出するため
目的や用途に応じて割合を調整するとよい。
Also, if a large amount of carbon dioxide is supplied, a large catch will be deposited, so it is recommended to adjust the ratio depending on the purpose and use.

上記実施例以外に液面センサ3により水位を制御する方
法として、第4図に示すような二酸化炭素と空気の供給
順序を入れ換えたものや、第5図に示すように二酸化炭
素の供給の闇に空気の供給をはさんだパターン及びその
逆のパターンなども考えられる。また、供給時間そのも
のもタイマーなどによる時間設定ではなく、液面センサ
ないより液面の高さで制御することも考えられる。
In addition to the above-mentioned embodiments, as a method of controlling the water level using the liquid level sensor 3, there is a method in which the supply order of carbon dioxide and air is switched as shown in FIG. It is also possible to consider a pattern in which air is supplied between the two, and vice versa. Furthermore, the supply time itself may be controlled by the height of the liquid level rather than by a liquid level sensor, rather than by setting the time using a timer or the like.

[発明の効果1 本発明にあっては、叙述のように二酸化炭素及び空気を
供給する配管にそれぞれ電磁弁を取り付け、該電磁弁を
切り替えることにより開閉時間を一定に制御し、交互に
注入することにより二酸化炭素と空気の定量混合を行い
且つアキュムレータ内の水位を液面センサによっである
範囲内に保つように気体注入時間または注入間隔あるい
はその双方をコントロールするようにするための制御部
を設けであるので、二酸化炭素供給用の電磁弁と空気供
給用の電磁弁とを交互に開放することにより両者の開時
間を制御部で任意に設定してやることで容易に任意の濃
度の二酸化炭素を安定して供給することができるもので
あり、また、電磁弁の開閉回数を少なくすることができ
るため電磁弁の寿命を短くすることができるものである
。また、液面センサに上り給気タイミングをとることに
よリ、流量や気本溶解城や水位の変動などの影響を受け
ることなく常に安定して気体を溶解させることができ、
この結果常に安定した微細気泡炭酸泉を作り出すことが
できるものである。更に、7キユムレータに設けた分離
された未溶解の気体の排気部を気体供給部に接続しであ
るので、常に一定量の気体が配管内に残っているため消
費した量だけ供給すればよく、供給量は最少ですむため
供給時の圧力変動も最小にすることができ、更に安定し
た微細気泡気泡炭酸泉の供給が可能となる。また、外部
への排気や排水がないため排気音がなく、その分静音化
がはかれ、排水のための配管も不要となるものである。
[Effect of the invention 1 In the present invention, as described above, solenoid valves are attached to the pipes that supply carbon dioxide and air, and by switching the solenoid valves, the opening and closing times are controlled to be constant, and the carbon dioxide and air are injected alternately. A control unit is provided to control the gas injection time and/or injection interval so as to perform quantitative mixing of carbon dioxide and air and to maintain the water level in the accumulator within a certain range using a liquid level sensor. Since the solenoid valve for carbon dioxide supply and the solenoid valve for air supply are opened alternately, the opening time of both can be arbitrarily set using the control unit, making it easy to release carbon dioxide at any concentration. It can be stably supplied, and since the number of times the solenoid valve is opened and closed can be reduced, the life of the solenoid valve can be shortened. In addition, by timing the air supply by going up to the liquid level sensor, it is possible to always dissolve the gas stably without being affected by flow rate, gas dissolution rate, or water level fluctuations.
As a result, stable fine-bubbled carbonated springs can be produced at all times. Furthermore, since the separated undissolved gas exhaust part provided in the 7-cumulator is connected to the gas supply part, a certain amount of gas always remains in the piping, so it is only necessary to supply only the consumed amount. Since the supply amount is kept to a minimum, pressure fluctuations during supply can also be minimized, making it possible to supply a more stable carbonated spring with fine bubbles. Furthermore, since there is no exhaust or drainage to the outside, there is no exhaust noise, resulting in quieter operation and no need for drainage piping.

そして、気体を捨てることなくすべて溶解に使われるた
め空気以外の高価な気体を使用した場合でも無駄がなく
て経済的である。
Furthermore, since all the gas is used for dissolution without being discarded, there is no waste and it is economical even when expensive gases other than air are used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の配管図、第2図は同上の微
細気泡R酸泉の場合のタイムチャート、#S3図は同上
の微細気泡の場合のタイムチャート、第4図は本発明の
他の実施例の微細気泡炭酸泉の場合のタイムチャート、
第5図は同上の池の実施例の微細気泡の場合のタイムチ
ャート、第6図は比較例の配管図、第7図は比較例の微
細気泡炭酸泉の場合のタイムチャート、第8図は比較例
の微細気泡の場合のタイムチャートであって、1は加圧
ポンプ、2は気体供給部、3は液面センサ、4はアキュ
ムレータ、5aは配管、5bは配管、6aは電磁弁、6
bは電磁弁、7は排気部である。
Figure 1 is a piping diagram of an embodiment of the present invention, Figure 2 is a time chart for the same fine bubble R acid spring, Figure #S3 is a time chart for the same fine bubble spring, and Figure 4 is the same as the above. Time chart for fine bubble carbonated spring according to another embodiment of the invention,
Figure 5 is a time chart for the case of fine bubbles in the same pond example, Figure 6 is a piping diagram for a comparative example, Figure 7 is a time chart for a fine bubble carbonated spring in a comparative example, and Figure 8 is a comparison. This is a time chart for the example of microbubbles, in which 1 is a pressurizing pump, 2 is a gas supply unit, 3 is a liquid level sensor, 4 is an accumulator, 5a is a pipe, 5b is a pipe, 6a is a solenoid valve, 6
b is a solenoid valve, and 7 is an exhaust section.

Claims (1)

【特許請求の範囲】[Claims] (1)気体と液体とを混合し加圧することにより液体に
気体を溶解させ、この液体を再び減圧することによって
微細気泡を析出する微細気泡発生装置で、加圧ポンプの
前段に二酸化炭素と空気を供給する気体供給部を設け、
加圧ポンプの吐出側に水位検知用の液面センサを付設し
た未溶解気体を排出する機能を持ったアキュムレータを
設けて成ることを特徴とする微細気泡炭酸泉製造装置に
おいて、二酸化炭素及び空気を供給する配管にそれぞれ
電磁弁を取り付け、該電磁弁を切り替えることにより開
閉時間を一定に制御して交互に注入することにより二酸
化炭素と空気の定量混合を行い且つアキュムレータ内の
水位を液面センサによってある範囲内に保つように気体
注入時間または注入間隔あるいはその双方をコントロー
ルするようにするための制御部を設け、アキュムレータ
に設けた分離された未溶解の気体の排気部を気体供給部
に接続して成ることを特徴とする微細気泡炭酸泉製造装
置。
(1) A micro-bubble generator that dissolves gas in the liquid by mixing gas and liquid and applying pressure, and then precipitates micro-bubbles by reducing the pressure of the liquid again. Provided with a gas supply section that supplies
A micro-bubble carbonated spring production device characterized by having an accumulator with a function of discharging undissolved gas and a liquid level sensor for detecting water level attached to the discharge side of a pressurizing pump, supplying carbon dioxide and air. Attach a solenoid valve to each piping, and by switching the solenoid valve, the opening and closing time is controlled at a constant rate, and by alternately injecting carbon dioxide and air, quantitative mixing of carbon dioxide and air is achieved, and the water level in the accumulator is controlled by a liquid level sensor. A control section is provided to control the gas injection time and/or injection interval so as to maintain the gas within the range, and the separated undissolved gas exhaust section provided in the accumulator is connected to the gas supply section. A micro-bubble carbonated spring production device characterized by:
JP4327390A 1990-02-23 1990-02-23 Device for manufacturing carbonated spring with minute bubbles Pending JPH03244463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4327390A JPH03244463A (en) 1990-02-23 1990-02-23 Device for manufacturing carbonated spring with minute bubbles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4327390A JPH03244463A (en) 1990-02-23 1990-02-23 Device for manufacturing carbonated spring with minute bubbles

Publications (1)

Publication Number Publication Date
JPH03244463A true JPH03244463A (en) 1991-10-31

Family

ID=12659213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4327390A Pending JPH03244463A (en) 1990-02-23 1990-02-23 Device for manufacturing carbonated spring with minute bubbles

Country Status (1)

Country Link
JP (1) JPH03244463A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011218087A (en) * 2010-04-14 2011-11-04 Showa Tansan Co Ltd Device for manufacturing carbonated spring
JP2015110087A (en) * 2015-03-16 2015-06-18 フジデノロ株式会社 Carbonate spring generation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011218087A (en) * 2010-04-14 2011-11-04 Showa Tansan Co Ltd Device for manufacturing carbonated spring
JP2015110087A (en) * 2015-03-16 2015-06-18 フジデノロ株式会社 Carbonate spring generation device

Similar Documents

Publication Publication Date Title
CA2514240A1 (en) Method, device, and system for controlling dissolved amount of gas
JP4891127B2 (en) Microbubble / carbonated spring generator
CN113265845B (en) Microbubble generator, microbubble generating method, and clothes treating apparatus
JP2001179241A (en) Fine air bubble generator
JP2007289903A (en) Microbubble generator and bath system
JP5360634B2 (en) Carbon dioxide containing sterilized water generating method and apparatus capable of controlling carbon dioxide containing concentration
JP2004298840A (en) Vessel for adjusting amount of gas to be dissolved
KR101166457B1 (en) Apparatus for generating micro bubbles with two stage complex structure including vortex generating part and vortex removing part and method for generating micro bubbles using that
JP6393152B2 (en) Microbubble generator
JP3680670B2 (en) Microbubble generator
JP2010155213A (en) Minute bubble generation apparatus
JPH03244463A (en) Device for manufacturing carbonated spring with minute bubbles
JP2002330885A (en) Bathtub system
JP2002191949A (en) Fine air bubble generator
KR20150074622A (en) Apparatus for producing carbonated water
JP2005161174A (en) Gas dissolving method and gas dissolving device
JPH0773593B2 (en) Micro bubble carbonated spring manufacturing equipment
JP3738440B2 (en) Bubble generator
JPH0751145B2 (en) Micro bubble carbonated spring manufacturing equipment
CN217230285U (en) Bubble generation system of water purification unit and water purification unit
JPH04295361A (en) Device for generating micro air bubble
JPH04100527A (en) Apparatus for generating minute air bubbles
JP2006263701A (en) Method and apparatus for producing sterile water containing carbon dioxide, slight amount of which can be discharged
JP2007000846A (en) Fine bubble generating device
JPH0773594B2 (en) Micro bubble carbonated spring manufacturing equipment