[go: up one dir, main page]

JPH03243139A - Power supply - Google Patents

Power supply

Info

Publication number
JPH03243139A
JPH03243139A JP2037250A JP3725090A JPH03243139A JP H03243139 A JPH03243139 A JP H03243139A JP 2037250 A JP2037250 A JP 2037250A JP 3725090 A JP3725090 A JP 3725090A JP H03243139 A JPH03243139 A JP H03243139A
Authority
JP
Japan
Prior art keywords
voltage
output
power supply
circuit
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2037250A
Other languages
Japanese (ja)
Inventor
Yoshiaki Miyazawa
宮沢 芳明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2037250A priority Critical patent/JPH03243139A/en
Publication of JPH03243139A publication Critical patent/JPH03243139A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Rectifiers (AREA)

Abstract

PURPOSE:To feed voltage stably by performing constant control of output voltage according to the output from means for amplifying the difference between the output voltage from a power supply and a reference voltage, and lowering the reference voltage when input voltage to the power supply drops below the lower control limit. CONSTITUTION:Voltage of a commercial power supply 1 is subjected to A/D conversion 2 in order to charge a battery 3 and further subjected to D/A conversion and voltage transformation 6 thus producing an AC voltage through an AC filter 7. A voltage reference circuit 21 produces a reference voltage based on a DC voltage detected through a DC voltage detecting circuit 22 and the reference voltage is provided to an error amplifier 13. Difference between the output voltage from an output voltage detecting circuit 11 and the reference voltage is then amplified 13 in order to control the modulation width of a PWM modulation circuit 15 and to control the inverter 5 through a gate amplifying circuit 16 thus producing a constant voltage. When power interruption endures for a long term and the battery voltage drops to the lower control limit, reference voltage to be outputted from the voltage reference circuit 21 is lowered and voltage control operation is continued.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、入力電源や負荷の変動に対し、安定した電力
を供給する電源装置に関し、特に入力電圧低下や過負荷
でも電圧制御限界に達しないようにしてその後の入力電
圧回復時や過負荷解除時でも出力過電圧等の異常を生ず
ることなく安定した電圧を供給できる電源装置に関する
ものである。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention relates to a power supply device that supplies stable power even when the input power source or load fluctuates. The present invention relates to a power supply device that can supply a stable voltage without causing an abnormality such as an output overvoltage even when the input voltage is restored or the overload is released by preventing the voltage control limit from being reached.

(従来の技術) 安定した電力を供給する電源装置の代表的な例としては
、交流入力停電時でも蓄電池を電源として安定した交流
電圧を供給する無停電電源装置がある。一般に、この種
の無停電電源装置は、コンピュータ、通信機器等の重要
負荷の電源として使われ、交流入力電圧の変動、負荷の
変動に対し出力電圧の変動が少ないことが要求されると
ともに、停電時の蓄電池によるバックアップ時間をでき
るだけ長くとるため蓄電池放電時の電圧に対応し、でき
るだけ制御範囲が広いことが要求される。
(Prior Art) A typical example of a power supply device that supplies stable electric power is an uninterruptible power supply device that uses a storage battery as a power source to supply stable AC voltage even during an AC input power outage. Generally, this type of uninterruptible power supply is used as a power source for important loads such as computers and communication equipment, and is required to have little fluctuation in output voltage in response to fluctuations in AC input voltage and load. In order to make the backup time by the storage battery as long as possible, it is required that the control range be as wide as possible, corresponding to the voltage when the storage battery is discharged.

第4図は、従来の無停電電源装置の例を示すブロック図
である。同図において、1は筒用電源(交流入力電源)
、2は整流器、3は蓄電池、4は蓄電池接続スイッチ、
5はインバータ、6はインバータ変圧器、7はインバー
タ5の出力電圧より高調波成分を除去して正弦波電圧に
改善する交流フィルタ、11は出力電圧検出回路、12
は電圧基準、13は出力電圧検出回路11の出力と電圧
基準12との偏差を増幅する誤差増幅回路、14はイン
バータ5の出力周波数基準となる発振器、15は発振器
14の出力信号と誤差増幅回路13の出力信号とを合成
してインバータ5を構成するスイッチング素子の点弧パ
ターンを造り出すPWM制御回路、16はPWM制御回
路15の出力信号を増幅するゲート増幅回路である。す
なわち、14〜16により、インバータ5のスイッチン
グ素子はPWM制御され、交流フィルタフの出力電圧は
、誤差増幅回路13の出力により、電圧基準12に一致
するように制御される。
FIG. 4 is a block diagram showing an example of a conventional uninterruptible power supply. In the figure, 1 is the tube power supply (AC input power supply)
, 2 is a rectifier, 3 is a storage battery, 4 is a storage battery connection switch,
5 is an inverter, 6 is an inverter transformer, 7 is an AC filter that removes harmonic components from the output voltage of the inverter 5 and improves it to a sine wave voltage, 11 is an output voltage detection circuit, 12
13 is a voltage reference, 13 is an error amplification circuit that amplifies the deviation between the output of the output voltage detection circuit 11 and the voltage reference 12, 14 is an oscillator that serves as the output frequency reference of the inverter 5, and 15 is an output signal of the oscillator 14 and an error amplification circuit. 13 is a PWM control circuit which synthesizes the output signal of the PWM control circuit 15 to create a firing pattern of the switching elements constituting the inverter 5; and 16 is a gate amplifier circuit which amplifies the output signal of the PWM control circuit 15. That is, the switching elements of the inverter 5 are subjected to PWM control by 14 to 16, and the output voltage of the AC filter is controlled to match the voltage reference 12 by the output of the error amplification circuit 13.

また、商用電源1の電圧が瞬時でも低下すると蓄電池接
続スイッチ4を導通させ蓄電池3より蓄電池接続スイッ
チ4を介してインバータ5へ直流電力を供給するととも
に、インバータ5の出力電圧制御手段で直流電圧変動に
対し出力電圧を一定に制御することにより安定した交流
電力を供給し続ける。
In addition, when the voltage of the commercial power source 1 drops even momentarily, the storage battery connection switch 4 is made conductive and DC power is supplied from the storage battery 3 to the inverter 5 via the storage battery connection switch 4, and the DC voltage is varied by the output voltage control means of the inverter 5. By controlling the output voltage to a constant level, stable AC power can be continuously supplied.

(発明が解決しようとする課題) インバータ5の電圧制御範囲は、蓄電池3の放電終止電
圧でも装置として定格電圧を出力できるよう選定される
が、インバータ5を構成するスイッチング素子の利用率
を高くとるために通常蓄電池3の放電終止電圧でインバ
ータ5の出力パルス幅最大(誤差増幅回路13の出力上
限値に相当)となるようにインバータ変圧器6の電圧定
格も含め選定される。
(Problem to be Solved by the Invention) The voltage control range of the inverter 5 is selected so that the device can output the rated voltage even at the discharge end voltage of the storage battery 3, but the utilization rate of the switching elements constituting the inverter 5 is set high. Therefore, the voltage rating of the inverter transformer 6 is normally selected so that the output pulse width of the inverter 5 is maximum (corresponding to the output upper limit value of the error amplification circuit 13) at the end of discharge voltage of the storage battery 3.

この結果、商用電源1の停電により蓄電池3の放電が継
続しインバータ4の入力電圧が、放電終止電圧に相当す
る電圧制御限界(線形制御限界)の電圧よりも低下する
と誤差増幅回路13の出力が上限値に達し、所謂、飽和
領域に入り制御不能となる。
As a result, when the storage battery 3 continues to be discharged due to a power outage in the commercial power supply 1 and the input voltage of the inverter 4 falls below the voltage control limit (linear control limit) corresponding to the discharge end voltage, the output of the error amplification circuit 13 decreases. It reaches the upper limit and enters the so-called saturation region and becomes uncontrollable.

この状態で商用電源1が回復し、整流器2の出力により
インバータ5の入力電圧が急速に回復すると電圧制御が
飽和領域から線形制御領域へ戻るにはかなりの時間を要
するため、インバータ5の出力パルス幅最大の状態がし
ばらく継続し、その結果出力電圧が過電圧となり負荷側
機器が破損したり、過電圧を検出してシステム停止に至
るおそれがある。あるいはインバータ5の入力電圧回復
の立上りによっては、インバータ5の出力電圧が正負非
対称となりインバータ変圧器6の直流偏磁(インバータ
5の出力過電圧によるインバータ変圧器6の過励磁もあ
る)を引起し最悪、装置そのものがインバータ5の過電
流でトリップ停止してしまう。
In this state, when the commercial power supply 1 is restored and the input voltage of the inverter 5 is rapidly restored by the output of the rectifier 2, it will take a considerable amount of time for the voltage control to return from the saturation region to the linear control region. The maximum width state continues for a while, and as a result, the output voltage becomes overvoltage, which may damage the load-side equipment or detect overvoltage and cause the system to stop. Alternatively, depending on the rise of the input voltage recovery of the inverter 5, the output voltage of the inverter 5 becomes asymmetric between positive and negative, causing DC bias in the inverter transformer 6 (over-excitation of the inverter transformer 6 due to the output overvoltage of the inverter 5), which is the worst case scenario. , the device itself trips and stops due to the overcurrent of the inverter 5.

また、蓄電池3がアルカリ電池のように内部インダクタ
ンスの大きい電池の場合、商用電源1の停電後の回復時
のみならず商用電源1の停電で蓄電池3の放電モードに
切換る際に蓄電池3に短時間の電圧落込みが発生し、蓄
電池3の電圧回復時上記と同様な不具合現象を発生する
可能性がある。
In addition, if the storage battery 3 is a battery with large internal inductance, such as an alkaline battery, the storage battery 3 may be short-circuited not only when recovering after a power outage of the commercial power source 1 but also when switching to the discharge mode of the storage battery 3 due to a power outage of the commercial power source 1. A voltage drop occurs over time, and when the voltage of the storage battery 3 is restored, a problem similar to the above may occur.

以上のように第4図の如き構成にあっては、インバータ
5の入力電圧低下後の回復動作において上記のような問
題がある。
As described above, the configuration as shown in FIG. 4 has the above-mentioned problem in the recovery operation after the input voltage of the inverter 5 drops.

本発明は、上述の点に鑑みなされたものであり、入力電
圧低下や過負荷でも電圧制御限界に達しないようにして
その後の入力電圧回復時や一過負荷解除時でも出力過電
圧等の異常を生ずることなく安定した電圧を供給できる
電源装置を提供することを目的とする。
The present invention has been made in view of the above points, and it prevents the voltage control limit from reaching the voltage control limit even when the input voltage drops or overloads, and prevents abnormalities such as output overvoltage even when the input voltage is restored or when the overload is released. It is an object of the present invention to provide a power supply device that can supply a stable voltage without causing voltage problems.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、上記の目的を達成するため、入力電源や負荷
の変動に対し、安定した電力を供給する電源装置におい
て、出力電圧と電圧基準の偏差を増幅する増幅手段と、
該増幅手段の出力に応じて出力電圧を一定に制御する制
御手段とを具備した電源装置に対し、電源装置の入力電
圧が該制御手段の制御限界に対応した下限値よりも低下
した場合あるいは前記増幅手段の出力が前記制御手段の
制御限界に対応した上限値を越えた場合に前記電圧基準
を低下させる手段を設けたものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention amplifies the deviation between the output voltage and the voltage reference in a power supply device that supplies stable power despite fluctuations in the input power source and load. amplifying means;
When the input voltage of the power supply device is lower than the lower limit value corresponding to the control limit of the control means, or the above-mentioned Means is provided for lowering the voltage reference when the output of the amplification means exceeds an upper limit value corresponding to the control limit of the control means.

(作用) このような構成の電源装置にあっては、入力電圧低下や
過負荷等により電圧制御限界に達する前に、制御限界に
対応した入力電圧下限あるいは増幅手段上限値を越える
ことを検出して電圧基準を低下させることにより線形制
御領域での動作を継続するようにして、入力電圧回復時
や過負荷解除時の制御応答遅れによる出力過電圧等の異
常を防止している。
(Function) In a power supply device with such a configuration, before the voltage control limit is reached due to input voltage drop, overload, etc., it is detected that the input voltage lower limit or amplification means upper limit value corresponding to the control limit is exceeded. By lowering the voltage reference, operation is continued in the linear control region, thereby preventing abnormalities such as output overvoltage due to delay in control response when input voltage is restored or when overload is released.

(実施例) 以下、本発明の一実施例を第1図を参照して説明する。(Example) An embodiment of the present invention will be described below with reference to FIG.

第1図において、第4図と同一部分には同一符号を付し
てその説明を省略し、ここでは異なる点についてのみ述
べる。すなわち、第1図において、22はインバータ5
の入力電圧(直流電圧Ed)が電圧制御限界に対応した
下限値よりも低下したことを検出する直流電圧検出回路
、22は通常は一定の電圧基準を出力し、直流電圧検出
回路22の検出出力に応じて電圧基準を低下させる電圧
基準回路である。
In FIG. 1, the same parts as those in FIG. 4 are given the same reference numerals, and the explanation thereof will be omitted, and only the different points will be described here. That is, in FIG. 1, 22 is the inverter 5.
A DC voltage detection circuit 22 detects that the input voltage (DC voltage Ed) has fallen below a lower limit value corresponding to the voltage control limit, and 22 normally outputs a constant voltage reference, and the detection output of the DC voltage detection circuit 22 This is a voltage reference circuit that lowers the voltage reference according to the voltage.

第2図は、電圧基準回路21の動作を説明するための特
性図であり、直流電圧Edが、電圧制御限界に対応した
下限値Ed、よりも低下した場合、直流電圧Edに応じ
て誤差増幅回路13へ与える電圧基準を下げるような特
性となっている。
FIG. 2 is a characteristic diagram for explaining the operation of the voltage reference circuit 21. When the DC voltage Ed falls below the lower limit value Ed corresponding to the voltage control limit, the error is amplified according to the DC voltage Ed. It has a characteristic that lowers the voltage reference applied to the circuit 13.

次に上記のように構成された電源装置の作用について述
べる。
Next, the operation of the power supply device configured as described above will be described.

直流電圧Edが、下限値Ed工よりも高い場合、第2図
の如く電圧基準回路21の出力する電圧基準は一定であ
り、第4図の装置と同様に定電圧制御動作により出力電
圧は、一定の電圧基準に一致するように制御される。
When the DC voltage Ed is higher than the lower limit value Ed, the voltage reference output from the voltage reference circuit 21 is constant as shown in FIG. 2, and the output voltage is Controlled to match a fixed voltage reference.

一方、商用電源1の停電により蓄電池3の放電が継続し
、直流電圧Edが下限値Ed工よりも低下しようとする
と、直流電圧検出回路21により直ちに直流電圧Edの
低下が検出され、この検出信号により電圧基準回路22
は、第2図の特性のように誤差増幅回路13へ与える電
圧基準を直流電圧Edに応じて低下させる。これにより
誤差増幅回路13とPWM制御回路15は、装置の出力
電圧を低下した電圧基準に合せるように動作し、電圧制
御限界よりはずれることなく線形制御領域の動作を継続
する(装置の出力電圧は低下するが、負荷側機器の許容
するレベルであれば実用上問題はない)。
On the other hand, when the discharge of the storage battery 3 continues due to a power outage in the commercial power supply 1 and the DC voltage Ed is about to drop below the lower limit value Ed, the DC voltage detection circuit 21 immediately detects the drop in the DC voltage Ed, and this detection signal The voltage reference circuit 22
As shown in the characteristic shown in FIG. 2, the voltage reference applied to the error amplification circuit 13 is lowered in accordance with the DC voltage Ed. As a result, the error amplifier circuit 13 and the PWM control circuit 15 operate to match the output voltage of the device to the reduced voltage standard, and continue operating in the linear control region without deviating from the voltage control limit (the output voltage of the device is However, there is no practical problem as long as it is within the allowable level of the load-side equipment).

引続き、商用電源1が回復し整流器2の出力により直流
電圧Edが下限値Ed1 を越えて急激に回復すると、
電圧基準回路22の出力は一定の電圧に戻るが5元々電
圧制御は線形制御領域にあったので高速に応答し出力電
圧は元の電圧に戻るだけで出力過電圧等の異常は生ずる
ことなく安定した電圧に制御される。
Subsequently, when the commercial power supply 1 is restored and the DC voltage Ed exceeds the lower limit value Ed1 due to the output of the rectifier 2 and rapidly recovers,
The output of the voltage reference circuit 22 returns to a constant voltage, but since the voltage control was originally in the linear control region, it responded quickly and the output voltage simply returned to the original voltage and was stabilized without any abnormalities such as output overvoltage. Controlled by voltage.

このようにして、本実施例では、インバータ5の入力電
圧が電圧制御限界に対応した下限値よりも低下した場合
に入力電圧に応じて電圧基準を下げるように制御するこ
とにより、電圧制御は線形制御領域のままで動作を継続
するので、その後の入力電圧回復の際も電圧制御系は高
速に応答し、出力過電圧等の異常が生ずるという問題を
解消することができる。
In this way, in this embodiment, when the input voltage of the inverter 5 falls below the lower limit value corresponding to the voltage control limit, the voltage control is performed linearly by controlling the voltage reference to be lowered according to the input voltage. Since the operation continues in the control region, the voltage control system responds quickly even when the input voltage is subsequently restored, and the problem of abnormalities such as output overvoltage can be solved.

第4図の従来装置の説明においては、入力電圧低下後の
回復時の不具合現象に着目しているが、過負荷により電
圧制御限界に達した場合の過負荷解除時の動作について
も同様な不具合現象がみられる。
In the explanation of the conventional device shown in Fig. 4, we focus on the malfunction phenomenon during recovery after the input voltage drops, but the same malfunction also occurs when the overload is released when the voltage control limit is reached due to overload. A phenomenon is observed.

第3図の他の実施例は、この2つのモードで起る不具合
現象に対し効果のある構成である。同図において、31
は第1図の21と同様な電圧基準回路、32は誤差増幅
回路13の出力が電圧制限限界に対応した上限値を越え
た場合に電圧基準回路31の出力を下げるように構成し
たレベル検出回路であり、誤差増幅回路13の出力を直
接監視して電圧基準を変ることにより常に線形制御領域
で動作するようにしたものである。
The other embodiment shown in FIG. 3 has a configuration that is effective against malfunctions occurring in these two modes. In the same figure, 31
1 is a voltage reference circuit similar to 21 in FIG. 1, and 32 is a level detection circuit configured to lower the output of the voltage reference circuit 31 when the output of the error amplifier circuit 13 exceeds an upper limit value corresponding to the voltage limit limit. By directly monitoring the output of the error amplifying circuit 13 and changing the voltage reference, it is possible to always operate in the linear control region.

なお、上記実施例ではインバータを使用した交流出力の
電源装置について述べたが、交流出力の電源装置には限
定されず、直流出力の電源装置にも適用できる。
In the above embodiment, an AC output power supply device using an inverter has been described, but the present invention is not limited to an AC output power supply device, and can also be applied to a DC output power supply device.

〔発明の効果〕〔Effect of the invention〕

以上、述べたように本発明によれば、入力電圧低下や過
負荷でも電圧制御限界に達しないようにして、その後の
入力電圧回復時や過負荷解除時でも出力過電圧等の異常
を生ずることのない安定した電圧を供給する電源装置を
提供することができる。
As described above, according to the present invention, it is possible to prevent the voltage control limit from reaching the voltage control limit even when the input voltage drops or overloads, and to prevent abnormalities such as output overvoltage from occurring even when the input voltage is restored or the overload is released. It is possible to provide a power supply that does not supply a stable voltage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロック図、第2図は
第1図の実施例における電圧基準回路の動作を説明する
ための特性図、第3図は本発明の他の実施例を示すブロ
ック図、第4図は従来の電源装置の構成例を示すブロッ
ク図である。 1・・・交流入力電源、 2・・・整流器、3・・・蓄
電池、    4・・・蓄電池接続スイッチ、5・・・
インバータ、   6・・・インバータ変圧器、7・・
・交流フィルタ、 11・・・出力電圧検出回路、13
・・・誤差増幅回路、 14・・・発振器、15・・・
PWM制御回路、16・・ゲート増幅回路、21.31
・・・電圧基準回路522・・・直流電圧検出回路、3
2・・・レベル検出回路。
FIG. 1 is a block diagram showing one embodiment of the present invention, FIG. 2 is a characteristic diagram for explaining the operation of the voltage reference circuit in the embodiment of FIG. 1, and FIG. 3 is another embodiment of the present invention. FIG. 4 is a block diagram showing an example of the configuration of a conventional power supply device. 1... AC input power supply, 2... Rectifier, 3... Storage battery, 4... Storage battery connection switch, 5...
Inverter, 6... Inverter transformer, 7...
- AC filter, 11... Output voltage detection circuit, 13
...error amplification circuit, 14...oscillator, 15...
PWM control circuit, 16... gate amplifier circuit, 21.31
... Voltage reference circuit 522 ... DC voltage detection circuit, 3
2...Level detection circuit.

Claims (2)

【特許請求の範囲】[Claims] (1)直流電力または交流電力を入力とし、安定化され
た直流電圧または交流電圧を出力する電源装置において
、出力電圧と電圧基準との偏差を増幅する増幅手段と、
該増幅手段の出力に応じて前記出力電圧を一定に制御す
る制御手段と、電源装置の入力電圧を検出し、該入力電
圧が前記制御手段の制御限界に対応した下限値よりも低
下した場合に前記電圧基準を低下させる手段を具備して
成る電源装置。
(1) In a power supply device that receives DC power or AC power as input and outputs stabilized DC voltage or AC voltage, an amplification means that amplifies the deviation between the output voltage and a voltage reference;
a control means for controlling the output voltage to be constant according to the output of the amplification means; and a control means for detecting an input voltage of a power supply device, and when the input voltage falls below a lower limit value corresponding to a control limit of the control means. A power supply device comprising means for lowering the voltage reference.
(2)直流電力または交流電力を入力とし、安定化され
た直流電圧または交流電圧を出力する電源装置において
、出力電圧と電圧基準との偏差を増幅する増幅手段と、
該増幅手段の出力に応じて前記出力電圧を一定に制御す
る制御手段と、前記増幅手段の出力を検出し、該出力レ
ベルが前記制御手段の制御限界に対応した上限値を越え
た場合に前記電圧基準を低下させる手段を具備して成る
電源装置。
(2) In a power supply device that receives DC power or AC power as input and outputs stabilized DC voltage or AC voltage, an amplifying means for amplifying the deviation between the output voltage and a voltage reference;
control means for controlling the output voltage to be constant according to the output of the amplification means; and a control means for detecting the output of the amplification means, and when the output level exceeds an upper limit value corresponding to the control limit of the control means; A power supply device comprising means for lowering a voltage reference.
JP2037250A 1990-02-20 1990-02-20 Power supply Pending JPH03243139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2037250A JPH03243139A (en) 1990-02-20 1990-02-20 Power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2037250A JPH03243139A (en) 1990-02-20 1990-02-20 Power supply

Publications (1)

Publication Number Publication Date
JPH03243139A true JPH03243139A (en) 1991-10-30

Family

ID=12492392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2037250A Pending JPH03243139A (en) 1990-02-20 1990-02-20 Power supply

Country Status (1)

Country Link
JP (1) JPH03243139A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001067590A1 (en) * 2000-03-08 2001-09-13 Kabushiki Kaisha Yaskawa Denki Pwm cycloconverter and power fault detector
JP2001258259A (en) * 2000-03-09 2001-09-21 Yaskawa Electric Corp Ac/ac direct power converter
JP2006340517A (en) * 2005-06-02 2006-12-14 Densei Lambda Kk Power supply unit and power supply control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5411426A (en) * 1977-06-29 1979-01-27 Central Res Inst Of Electric Power Ind Constant power controller for a/d converter
JPS5592546A (en) * 1979-01-08 1980-07-14 Hitachi Ltd Dc transmission device operation control system
JPS62239829A (en) * 1986-04-09 1987-10-20 富士電機株式会社 Method of limiting output current in harmonic compensator
JPS63302731A (en) * 1987-05-30 1988-12-09 Toshiba Corp Controller for ac/dc converter
JPS6419918A (en) * 1987-07-14 1989-01-24 Toshiba Corp Power converter controller

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5411426A (en) * 1977-06-29 1979-01-27 Central Res Inst Of Electric Power Ind Constant power controller for a/d converter
JPS5592546A (en) * 1979-01-08 1980-07-14 Hitachi Ltd Dc transmission device operation control system
JPS62239829A (en) * 1986-04-09 1987-10-20 富士電機株式会社 Method of limiting output current in harmonic compensator
JPS63302731A (en) * 1987-05-30 1988-12-09 Toshiba Corp Controller for ac/dc converter
JPS6419918A (en) * 1987-07-14 1989-01-24 Toshiba Corp Power converter controller

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001067590A1 (en) * 2000-03-08 2001-09-13 Kabushiki Kaisha Yaskawa Denki Pwm cycloconverter and power fault detector
JP2001258259A (en) * 2000-03-09 2001-09-21 Yaskawa Electric Corp Ac/ac direct power converter
JP2006340517A (en) * 2005-06-02 2006-12-14 Densei Lambda Kk Power supply unit and power supply control method

Similar Documents

Publication Publication Date Title
US6204648B1 (en) DC-to-DC converter capable of preventing overvoltage
KR890004588B1 (en) Power system and its control method
US4150425A (en) Module failure isolation circuit for paralleled inverters
US8484491B2 (en) Power supply apparatus and power supply control method
US20080150496A1 (en) Reactive power control apparatus for AC power system
JP4859932B2 (en) Control device and control method for power conversion system having instantaneous voltage drop / power failure countermeasure function
KR20060050767A (en) Power circuit and electronic device
KR102112077B1 (en) Uninterruptible power supply with single winding of output winding and inverter winding
JPH03243139A (en) Power supply
JP3998587B2 (en) Distributed power system
JP2005354756A (en) Uninterruptible power supply apparatus
JPS61116934A (en) Instantaneous voltage drop compensator
JPH0471334A (en) Hunting prevention device for grid-connected power supply inverter
CN109217655B (en) Power supply capable of prolonging maintenance time after power failure
JP2001286078A (en) Uninterruptible power supply system
WO1994014231A1 (en) Control apparatus for limiting voltage on a core reset capacitor
JPH04248372A (en) Power unit
JP2002112470A (en) Off-line ups system
JPS61106031A (en) Method of starting power converter
KR100790521B1 (en) Power failure compensation device
KR101082068B1 (en) Power supply abnormality detection and protection circuit of both power supply circuits and corresponding broadcasting system
US20240405557A1 (en) Method for operating a battery converter, battery converter and system
JPH07154921A (en) Parallelly operated power source
JPS6315822B2 (en)
JP3872310B2 (en) Voltage fluctuation compensation device