JPH0324310B2 - - Google Patents
Info
- Publication number
- JPH0324310B2 JPH0324310B2 JP8078284A JP8078284A JPH0324310B2 JP H0324310 B2 JPH0324310 B2 JP H0324310B2 JP 8078284 A JP8078284 A JP 8078284A JP 8078284 A JP8078284 A JP 8078284A JP H0324310 B2 JPH0324310 B2 JP H0324310B2
- Authority
- JP
- Japan
- Prior art keywords
- base material
- welding
- protrusions
- base
- basic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000003466 welding Methods 0.000 claims description 74
- 239000000463 material Substances 0.000 claims description 68
- 230000003014 reinforcing effect Effects 0.000 claims description 13
- 239000010953 base metal Substances 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 10
- 238000003825 pressing Methods 0.000 claims description 2
- 230000005611 electricity Effects 0.000 claims 1
- 239000002828 fuel tank Substances 0.000 description 8
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K11/00—Resistance welding; Severing by resistance heating
- B23K11/14—Projection welding
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Resistance Welding (AREA)
- Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、例えば車両用のフユーエルタンクに
おけるインレツトパイプの結合部などで代表され
るように、その溶接強度を高めるべく、母材を三
枚重ねで溶接するためのプロジエクシヨン溶接方
法に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is aimed at improving the welding strength of base materials, as typified by joints of inlet pipes in fuel tanks for vehicles. This invention relates to a projection welding method for welding three layers.
(従来技術)
一般的なプロジエクシヨン溶接については、例
えば実開昭55−143990号公報で示されているよう
に、二枚の母材のいずれか一方に溶接突起を形成
しておき、この溶接突起を他方の母材の平坦面に
当接させて二枚重ね状態とし、この状態で所定の
電流値による通電と加圧とを行つて溶接をなして
いる。(Prior art) In general projection welding, a welding protrusion is formed on one of two base materials, as shown in, for example, Japanese Utility Model Application No. 143990/1983. The welding protrusion is brought into contact with the flat surface of the other base material to create a two-layered state, and in this state, welding is performed by applying current at a predetermined current value and applying pressure.
(発明が解決しようとする問題点)
ところで、前述した車両用フユーエルタンクに
おけるインレツトパイプの結合部などのように、
板厚の異なる三枚の母材をプロジエクシヨン溶接
する場合は、これら三枚の母材のうちの二枚の母
材にそれぞれ形成された溶接突起の形状や大きさ
の違いによつて溶接条件も異なるため、一般には
二枚重ねの溶接を二回にわたつて行う必要があつ
た。つまり、三枚重ねプロジエクシヨン溶接を二
工程で行なうのであり、この結果、設備ならびに
作業工程が重複することとなる。(Problems to be Solved by the Invention) By the way, like the connection part of the inlet pipe in the vehicle fuel tank mentioned above,
When projection welding three base metals with different thicknesses, the welding process is performed due to the difference in the shape and size of the weld projections formed on two of the three base metals. Since the conditions were different, it was generally necessary to weld two layers together twice. In other words, three-ply projection welding is performed in two steps, resulting in duplication of equipment and work steps.
そこで、この三枚重ねプロジエクシヨン溶接を
一回の通電によつて一工程で行なうことも考えら
れるが、これを不用意に実施すると各母材の当接
部に過大な電流が流れ、当接部における溶融飛散
やピンホールの発生が顕著となり、溶接部の品質
低下ならびに強度低下を招くおそれがあつた。 Therefore, it is conceivable to carry out this three-ply projection welding in one process by applying current once, but if this is done carelessly, an excessive current will flow through the abutting parts of each base metal, resulting in The occurrence of melt scattering and pinholes at the joint became noticeable, which could lead to deterioration in the quality and strength of the weld.
また、別の手段として三枚重ねの母材を当接面
積の大きいスポツト溶接で行なうことも考えられ
る。しかしながら、前述したフユーエルタンクに
おけるインレツトパイプの結合部などのようにリ
ング状で、かつ小径(120mm以下が普通である)
の母材を多点(円周方向に五箇所以上)にわたつ
てスポツト溶接するには各溶接点に対し、一度に
溶接ガンを並べることは困難であり、何回かに分
けて溶接しなければならない。この結果、溶接点
を正しく規定しておくための割り出し装置が必要
となり、かつ各母材の浮き上り防止のための仮付
け溶接工程も付加され、溶接作業のサイクルタイ
ムが延びるという不都合が生じる。 As another method, spot welding of the three-ply base metal with a large contact area may be considered. However, like the connection part of the inlet pipe in the fuel tank mentioned above, it is ring-shaped and has a small diameter (usually 120 mm or less).
In order to spot weld the base metal at multiple points (more than 5 points in the circumferential direction), it is difficult to line up the welding gun at each welding point at once, and welding must be done in several steps. Must be. As a result, an indexing device is required to correctly define the welding points, and a tack welding step is also added to prevent each base material from lifting up, resulting in an inconvenience that the cycle time of the welding operation is extended.
なお、スポツト溶接特有の問題点としては、溶
接部の品質を保つために溶接電極の管理頻度が高
まり、かつ溶接部の圧痕も避け難い。 Incidentally, problems specific to spot welding include that the welding electrode must be managed more frequently to maintain the quality of the weld, and it is difficult to avoid indentations in the weld.
(発明の目的)
本発明の目的は、標準的な溶接設備によつて三
枚重ねの母材の溶接を一工程で行なうことがで
き、作業工程の重複を避けて生産性の向上を図る
ことができるとともに、母材相互の当接部に過大
な電流が流れることを避けて溶融飛散やピンホー
ル等の発生を防止でき、もつて溶接部の品質なら
びに強度を適正に保つことができる三枚重ねプロ
ジエクシヨン溶接の方法を提供することである。(Objective of the Invention) The object of the present invention is to be able to weld three-ply base materials in one step using standard welding equipment, and to improve productivity by avoiding duplication of work steps. In addition, it is possible to prevent excessive current from flowing in the contact area between the base metals, prevent melting spatter, pinholes, etc., and maintain appropriate quality and strength of the welded part. An object of the present invention is to provide a method for overlapping projection welding.
(発明の構成)
かかる目的を達成するために本発明は次のよう
に構成している。(Structure of the Invention) In order to achieve the above object, the present invention is structured as follows.
すなわち、溶接突起をもたない基本母材のそれ
ぞれの面に対し、補強母材及び補助母材の溶接突
起を当接させた三枚重ね状態で配置しておき、ま
ず補強母材と補助母材のうち板厚の小さい方の母
材に形成されている溶接突起と基本母材との当接
部の溶融結合に必要な電流値及び時間で通電と同
時に加圧する。この後、上記溶融結合部の冷却に
要する時間だけ通電を休止し、ついでこの溶融結
合された各母材と残る板厚の大きい方の母材に形
成されている溶接突起との当接部の溶融結合に必
要な電流値及び時間で再び通電する。 In other words, the reinforcing base material and the auxiliary base material are arranged in a three-layered state with the welding protrusions of the base material and the auxiliary base material in contact with each surface of the basic base material that does not have welding protrusions. Pressure is applied at the same time as current is applied at the current value and time required to melt and bond the abutting portion between the welding protrusion formed on the base material with the smaller thickness of the materials and the basic base material. After this, the current supply is stopped for the time required to cool down the fusion-bonded parts, and then the abutting parts between each fusion-bonded base metal and the welding protrusion formed on the remaining thicker base metal are removed. The current is applied again at the current value and time required for fusion bonding.
(実施例)
以下、本発明の構成を、図面で示す実施例に従
つて具体的に説明する。(Example) Hereinafter, the structure of the present invention will be specifically explained according to an example shown in the drawings.
第1図は車両用のフユーエルタンクにおけるイ
ンレツトパイプの結合部を表わしたもので、フユ
ーエルタンクアツパーである基本母材1は板厚が
0.8mmと薄く、かつ溶接突起をもつていない。な
お、この基本母材1には後述するインレツトパイ
プ10に通じる開口2があらかじめ形成されてい
る。この基本母材1の上下面には相互に板厚の異
なる補助母材5と補強母材3とがそれぞれ配設さ
れる。補助母材5は他の母材1,3と比較してそ
の板厚が0.6mmと最も厚く、外径が110mmのリング
状に形成されており、その円周方向に沿つて直径
7mmの溶接突起6が総計七箇所において形成され
ている。この補助母材5は後述するインレツトパ
イプ10のフランジ10aを結合するためのリテ
ーナ部材であつて、その一部を平面で表わした第
2図から明らかなように、後述するボルト12を
ねじ込むためのねじ孔7が円周方向に沿つて複数
個形成されている。 Figure 1 shows the joining part of the inlet pipe in a fuel tank for a vehicle.The basic base material 1, which is the fuel tank upper, has a plate thickness.
It is thin at 0.8mm and has no welding protrusions. Note that an opening 2 communicating with an inlet pipe 10, which will be described later, is formed in advance in this basic base material 1. An auxiliary base material 5 and a reinforcing base material 3 having different thicknesses are provided on the upper and lower surfaces of the basic base material 1, respectively. The auxiliary base material 5 has the thickest plate thickness at 0.6 mm compared to the other base materials 1 and 3, and is formed into a ring shape with an outer diameter of 110 mm, and a weld with a diameter of 7 mm is applied along the circumferential direction. Protrusions 6 are formed at a total of seven locations. This auxiliary base material 5 is a retainer member for connecting a flange 10a of an inlet pipe 10, which will be described later, and is used to screw in a bolt 12, which will be described later, as is clear from FIG. A plurality of screw holes 7 are formed along the circumferential direction.
一方、上記の補強母材3はその板厚が1.6mmと
前記基本母材1よりも厚く、外径が上記補助母材
5より大きい寸法のリング状に形成されていて、
その円周方向に沿つて前記補助母材5の溶接突起
6とは、その大きさならびに形状の異なる溶接突
起4が形成されている。なお、補強母材3の溶接
突起4は上記補助母材5の溶接突起6とほぼ同ピ
ツチで形成されているものの、両溶接突起4,6
はそれぞれ母材3,5の径方向に関して寸法Lで
ある2mmのずれをもつて形成されている(第1図
参照)。 On the other hand, the reinforcing base material 3 has a plate thickness of 1.6 mm, which is thicker than the basic base material 1, and is formed into a ring shape with an outer diameter larger than the auxiliary base material 5.
A welding protrusion 4 having a different size and shape from the welding protrusion 6 of the auxiliary base material 5 is formed along its circumferential direction. Although the welding protrusions 4 of the reinforcing base material 3 are formed at almost the same pitch as the welding protrusions 6 of the auxiliary base material 5, both welding protrusions 4, 6
are formed with a deviation of 2 mm, which is the dimension L, in the radial direction of the base materials 3 and 5, respectively (see FIG. 1).
次に、上記フユーエルタンクにおけるインレツ
トパイプ結合部のプロジエクシヨン溶接について
説明する。まず、前記三枚の母材1,3,5を第
1図で示すように三枚重ね状態にセツトする。つ
まり、補助母材5はその溶接突起6を基本母材1
の上面に当接させた状態で配置され、補強母材3
は同様にその溶接突起4を基本母材1の下面に当
接させた状態で配置されるのである。このとき、
補強母材3及び補助母材5の各溶接突起4,6は
上述したように寸法Lである2mmだけ互いにずれ
た状態に位置している。この状態においては各母
材1,3,5の当接部上下にプロジエクシヨン溶
接のための電極(図示しない)を配し、第3図で
示すように900Kgの一定加圧力を連続的に加えつ
つ一回目の溶接を実施する。この溶接条件は、電
流値が40KAで通電時間を40秒間とする。そして
一回目の溶接実施後、通電を30秒間休止して溶融
結合部(ナゲツト)を冷却させる。以上を一サイ
クルとし、同じ溶接条件と通電休止時間とにより
合計で三サイクル実施する。この結果、三枚重ね
の各母材1,3,5は一工程で同時にプロジエク
シヨン溶接されるのである。 Next, the projection welding of the inlet pipe joint in the fuel tank will be explained. First, the three base materials 1, 3, and 5 are set in a stacked state as shown in FIG. In other words, the auxiliary base material 5 connects the welding protrusion 6 to the basic base material 1.
The reinforcing base material 3 is placed in contact with the top surface of the
Similarly, the welding protrusion 4 is placed in contact with the lower surface of the basic base material 1. At this time,
As described above, the welding protrusions 4 and 6 of the reinforcing base material 3 and the auxiliary base material 5 are offset from each other by 2 mm, which is the dimension L. In this state, electrodes (not shown) for projection welding are placed above and below the abutting parts of each base metal 1, 3, and 5, and a constant pressure of 900 kg is continuously applied as shown in Figure 3. Perform the first welding while adding. The welding conditions are a current value of 40 KA and a current application time of 40 seconds. After the first welding, the current is turned off for 30 seconds to allow the molten joint (nugget) to cool. The above is considered as one cycle, and a total of three cycles are performed under the same welding conditions and energization stop time. As a result, the three base materials 1, 3, and 5 are simultaneously projection welded in one process.
この第3図における一回目の通電により、まず
最も板厚の薄い基本母材1と、ついで板厚の薄い
補強母材3の溶接突起4とが溶融結合される。そ
して、この一回目の通電の後の休止により、上記
の溶融結合部(ナゲツト)が冷却され、結果的に
基本母材1と補強母材3とが一体化(溶接)され
た状態となる。第3図における二回目の通電によ
り、すでに溶融結合によつて一体化されている基
本母材1及び補助母材5に対し、今度は板厚の最
も大きい補助母材5の溶接突起6が溶融結合され
る。この後、二回目の休止を挟んで三回目の通電
をなすことにより、補助母材5の沈み込みが良好
になされ、もつて第4図で示すように高さHが全
周にわたつて均一な溶接がなされる。 By this first energization in FIG. 3, the basic base material 1, which has the thinnest plate thickness, and then the welding protrusion 4 of the reinforcing base material 3, which has the thinnest plate thickness, are fused and bonded. Then, by stopping after the first energization, the above-mentioned molten joint (nugget) is cooled down, and as a result, the basic base material 1 and the reinforcing base material 3 become integrated (welded). Due to the second energization in FIG. 3, the welding protrusion 6 of the auxiliary base material 5, which has the largest plate thickness, is melted with respect to the basic base material 1 and the auxiliary base material 5, which have already been integrated by fusion bonding. be combined. After this, by energizing for the third time after a second pause, the auxiliary base material 5 sinks well, and the height H becomes uniform over the entire circumference as shown in Fig. 4. Welding is done.
このように、休止を挟んで短サイクルの通電を
三回に分けて行なうことにより、まず最初に板厚
の薄い母材1,3を溶融結合し、かつこれを冷却
させた後にこれらと板厚の厚い補助母材5とを溶
融結合させ、最終的には三枚重ねの溶接を行なう
ものであるから、各母材の当接部に過大電流が流
れて溶融飛散やピンホールなどの発生が避けられ
る。 In this way, by conducting short-cycle energization three times with a pause in between, the thin base materials 1 and 3 are first melted and bonded, and after cooling, the thin base materials 1 and 3 are bonded together. Since the thick auxiliary base material 5 is melt-bonded and the three sheets are finally welded together, an excessive current flows through the abutting portions of each base material, resulting in the occurrence of melting spatter, pinholes, etc. can avoid.
また、補強母材3と補助母材5との各溶接突起
4,6の位置をずらせたことにより、これら相互
の当接部に対する熱の集中を避け、特に板厚の薄
い補強母材3側の異常加熱による溶融飛散等も未
然に回避することができる。 In addition, by shifting the positions of the welding protrusions 4 and 6 on the reinforcing base material 3 and the auxiliary base material 5, the concentration of heat on the mutual contact areas can be avoided, especially on the thin reinforcing base material 3 side. Melting and scattering due to abnormal heating can also be avoided.
なお休止を挟んで短サイクルの通電を繰り返す
ことにより、前記溶接突起4,6の位置をずらせ
る処理は必ずしも必要でなく、仮に各溶接突起
4,5の位置が一致していても、三枚重ねの溶接
突起は充分良好に行われる。 Note that it is not necessarily necessary to shift the positions of the welding protrusions 4 and 6 by repeating short cycles of energization with pauses in between, and even if the positions of the welding protrusions 4 and 5 are aligned, three The overlapping welding protrusions are performed satisfactorily.
このようにして溶接されたフユーエルタンクに
おけるインレツトパイプ結合部は、その剛性が高
く、インレツトパイプ等から異常な曲げ力が加え
られてもこれに充分耐え得るものである。また、
前述した理由によつて第4図で示す高さHが均一
となるため、第4図で示すようにインレツトパイ
プ10のフランジ10aをシール11を介してボ
ルト12で結合した場合、このシール11の接触
面が広く、かつ均一となつてそのシ−ル性が良好
となる。 The inlet pipe joint portion of the fuel tank welded in this way has high rigidity and can sufficiently withstand even if abnormal bending force is applied from the inlet pipe or the like. Also,
Due to the above-mentioned reason, the height H shown in FIG. The contact surface is wide and uniform, resulting in good sealing properties.
このように本実施例ではプロジエクシヨン溶接
設備としての大幅な変更は不要であり、これまで
に使用されていた小型の小容量の溶接設備でもつ
て良好なプロジエクシヨン溶接をなすことができ
る。 As described above, this embodiment does not require any major changes to the projection welding equipment, and can perform good projection welding even with the small, small-capacity welding equipment that has been used up to now.
第5図で示す実施例は二回の通電によつて溶接
を完了するもので、一回目の溶接のための電流値
よりも二回目の溶接のための電流値を高くしてい
る。すなわち一回目の溶接条件は、電流値が
30KAで通電時間を30秒間とする。この一回目の
溶接実施後、通電を30秒間休止して溶融結合部を
冷却させる。この後、二回目の溶接を実施するの
であるが、この溶接条件としては電流値が50KA
で通電時間を60秒間とする。 In the embodiment shown in FIG. 5, welding is completed by applying current twice, and the current value for the second welding is set higher than the current value for the first welding. In other words, the first welding condition is that the current value is
The energization time is 30 seconds at 30KA. After this first welding, the current supply is stopped for 30 seconds to allow the molten joint to cool. After this, the second welding will be performed, and the welding conditions for this welding are such that the current value is 50KA.
The energization time is set to 60 seconds.
このように第5図で示されている実施例では一
回目の通電により、前述した場合と同様にまず基
本母材1と補強母材3の溶接突起4とを溶融結合
させ、一回の通電休止の後、電流値及び通電時間
を増大させて二回目の通電を行ない、これによつ
てプロジエクシヨン溶接を完了するものである。
つまり、二回目の通電の時点では、すでに両母材
の当接部に薄肉部が存在せず、従つてある程度大
容量の電流が流れても、これによつて溶融飛散な
どが生じるおそれがなく、本実施例はこの点を利
用し、二回の通電で溶接を完了するようにしたも
のである。 In this way, in the embodiment shown in FIG. 5, the first energization melts and joins the basic base material 1 and the welding protrusion 4 of the reinforcing base material 3, as in the case described above. After the pause, the current value and energization time are increased and energization is performed for the second time, thereby completing projection welding.
In other words, at the time of the second energization, there is no thin wall part in the contact area between the two base materials, so even if a certain amount of current flows, there is no risk of melting and scattering. This embodiment takes advantage of this point and completes welding with two energizations.
(発明の効果)
以上のように本発明は、一工程で三枚重ねのプ
ロジエクシヨン溶接を完了できるので、作業工程
の重複を避け、生産性が向上するとともに、この
溶接は短サイクルの通電及びその休止を繰り返す
ことによつて行なつており、一工程で作業を完了
することができるにもかかわらず、各母材の当接
部に過大電流が流れて溶融飛散やピンホール等が
発生することを防止でき、溶接部の品質を適正に
保ち、かつその剛性を高めることができる。(Effects of the Invention) As described above, the present invention can complete projection welding of three layers in one process, thereby avoiding duplication of work processes and improving productivity. Although the work can be completed in one step, excessive current flows through the contact parts of each base material, causing melting and scattering, pinholes, etc. This makes it possible to maintain appropriate quality of the welded part and increase its rigidity.
図面は本発明の実施例を示し、第1図は車両用
フユーエルタンクにおけるインレツトパイプ結合
部の溶接前のセツト状態を表した断面図、第2図
はリテーナである補助母材の一部を表した平面
図、第3図はプロジエクシヨン溶接の通電と加圧
力のパターンを表した特性図、第4図は第1図の
溶接完了状態を表した断面図、第5図は異なる通
電パターンを表した特性図である。
1……基本母材、3……補強母材、4……溶接
突起、5……補助母材、6……溶接突起。
The drawings show an embodiment of the present invention, and FIG. 1 is a cross-sectional view showing the inlet pipe joint in a vehicle fuel tank set before welding, and FIG. 2 is a part of an auxiliary base material that is a retainer. Fig. 3 is a characteristic diagram showing the energization and pressurizing force patterns of projection welding, Fig. 4 is a cross-sectional view showing the completed welding state of Fig. 1, and Fig. 5 is a different energization pattern. It is a characteristic diagram showing a pattern. 1...Basic base material, 3...Reinforcement base material, 4...Welding protrusion, 5...Auxiliary base material, 6...Welding protrusion.
Claims (1)
れぞれの面に対し、互いに板厚が異なり、かつ共
に溶接突起をもつた補強母材と補助母材とを、こ
れらの各溶接突起を基本母材の各面に当接させた
三枚重ね状態で配してこれらの各母材をプロジエ
クシヨン溶接する方法であつて、前記各母材に所
定の加圧力を加えた状態で、まず補強母材と補助
母材のうち板厚の薄い方の母材に形成されている
溶接突起と基本母材との当接部の溶融結合に必要
な電流値及び時間で通電した後、このときの溶融
結合部の冷却に要する時間だけ通電を休止し、つ
いでこの溶融結合された両母材と残る板厚の厚い
方の母材に形成されている溶接突起との当接部の
溶融結合に必要な電流値及び時間で再び通電する
ことを特徴とした三枚重ねプロジエクシヨン溶接
の方法。1. For each side of the basic base material, which has a thin plate thickness and does not have welding protrusions, a reinforcing base material and an auxiliary base material that have different plate thicknesses and both have welding protrusions, and each of these welding protrusions. A method of projection welding of three base metals by placing them in a stacked state in contact with each surface of the base metal, in which a predetermined pressing force is applied to each of the base metals, First, electricity is applied at the current value and time required to melt and bond the welding protrusion formed on the thinner base material of the reinforcing base material and the auxiliary base material to the basic base material. The current supply is stopped for the time required to cool down the fused joint, and then the abutting part between the two fused base materials and the weld protrusion formed on the remaining thicker base material is fused and joined. A three-ply projection welding method characterized by energizing again at the required current value and time.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8078284A JPS60223671A (en) | 1984-04-20 | 1984-04-20 | Method for triplex projection welding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8078284A JPS60223671A (en) | 1984-04-20 | 1984-04-20 | Method for triplex projection welding |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60223671A JPS60223671A (en) | 1985-11-08 |
JPH0324310B2 true JPH0324310B2 (en) | 1991-04-02 |
Family
ID=13728013
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8078284A Granted JPS60223671A (en) | 1984-04-20 | 1984-04-20 | Method for triplex projection welding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60223671A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4728926B2 (en) * | 2006-10-16 | 2011-07-20 | 新日本製鐵株式会社 | Lap resistance spot welding method |
CN110364654B (en) * | 2019-07-05 | 2022-08-05 | Oppo广东移动通信有限公司 | Battery module and its electronic equipment |
-
1984
- 1984-04-20 JP JP8078284A patent/JPS60223671A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60223671A (en) | 1985-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7426564B2 (en) | Welding method | |
CN205629649U (en) | A resistance weld fastener and equipment that be used for joint of same race with xenogenesis material | |
KR100206396B1 (en) | Automatic assembling system for spot welding of galvanized steel | |
US3337711A (en) | Method of welding metal bodies separated by an adhesive layer | |
US6646221B2 (en) | Method for repairing resistance spot welds in aluminum sheet materials | |
JP2000197969A (en) | Integrated molding blank and molding method | |
WO2018142994A1 (en) | Junction structure | |
JP2009226446A (en) | Spot welding method of dissimilar plates | |
WO2003018245A1 (en) | Conductive heat seam welding | |
JP4409953B2 (en) | Method without welding material and carrier | |
KR20210126124A (en) | Spot welding method of aluminum material and aluminum material | |
JPH0324310B2 (en) | ||
US5961028A (en) | System for joining thin-walled steel parts | |
JPH0324309B2 (en) | ||
JPH0324311B2 (en) | ||
JP2004017148A (en) | Dissimilar metal materials joining method | |
US7423233B2 (en) | Butt welding device and butt welding method | |
KR20190076756A (en) | Method for resistance spot welding of multy-layer steel sheet | |
JP2022146546A (en) | Resistance welding method | |
JPH03216282A (en) | Strain-free composite joining method | |
JPS6356366A (en) | Lap welding method | |
CN114473164B (en) | Method for resistance spot welding dissimilar metal workpiece stacked assembly and dissimilar metal stacked assembly for resistance spot welding | |
JPH09206955A (en) | Method for welding different kind of metal | |
JPS6160279A (en) | Production of pressure container | |
JPH01218774A (en) | Butt welding method and press die used therefor |